aboutsummaryrefslogtreecommitdiffstats
path: root/tests/errors/syntax_err02.v
blob: c72e976a81f82667b3d9734946ef6cabb9eaa3bf (plain)
1
2
3
4
5
6
7
module a;
task to (
  input integer [3:0]x
);
endtask
endmodule
ref='#n187'>187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
--  Mcode back-end for ortho - mcode to X86 instructions.
--  Copyright (C) 2006 - 2015 Tristan Gingold
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

--  Instruction pass for mcode x86.
--
--  The purpose of this pass is the transform the AST (the input) into a list
--  of x86 instructions and to allocate registers.
--
--  The AST given in input is already linearized: ifs, loops, cases have been
--  translated to labels and jumps.  So the input is a list of statement to
--  execute, intermixed with declaration blocks.
--
--  The first purpose of this pass is to translate statements (and expressions)
--  to x86 instructions.  This isn't particularly difficult as they are already
--  low-level statements and expression (by design of the language).  The
--  algorithm simply try to put as much as possible into an instruction (in
--  order to use the address operand encoding of x86: base, index and scale):
--  AST is split into small trees (sometime as small as a single node) and
--  linearized.  Each node represent a fix pattern of one or a few instructions
--  (in some case, like a 64 bit addition, we need more than one x86
--  instruction).
--  The core functions of this package (Gen_Insn and Gen_Insn_Stmt) do the
--  work: they call Gen_Insn for each operand, then append themself to the
--  result using Link_Stmt.
--
--  The second purpose of this pass is to perform register allocation.  This
--  is done in the same time.
--  There are two sources of constraints for register allocation:
--  - external constraint on the result: for example, the return value of
--    a function must be in a fixed register (defined by the ABI).
--  - instruction constraint on the result: some x86 instructions (like div)
--    specify the result register.  This constraint will be forward propagated
--    to next instructions.
--  - instruction constraint on the operand: most x86 instructions set the
--    result in one of the operand register, and some instructions (like shl)
--    have a fixed register for an operand (like the shift count).  This
--    constraint has to be backward propagated to previous instructions.
--  Obviously constraints may be incompatible: the result of an instruction
--  may be in a different register than the input of the next instruction.
--  In this case, move instructions are added.
--  It is possible (and quite easily) to run out of registers.  In that case
--  some values must be spilt (save) on the stack and will be reloaded later.
--  Registers are allocated statement by statement.  So after each statement
--  all registers should be unused (this is a very basic register allocator).
--
--  Finally, this pass also allocate stack slots for local variables, and
--  compute the size of the frame.

with Interfaces;
with Ada.Text_IO;
with Ortho_Code.Abi;
with Ortho_Code.Decls; use Ortho_Code.Decls;
with Ortho_Code.Types; use Ortho_Code.Types;
with Ortho_Code.Debug;
with Ortho_Code.X86.Flags;

package body Ortho_Code.X86.Insns is
   --  Add STMT to the list of instructions.
   procedure Link_Stmt (Stmt : O_Enode)
   is
      use Ortho_Code.Abi;
   begin
      Set_Stmt_Link (Last_Link, Stmt);
      Last_Link := Stmt;
      if Debug.Flag_Debug_Insn then
         Disp_Stmt (Stmt);
      end if;
   end Link_Stmt;

   function Is_External_Object (Obj : O_Dnode) return Boolean is
   begin
      return Flags.M64
        and then Get_Decl_Storage (Obj) = O_Storage_External;
   end Is_External_Object;

   --  Return the 'any register' constraint for mode MODE.
   function Get_Reg_Any (Mode : Mode_Type) return O_Reg is
   begin
      case Mode is
         when Mode_I16 .. Mode_I32
           | Mode_U16 .. Mode_U32
           | Mode_P32 =>
            return R_Any32;
         when Mode_I8
           | Mode_U8
           | Mode_B2 =>
            return R_Any8;
         when Mode_U64
           | Mode_I64
           | Mode_P64 =>
            if Flags.M64 then
               return R_Any64;
            else
               return R_AnyPair;
            end if;
         when Mode_F32
           | Mode_F64 =>
            if Abi.Flag_Sse2 then
               return R_Any_Xmm;
            else
               return R_St0;
            end if;
         when Mode_X1
           | Mode_Nil
           | Mode_Blk =>
            raise Program_Error;
      end case;
   end Get_Reg_Any;

   function Get_Reg_Any (Stmt : O_Enode) return O_Reg is
   begin
      return Get_Reg_Any (Get_Expr_Mode (Stmt));
   end Get_Reg_Any;

