aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/mm_types.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/mm_types.h')
-rw-r--r--include/linux/mm_types.h348
1 files changed, 348 insertions, 0 deletions
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
new file mode 100644
index 00000000..059839c7
--- /dev/null
+++ b/include/linux/mm_types.h
@@ -0,0 +1,348 @@
+#ifndef _LINUX_MM_TYPES_H
+#define _LINUX_MM_TYPES_H
+
+#include <linux/auxvec.h>
+#include <linux/types.h>
+#include <linux/threads.h>
+#include <linux/list.h>
+#include <linux/spinlock.h>
+#include <linux/prio_tree.h>
+#include <linux/rbtree.h>
+#include <linux/rwsem.h>
+#include <linux/completion.h>
+#include <linux/cpumask.h>
+#include <linux/page-debug-flags.h>
+#include <asm/page.h>
+#include <asm/mmu.h>
+
+#ifndef AT_VECTOR_SIZE_ARCH
+#define AT_VECTOR_SIZE_ARCH 0
+#endif
+#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
+
+struct address_space;
+
+#define USE_SPLIT_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
+
+/*
+ * Each physical page in the system has a struct page associated with
+ * it to keep track of whatever it is we are using the page for at the
+ * moment. Note that we have no way to track which tasks are using
+ * a page, though if it is a pagecache page, rmap structures can tell us
+ * who is mapping it.
+ */
+struct page {
+ unsigned long flags; /* Atomic flags, some possibly
+ * updated asynchronously */
+ atomic_t _count; /* Usage count, see below. */
+ union {
+ /*
+ * Count of ptes mapped in
+ * mms, to show when page is
+ * mapped & limit reverse map
+ * searches.
+ *
+ * Used also for tail pages
+ * refcounting instead of
+ * _count. Tail pages cannot
+ * be mapped and keeping the
+ * tail page _count zero at
+ * all times guarantees
+ * get_page_unless_zero() will
+ * never succeed on tail
+ * pages.
+ */
+ atomic_t _mapcount;
+
+ struct { /* SLUB */
+ u16 inuse;
+ u16 objects;
+ };
+ };
+ union {
+ struct {
+ unsigned long private; /* Mapping-private opaque data:
+ * usually used for buffer_heads
+ * if PagePrivate set; used for
+ * swp_entry_t if PageSwapCache;
+ * indicates order in the buddy
+ * system if PG_buddy is set.
+ */
+ struct address_space *mapping; /* If low bit clear, points to
+ * inode address_space, or NULL.
+ * If page mapped as anonymous
+ * memory, low bit is set, and
+ * it points to anon_vma object:
+ * see PAGE_MAPPING_ANON below.
+ */
+ };
+#if USE_SPLIT_PTLOCKS
+ spinlock_t ptl;
+#endif
+ struct kmem_cache *slab; /* SLUB: Pointer to slab */
+ struct page *first_page; /* Compound tail pages */
+ };
+ union {
+ pgoff_t index; /* Our offset within mapping. */
+ void *freelist; /* SLUB: freelist req. slab lock */
+ };
+ struct list_head lru; /* Pageout list, eg. active_list
+ * protected by zone->lru_lock !
+ */
+ /*
+ * On machines where all RAM is mapped into kernel address space,
+ * we can simply calculate the virtual address. On machines with
+ * highmem some memory is mapped into kernel virtual memory
+ * dynamically, so we need a place to store that address.
+ * Note that this field could be 16 bits on x86 ... ;)
+ *
+ * Architectures with slow multiplication can define
+ * WANT_PAGE_VIRTUAL in asm/page.h
+ */
+#if defined(WANT_PAGE_VIRTUAL)
+ void *virtual; /* Kernel virtual address (NULL if
+ not kmapped, ie. highmem) */
+#endif /* WANT_PAGE_VIRTUAL */
+#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
+ unsigned long debug_flags; /* Use atomic bitops on this */
+#endif
+
+#ifdef CONFIG_KMEMCHECK
+ /*
+ * kmemcheck wants to track the status of each byte in a page; this
+ * is a pointer to such a status block. NULL if not tracked.