   --  Stack slot management.
   Stack_Offset : Uns32 := 0;
   Stack_Max : Uns32 := 0;

   --  Count how many bytes have been pushed on the stack, during a call. This
   --  is used to correctly align the stack for nested calls.
   Push_Offset : Uns32 := 0;

   --  If True, allocate 8 bytes on the stack for fp-int/sse conversion.
   Need_Fp_Conv_Slot : Boolean := False;

   --  STMT is an OE_END statement.
   --  Swap Stack_Offset with Max_Stack of STMT.
   procedure Swap_Stack_Offset (Blk : O_Dnode)
   is
      Prev_Offset : Uns32;
   begin
      Prev_Offset := Get_Block_Max_Stack (Blk);
      Set_Block_Max_Stack (Blk, Stack_Offset);
      Stack_Offset := Prev_Offset;
   end Swap_Stack_Offset;

   --  Allocate a slot for each local variable.
   procedure Expand_Decls (Block : O_Dnode)
   is
      pragma Assert (Get_Decl_Kind (Block) = OD_Block);
      Last : constant O_Dnode := Get_Block_Last (Block);
      Decl : O_Dnode;
      Decl_Type : O_Tnode;
   begin
      Decl := Block + 1;
      while Decl <= Last loop
         case Get_Decl_Kind (Decl) is
            when OD_Local =>
               Decl_Type := Get_Decl_Type (Decl);
               --  Align and allocate (on the stack).
               Stack_Offset := Do_Align (Stack_Offset, Decl_Type);
               Stack_Offset := Stack_Offset + Get_Type_Size (Decl_Type);
               Set_Local_Offset (Decl, -Int32 (Stack_Offset));
               --  If the frame gets lager, set the maximum size.
               if Stack_Offset > Stack_Max then
                  Stack_Max := Stack_Offset;
               end if;
            when OD_Type
              | OD_Const
              | OD_Init_Val
              | OD_Var
              | OD_Function
              | OD_Procedure
              | OD_Interface
              | OD_Body
              | OD_Subprg_Ext =>
               null;
            when OD_Block =>
               Decl := Get_Block_Last (Decl);
         end case;
         Decl := Decl + 1;
      end loop;
   end Expand_Decls;

   --  Condition code for unsigned comparaison.
   function Ekind_Unsigned_To_Cc (Kind : OE_Kind_Cmp) return O_Reg is
   begin
      case Kind is
         when OE_Eq =>
            return R_Eq;
         when OE_Neq =>
            return R_Ne;
         when OE_Lt =>
            return R_Ult;
         when OE_Le =>
            return R_Ule;
         when OE_Gt =>
            return R_Ugt;
         when OE_Ge =>
            return R_Uge;
      end case;
   end Ekind_Unsigned_To_Cc;

   --  Condition code for signed comparaison.
   function Ekind_Signed_To_Cc (Kind : OE_Kind_Cmp) return O_Reg is
   begin
      case Kind is
         when OE_Eq =>
            return R_Eq;
         when OE_Neq =>
            return R_Ne;
         when OE_Lt =>
            return R_Slt;
         when OE_Le =>
            return R_Sle;
         when OE_Gt =>
            return R_Sgt;
         when OE_Ge =>
            return R_Sge;
      end case;
   end Ekind_Signed_To_Cc;

   function Ekind_To_Cc (Stmt : O_Enode; Mode : Mode_Type) return O_Reg
   is
      Kind : constant OE_Kind := Get_Expr_Kind (Stmt);
   begin
      case Mode is
         when Mode_U8 .. Mode_U64
           | Mode_F32 .. Mode_F64
           | Mode_P32
           | Mode_P64
           | Mode_B2 =>
            return Ekind_Unsigned_To_Cc (Kind);
         when Mode_I8 .. Mode_I64 =>
            return Ekind_Signed_To_Cc (Kind);
         when others =>
            raise Program_Error;
      end case;
   end Ekind_To_Cc;

   --  CC is the result of A CMP B.
   --  Returns the condition for B CMP A.
   function Reverse_Cc (Cc : O_Reg) return O_Reg
   is
      --  Only used when not sse.
      pragma Assert (not Abi.Flag_Sse2);
   begin
      case Cc is
         when R_Ult =>
            return R_Ugt;
         when R_Uge =>
            return R_Ule;
         when R_Eq =>
            return R_Eq;
         when R_Ne =>
            return R_Ne;
         when R_Ule =>
            return R_Uge;
         when R_Ugt =>
            return R_Ult;
         when R_Slt =>
            return R_Sgt;
         when R_Sge =>
            return R_Sle;
         when R_Sle =>
            return R_Sge;
         when R_Sgt =>
            return R_Slt;
         when others =>
            raise Program_Error;
      end case;
   end Reverse_Cc;

   --  Get the register in which a function result for MODE is returned.
   function Get_Return_Register (Mode : Mode_Type) return O_Reg is
   begin
      case Mode is
         when Mode_U8 .. Mode_U32
           | Mode_I8 .. Mode_I32
           | Mode_P32
           | Mode_B2 =>
            return R_Ax;
         when Mode_U64
           | Mode_I64
           | Mode_P64 =>
            if Flags.M64 then
               return R_Ax;
            else
               return R_Edx_Eax;
            end if;
         when Mode_F32
           | Mode_F64 =>
            if Abi.Flag_Sse2 then
               --  Strictly speaking, this is not true as ST0 is used on x86.
               --  The conversion is done by emits (this requires a stack
               --  slot).
               if not Flags.M64 then
                  Need_Fp_Conv_Slot := True;
               end if;
               return R_Xmm0;
            else
               return R_St0;
            end if;
         when Mode_Nil =>
            return R_None;
         when Mode_X1
           | Mode_Blk =>
            raise Program_Error;
      end case;
   end Get_Return_Register;

   function Insert_Move (Expr : O_Enode; Dest : O_Reg) return O_Enode
   is
      N : O_Enode;
   begin
      N := New_Enode (OE_Move, Get_Expr_Mode (Expr), O_Tnode_Null,
                      Expr, O_Enode_Null);
      Set_Expr_Reg (N, Dest);
      Link_Stmt (N);
      return N;
   end Insert_Move;

   procedure Error_Gen_Insn (Stmt : O_Enode; Reg : O_Reg);
   procedure Error_Gen_Insn (Stmt : O_Enode; Mode : Mode_Type);
   pragma No_Return (Error_Gen_Insn);

   procedure Error_Gen_Insn (Stmt : O_Enode; Reg : O_Reg)
   is
      use Ada.Text_IO;
   begin
      Put_Line ("gen_insn error: cannot match reg " & Abi.Image_Reg (Reg)
                & " with stmt " & OE_Kind'Image (Get_Expr_Kind (Stmt)));
      raise Program_Error;
   end Error_Gen_Insn;

   procedure Error_Gen_Insn (Stmt : O_Enode; Mode : Mode_Type)
   is
      use Ada.Text_IO;
   begin
      Put_Line ("gen_insn error: cannot match mode " & Mode_Type'Image (Mode)
                & " with stmt " & OE_Kind'Image (Get_Expr_Kind (Stmt))
                & " of mode " & Mode_Type'Image (Get_Expr_Mode (Stmt)));
      raise Program_Error;
   end Error_Gen_Insn;

   Cur_Block : O_Enode;

   type O_Inum is new Int32;
   O_Free : constant O_Inum := 0;
   O_Iroot : constant O_Inum := 1;