+ */
+ void *shadow;
+#endif
+};
+
+typedef unsigned long __nocast vm_flags_t;
+
+/*
+ * A region containing a mapping of a non-memory backed file under NOMMU
+ * conditions. These are held in a global tree and are pinned by the VMAs that
+ * map parts of them.
+ */
+struct vm_region {
+ struct rb_node vm_rb; /* link in global region tree */
+ vm_flags_t vm_flags; /* VMA vm_flags */
+ unsigned long vm_start; /* start address of region */
+ unsigned long vm_end; /* region initialised to here */
+ unsigned long vm_top; /* region allocated to here */
+ unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
+ struct file *vm_file; /* the backing file or NULL */
+
+ int vm_usage; /* region usage count (access under nommu_region_sem) */
+ bool vm_icache_flushed : 1; /* true if the icache has been flushed for
+ * this region */
+};
+
+/*
+ * This struct defines a memory VMM memory area. There is one of these
+ * per VM-area/task. A VM area is any part of the process virtual memory
+ * space that has a special rule for the page-fault handlers (ie a shared
+ * library, the executable area etc).
+ */
+struct vm_area_struct {
+ struct mm_struct * vm_mm; /* The address space we belong to. */
+ unsigned long vm_start; /* Our start address within vm_mm. */
+ unsigned long vm_end; /* The first byte after our end address
+ within vm_mm. */
+
+ /* linked list of VM areas per task, sorted by address */
+ struct vm_area_struct *vm_next, *vm_prev;
+
+ pgprot_t vm_page_prot; /* Access permissions of this VMA. */
+ unsigned long vm_flags; /* Flags, see mm.h. */
+
+ struct rb_node vm_rb;
+
+ /*
+ * For areas with an address space and backing store,
+ * linkage into the address_space->i_mmap prio tree, or
+ * linkage to the list of like vmas hanging off its node, or
+ * linkage of vma in the address_space->i_mmap_nonlinear list.
+ */
+ union {
+ struct {
+ struct list_head list;
+ void *parent; /* aligns with prio_tree_node parent */
+ struct vm_area_struct *head;
+ } vm_set;
+
+ struct raw_prio_tree_node prio_tree_node;
+ } shared;
+
+ /*
+ * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
+ * list, after a COW of one of the file pages. A MAP_SHARED vma
+ * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
+ * or brk vma (with NULL file) can only be in an anon_vma list.
+ */
+ struct list_head anon_vma_chain; /* Serialized by mmap_sem &
+ * page_table_lock */
+ struct anon_vma *anon_vma; /* Serialized by page_table_lock */
+
+ /* Function pointers to deal with this struct. */
+ const struct vm_operations_struct *vm_ops;
+
+ /* Information about our backing store: */
+ unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
+ units, *not* PAGE_CACHE_SIZE */
+ struct file * vm_file; /* File we map to (can be NULL). */
+ void * vm_private_data; /* was vm_pte (shared mem) */
+
+#ifndef CONFIG_MMU
+ struct vm_region *vm_region; /* NOMMU mapping region */
+#endif
+#ifdef CONFIG_NUMA
+ struct mempolicy *vm_policy; /* NUMA policy for the VMA */
+#endif
+};
+
+struct core_thread {
+ struct task_struct *task;
+ struct core_thread *next;
+};
+
+struct core_state {
+ atomic_t nr_threads;
+ struct core_thread dumper;
+ struct completion startup;
+};
+
+enum {
+ MM_FILEPAGES,
+ MM_ANONPAGES,
+ MM_SWAPENTS,
+ NR_MM_COUNTERS
+};
+
+#if USE_SPLIT_PTLOCKS && defined(CONFIG_MMU)
+#define SPLIT_RSS_COUNTING
+/* per-thread cached information, */
+struct task_rss_stat {
+ int events; /* for synchronization threshold */
+ int count[NR_MM_COUNTERS];
+};
+#endif /* USE_SPLIT_PTLOCKS */
+
+struct mm_rss_stat {