   Insn_Num : O_Inum;

   function Get_Insn_Num return O_Inum is
   begin
      Insn_Num := Insn_Num + 1;
      return Insn_Num;
   end Get_Insn_Num;

   type Reg_Info_Type is record
      --  Statement number which use this register.
      --  This is a distance.
      Num : O_Inum;

      --  Statement which produces this value.
      --  Used to have more info on this register (such as mode to allocate
      --   a spill location).
      Stmt : O_Enode;

      --  If set, this register has been used.
      --  All callee-saved registers marked 'used' must be saved in the prolog.
      Used : Boolean;
   end record;
   pragma Suppress_Initialization (Reg_Info_Type);  --  Not needed.

   Init_Reg_Info : constant Reg_Info_Type := (Num => O_Free,
                                              Stmt => O_Enode_Null,
                                              Used => False);
   type RegGp_Info_Array is array (Regs_R64) of Reg_Info_Type;
   pragma Suppress_Initialization (RegGp_Info_Array);  --  Not needed.
   Regs : RegGp_Info_Array := (others => Init_Reg_Info);

   Reg_Cc : Reg_Info_Type := Init_Reg_Info;

   type Fp_Stack_Type is mod 8;
   type RegFp_Info_Array is array (Fp_Stack_Type) of Reg_Info_Type;
   pragma Suppress_Initialization (RegFp_Info_Array);  --  Not needed.
   Fp_Top : Fp_Stack_Type := 0;
   Fp_Regs : RegFp_Info_Array;

   type Reg_Xmm_Info_Array is array (Regs_Xmm) of Reg_Info_Type;
   pragma Suppress_Initialization (Reg_Xmm_Info_Array);  --  Not needed.
   Xmm_Regs : Reg_Xmm_Info_Array := (others => Init_Reg_Info);

   function Reg_Used (Reg : Regs_R64) return Boolean is
   begin
      return Regs (Reg).Used;
   end Reg_Used;

   procedure Dump_Reg32_Info (Reg : Regs_R64)
   is
      use Ada.Text_IO;
      use Ortho_Code.Debug.Int32_IO;
      use Abi;
   begin
      Put (Image_Reg (Reg));
      Put (": ");
      Put (Int32 (Regs (Reg).Stmt), 0);
      Put (", num: ");
      Put (Int32 (Regs (Reg).Num), 0);
      --Put (", twin: ");
      --Put (Image_Reg (Regs (Reg).Twin_Reg));
      --Put (", link: ");
      --Put (Image_Reg (Regs (Reg).Link));
      New_Line;
   end Dump_Reg32_Info;

   procedure Dump_Regs
   is
      use Ada.Text_IO;
      use Debug.Int32_IO;
   begin
--        Put ("free_regs: ");
--        Put (Image_Reg (Free_Regs));
--        Put (", to_free_regs: ");
--        Put (Image_Reg (To_Free_Regs));
--        New_Line;

      for I in Regs_R32 loop
         Dump_Reg32_Info (I);
      end loop;
      if Flags.M64 then
         for I in Regs_R8_R15 loop
            Dump_Reg32_Info (I);
         end loop;
      end if;
      if not Abi.Flag_Sse2 then
         for I in Fp_Stack_Type loop
            Put ("fp" & Fp_Stack_Type'Image (I));
            Put (": ");
            Put (Int32 (Fp_Regs (I).Stmt), 0);
            New_Line;
         end loop;
      end if;
   end Dump_Regs;

   pragma Unreferenced (Dump_Regs);

   procedure Error_Reg (Msg : String; Stmt : O_Enode; Reg : O_Reg);
   pragma No_Return (Error_Reg);

   procedure Error_Reg (Msg : String; Stmt : O_Enode; Reg : O_Reg)
   is
      use Ada.Text_IO;
      use Ortho_Code.Debug.Int32_IO;
   begin
      Put ("error reg: ");
      Put (Msg);
      New_Line;
      Put (" stmt: ");
      Put (Int32 (Stmt), 0);
      Put (", reg: ");
      Put (Abi.Image_Reg (Reg));
      New_Line;
      --Dump_Regs;
      raise Program_Error;
   end Error_Reg;

   --  Free_XX
   --  Mark a register as unused.
   procedure Free_Gp (Reg : O_Reg) is
   begin
      pragma Assert (Regs (Reg).Num /= O_Free);
      Regs (Reg).Num := O_Free;
   end Free_Gp;

   procedure Free_Fp is
   begin
      pragma Assert (not Abi.Flag_Sse2);
      pragma Assert (Fp_Regs (Fp_Top).Num /= O_Free);
      Fp_Regs (Fp_Top).Num := O_Free;
      Fp_Top := Fp_Top + 1;
   end Free_Fp;

   procedure Free_Cc is
   begin
      pragma Assert (Reg_Cc.Num /= O_Free);
      Reg_Cc.Num := O_Free;
   end Free_Cc;

   procedure Free_Xmm (Reg : O_Reg) is
   begin
      pragma Assert (Xmm_Regs (Reg).Num /= O_Free);
      Xmm_Regs (Reg).Num := O_Free;
   end Free_Xmm;

   --  Allocate a stack slot for spilling.
   procedure Alloc_Spill (N : O_Enode)
   is
      Mode : constant Mode_Type := Get_Expr_Mode (N);
   begin
      --  Allocate on the stack.
      Stack_Offset := Types.Do_Align (Stack_Offset, Mode);
      Stack_Offset := Stack_Offset + Types.Get_Mode_Size (Mode);
      if Stack_Offset > Stack_Max then
         Stack_Max := Stack_Offset;
      end if;
      Set_Spill_Info (N, -Int32 (Stack_Offset));
   end Alloc_Spill;

   --  Insert a spill statement after ORIG: will save register(s) allocated by
   --  ORIG.
   --  Return the register(s) spilt (There might be several registers if
   --   ORIG uses a R64 register).
   function Insert_Spill (Orig : O_Enode) return O_Reg
   is
      Mode : constant Mode_Type := Get_Expr_Mode (Orig);
      N : O_Enode;
      Reg_Orig : O_Reg;
   begin
      --  Add a spill statement.
      N := New_Enode (OE_Spill, Mode, O_Tnode_Null, Orig, O_Enode_Null);
      Alloc_Spill (N);

      --  Insert the statement after the one that set the register
      --  being spilled.
      --  That's very important to be able to easily find the spill location,
      --  when it will be reloaded.
      if Orig = Abi.Last_Link then
         Link_Stmt (N);
      else
         Set_Stmt_Link (N, Get_Stmt_Link (Orig));
         Set_Stmt_Link (Orig, N);
      end if;

      --  Mark the target of the original expression as split (so that it is
      --  marked as to be reloaded), and save the register in the spill insn.
      Reg_Orig := Get_Expr_Reg (Orig);
      Set_Expr_Reg (N, Reg_Orig);
      Set_Expr_Reg (Orig, R_Spill);
      return Reg_Orig;
   end Insert_Spill;

   procedure Spill_Gp (Reg : Regs_R64)
   is
      Reg_Orig : O_Reg;
   begin
      --  This register was not allocated.
      pragma Assert (Regs (Reg).Num /= O_Free);

      Reg_Orig := Insert_Spill (Regs (Reg).Stmt);

      --  Free the register.
      case Reg_Orig is
         when Regs_R64 =>
            pragma Assert (Reg_Orig = Reg);
            Free_Gp (Reg);
         when Regs_Pair =>
            pragma Assert (not Flags.M64);
            --  The pair was spilled, so the pair is free.
            Free_Gp (Get_Pair_High (Reg_Orig));
            Free_Gp (Get_Pair_Low (Reg_Orig));
         when others =>
            raise Program_Error;
      end case;
   end Spill_Gp;

   procedure Alloc_Gp (Reg : Regs_R64; Stmt : O_Enode; Num : O_Inum) is
   begin
      if Regs (Reg).Num /= O_Free then
         Spill_Gp (Reg);
      end if;
      Regs (Reg) := (Num => Num, Stmt => Stmt, Used => True);
   end Alloc_Gp;

   procedure Clobber_Gp (Reg : O_Reg) is
   begin
      if Regs (Reg).Num /= O_Free then
         Spill_Gp (Reg);
      end if;
   end Clobber_Gp;

   procedure Alloc_Fp (Stmt : O_Enode) is
   begin
      pragma Assert (not Abi.Flag_Sse2);