+ atomic_long_t count[NR_MM_COUNTERS];
+};
+
+struct mm_struct {
+ struct vm_area_struct * mmap; /* list of VMAs */
+ struct rb_root mm_rb;
+ struct vm_area_struct * mmap_cache; /* last find_vma result */
+#ifdef CONFIG_MMU
+ unsigned long (*get_unmapped_area) (struct file *filp,
+ unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags);
+ void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
+#endif
+ unsigned long mmap_base; /* base of mmap area */
+ unsigned long task_size; /* size of task vm space */
+ unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
+ unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
+ pgd_t * pgd;
+ atomic_t mm_users; /* How many users with user space? */
+ atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
+ int map_count; /* number of VMAs */
+
+ spinlock_t page_table_lock; /* Protects page tables and some counters */
+ struct rw_semaphore mmap_sem;
+
+ struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
+ * together off init_mm.mmlist, and are protected
+ * by mmlist_lock
+ */
+
+
+ unsigned long hiwater_rss; /* High-watermark of RSS usage */
+ unsigned long hiwater_vm; /* High-water virtual memory usage */
+
+ unsigned long total_vm, locked_vm, shared_vm, exec_vm;
+ unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
+ unsigned long start_code, end_code, start_data, end_data;
+ unsigned long start_brk, brk, start_stack;
+ unsigned long arg_start, arg_end, env_start, env_end;
+
+ unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
+
+ /*
+ * Special counters, in some configurations protected by the
+ * page_table_lock, in other configurations by being atomic.
+ */
+ struct mm_rss_stat rss_stat;
+
+ struct linux_binfmt *binfmt;
+
+ cpumask_var_t cpu_vm_mask_var;
+
+ /* Architecture-specific MM context */
+ mm_context_t context;
+
+ /* Swap token stuff */
+ /*
+ * Last value of global fault stamp as seen by this process.
+ * In other words, this value gives an indication of how long
+ * it has been since this task got the token.
+ * Look at mm/thrash.c
+ */
+ unsigned int faultstamp;
+ unsigned int token_priority;
+ unsigned int last_interval;
+
+ /* How many tasks sharing this mm are OOM_DISABLE */
+ atomic_t oom_disable_count;
+
+ unsigned long flags; /* Must use atomic bitops to access the bits */
+
+ struct core_state *core_state; /* coredumping support */
+#ifdef CONFIG_AIO
+ spinlock_t ioctx_lock;
+ struct hlist_head ioctx_list;
+#endif
+#ifdef CONFIG_MM_OWNER
+ /*
+ * "owner" points to a task that is regarded as the canonical
+ * user/owner of this mm. All of the following must be true in
+ * order for it to be changed:
+ *
+ * current == mm->owner
+ * current->mm != mm
+ * new_owner->mm == mm
+ * new_owner->alloc_lock is held
+ */
+ struct task_struct __rcu *owner;
+#endif
+
+ /* store ref to file /proc/<pid>/exe symlink points to */
+ struct file *exe_file;
+ unsigned long num_exe_file_vmas;
+#ifdef CONFIG_MMU_NOTIFIER
+ struct mmu_notifier_mm *mmu_notifier_mm;
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ pgtable_t pmd_huge_pte; /* protected by page_table_lock */
+#endif
+#ifdef CONFIG_CPUMASK_OFFSTACK
+ struct cpumask cpumask_allocation;
+#endif
+};
+
+static inline void mm_init_cpumask(struct mm_struct *mm)
+{
+#ifdef CONFIG_CPUMASK_OFFSTACK
+ mm->cpu_vm_mask_var = &mm->cpumask_allocation;
+#endif
+}
+
+/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
+static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
+{
+ return mm->cpu_vm_mask_var;
+}
+
+#endif /* _LINUX_MM_TYPES_H */