      Fp_Top := Fp_Top - 1;

      if Fp_Regs (Fp_Top).Stmt /= O_Enode_Null then
         --  Must spill-out.
         raise Program_Error;
      end if;
      Fp_Regs (Fp_Top).Stmt := Stmt;
   end Alloc_Fp;

   procedure Alloc_Pair (Reg : O_Reg; Stmt : O_Enode; Num : O_Inum)
   is
      pragma Assert (not Flags.M64);
      Rl : constant O_Reg := Get_Pair_Low (Reg);
      Rh : constant O_Reg := Get_Pair_High (Reg);
   begin
      if Regs (Rl).Num /= O_Free
        or Regs (Rh).Num /= O_Free
      then
         Spill_Gp (Rl);
      end if;
      Regs (Rh) := (Num => Num, Stmt => Stmt, Used => True);
      Regs (Rl) := (Num => Num, Stmt => Stmt, Used => True);
   end Alloc_Pair;

   procedure Alloc_Cc (Stmt : O_Enode; Num : O_Inum) is
   begin
      pragma Assert (Reg_Cc.Num = O_Free);
      Reg_Cc := (Num => Num, Stmt => Stmt, Used => True);
   end Alloc_Cc;

   procedure Spill_Xmm (Reg : Regs_Xmm)
   is
      Reg_Orig : O_Reg;
   begin
      --  This register was not allocated.
      pragma Assert (Xmm_Regs (Reg).Num /= O_Free);

      Reg_Orig := Insert_Spill (Xmm_Regs (Reg).Stmt);

      --  Free the register.
      pragma Assert (Reg_Orig = Reg);
      Free_Xmm (Reg);
   end Spill_Xmm;

   procedure Alloc_Xmm (Reg : Regs_Xmm; Stmt : O_Enode; Num : O_Inum) is
   begin
      if Xmm_Regs (Reg).Num /= O_Free then
         Spill_Xmm (Reg);
      end if;
      Xmm_Regs (Reg) := (Num => Num, Stmt => Stmt, Used => True);
   end Alloc_Xmm;

   procedure Clobber_Xmm (Reg : Regs_Xmm) is
   begin
      if Xmm_Regs (Reg).Num /= O_Free then
         Spill_Xmm (Reg);
      end if;
   end Clobber_Xmm;

   function Alloc_Reg (Reg : O_Reg; Stmt : O_Enode; Num : O_Inum) return O_Reg
   is
      Last_Reg : O_Reg;
      Best_Reg : O_Reg;
      Best_Num : O_Inum;
   begin
      case Reg is
         when Regs_R64 =>
            Alloc_Gp (Reg, Stmt, Num);
            return Reg;
         when Regs_Pair =>
            pragma Assert (not Flags.M64);
            Alloc_Pair (Reg, Stmt, Num);
            return Reg;
         when R_St0 =>
            pragma Assert (not Abi.Flag_Sse2);
            Alloc_Fp (Stmt);
            return Reg;
         when Regs_Xmm =>
            Alloc_Xmm (Reg, Stmt, Num);
            return Reg;
         when R_Any8
           | R_Any32
           | R_Any64 =>
            if Flags.M64 then
               Last_Reg := R_R15;
            else
               if Reg = R_Any8 then
                  Last_Reg := R_Bx;
               else
                  Last_Reg := R_Di;
               end if;
            end if;
            Best_Num := O_Inum'Last;
            Best_Reg := R_None;
            for I in R_Ax .. Last_Reg loop
               if I not in R_Sp .. R_Bp then
                  if Regs (I).Num = O_Free then
                     Alloc_Gp (I, Stmt, Num);
                     return I;
                  elsif Regs (I).Num <= Best_Num then
                     Best_Reg := I;
                     Best_Num := Regs (I).Num;
                  end if;
               end if;
            end loop;
            Alloc_Gp (Best_Reg, Stmt, Num);
            return Best_Reg;
         when R_AnyPair =>
            pragma Assert (not Flags.M64);
            declare
               Rh, Rl : O_Reg;
            begin
               Best_Num := O_Inum'Last;
               Best_Reg := R_None;
               for I in Regs_Pair loop
                  Rh := Get_Pair_High (I);
                  Rl := Get_Pair_Low (I);
                  if Regs (Rh).Num = O_Free
                    and then Regs (Rl).Num = O_Free
                  then
                     Alloc_Pair (I, Stmt, Num);
                     return I;
                  elsif Regs (Rh).Num <= Best_Num
                    and Regs (Rl).Num <= Best_Num
                  then
                     Best_Reg := I;
                     Best_Num := O_Inum'Max (Regs (Rh).Num,
                                             Regs (Rl).Num);
                  end if;
               end loop;
               Alloc_Pair (Best_Reg, Stmt, Num);
               return Best_Reg;
            end;
         when R_Any_Xmm =>
            Best_Num := O_Inum'Last;
            Best_Reg := R_None;
            for I in Regs_X86_Xmm loop
               if Xmm_Regs (I).Num = O_Free then
                  Alloc_Xmm (I, Stmt, Num);
                  return I;
               elsif Xmm_Regs (I).Num <= Best_Num then
                  Best_Reg := I;
                  Best_Num := Xmm_Regs (I).Num;
               end if;
            end loop;
            Alloc_Xmm (Best_Reg, Stmt, Num);
            return Best_Reg;
         when others =>
            Error_Reg ("alloc_reg: unknown reg", O_Enode_Null, Reg);
            raise Program_Error;
      end case;
   end Alloc_Reg;

   function Gen_Reload (Spill : O_Enode; Reg : O_Reg; Num : O_Inum)
                       return O_Enode
   is
      Mode : constant Mode_Type := Get_Expr_Mode (Spill);
      N : O_Enode;
   begin
      --  Add a reload node.
      N := New_Enode (OE_Reload, Mode, O_Tnode_Null, Spill, O_Enode_Null);
      --  Note: this does not use a just-freed register, since
      --  this case only occurs at the first call.
      Set_Expr_Reg (N, Alloc_Reg (Reg, N, Num));
      Link_Stmt (N);
      return N;
   end Gen_Reload;

   function Reload (Expr : O_Enode; Dest : O_Reg; Num : O_Inum) return O_Enode
   is
      Reg : constant O_Reg := Get_Expr_Reg (Expr);
      Spill : O_Enode;
   begin
      case Reg is
         when R_Spill =>
            --  Restore the register between the statement and the spill.
            Spill := Get_Stmt_Link (Expr);
            Set_Expr_Reg (Expr, Get_Expr_Reg (Spill));
            Set_Expr_Reg (Spill, R_Spill);
            case Dest is
               when R_Mem
                 | R_Irm
                 | R_Rm =>
                  --  Some instructions can do the reload by themself.
                  return Spill;
               when Regs_R64
                 | R_Any64
                 | R_Any32
                 | R_Any8
                 | R_AnyPair
                 | Regs_Pair
                 | Regs_Xmm
                 | R_Any_Xmm =>
                  return Gen_Reload (Spill, Dest, Num);
               when R_Sib =>
                  return Gen_Reload (Spill, R_Any32, Num);
               when R_Ir =>
                  return Gen_Reload (Spill, Get_Reg_Any (Expr), Num);
               when others =>
                  Error_Reg ("reload: unhandled dest in spill", Expr, Dest);
            end case;
         when Regs_R64 =>
            case Dest is
               when R_Irm
                 | R_Rm
                 | R_Ir
                 | R_Any64
                 | R_Any32
                 | R_Any8
                 | R_Sib =>
                  return Expr;
               when Regs_R64 =>
                  if Dest = Reg then
                     return Expr;
                  end if;
                  if Reg /= R_Bp then
                     --  Never free BP as it is not allocated (fixed register).
                     --  BP can be referenced by OE_Get_Frame.
                     Free_Gp (Reg);
                  end if;
                  Spill := Insert_Move (Expr, Dest);
                  Alloc_Gp (Dest, Spill, Num);
                  return Spill;
               when others =>
                  Error_Reg ("reload: unhandled dest in R32", Expr, Dest);
            end case;
         when Regs_Pair =>
            pragma Assert (not Flags.M64);
            return Expr;
         when R_St0 =>
            pragma Assert (not Abi.Flag_Sse2);
            return Expr;
         when Regs_Xmm =>
            return Expr;
         when R_Mem =>
            if Get_Expr_Kind (Expr) = OE_Indir then
               Set_Expr_Operand (Expr,
                                 Reload (Get_Expr_Operand (Expr), R_Sib, Num));
               return Expr;
            else
               raise Program_Error;
            end if;
         when R_B_Off
           | R_B_I
           | R_I_Off
           | R_Sib =>
            case Get_Expr_Kind (Expr) is
               when OE_Add =>
                  Set_Expr_Left
                    (Expr, Reload (Get_Expr_Left (Expr), R_Any32, Num));
                  Set_Expr_Right
                    (Expr, Reload (Get_Expr_Right (Expr), R_Any32, Num));
                  return Expr;
               when OE_Addrl =>
                  Spill := Get_Addrl_Frame (Expr);
                  if Spill /= O_Enode_Null then
                     Set_Addrl_Frame (Expr, Reload (Spill, R_Any32, Num));
                  end if;
                  return Expr;
               when OE_Addrd =>
                  return Expr;
               when others =>
                  Error_Reg ("reload: unhandle expr in b_off", Expr, Dest);
            end case;
         when R_I =>
            Set_Expr_Left (Expr, Reload (Get_Expr_Left (Expr), R_Any32, Num));
            return Expr;
         when R_Imm =>
            return Expr;
         when others =>
            Error_Reg ("reload: unhandled reg", Expr, Reg);
      end case;
   end Reload;

   procedure Renum_Reg (Reg : O_Reg; Stmt : O_Enode; Num : O_Inum) is
   begin
      case Reg is
         when Regs_R64 =>
            Regs (Reg).Num := Num;
            Regs (Reg).Stmt := Stmt;
         when Regs_Cc =>
            Reg_Cc.Num := Num;
            Reg_Cc.Stmt := Stmt;
         when R_St0 =>
            pragma Assert (not Abi.Flag_Sse2);
            null;
         when Regs_Xmm =>
            Xmm_Regs (Reg).Num := Num;
            Xmm_Regs (Reg).Stmt := Stmt;
         when Regs_Pair =>
            pragma Assert (not Flags.M64);
            declare
               L, H : O_Reg;
            begin
               L := Get_Pair_Low (Reg);
               Regs (L).Num := Num;
               Regs (L).Stmt := Stmt;
               H := Get_Pair_High (Reg);
               Regs (H).Num := Num;
               Regs (H).Stmt := Stmt;
            end;
         when others =>
            Error_Reg ("renum_reg", Stmt, Reg);
      end case;
   end Renum_Reg;

   procedure Free_Insn_Regs (Insn : O_Enode)
   is
      R : constant O_Reg := Get_Expr_Reg (Insn);
   begin
      case R is
         when R_Ax
           | R_Bx
           | R_Cx
           | R_Dx
           | R_Si
           | R_Di
           | Regs_R8_R15 =>
            Free_Gp (R);
         when R_Sp
           | R_Bp =>
            null;
         when R_St0 =>
            pragma Assert (not Abi.Flag_Sse2);
            Free_Fp;
         when Regs_Xmm =>
            Free_Xmm (R);
         when Regs_Pair =>
            pragma Assert (not Flags.M64);
            Free_Gp (Get_Pair_High (R));
            Free_Gp (Get_Pair_Low (R));
         when R_Mem =>
            if Get_Expr_Kind (Insn) = OE_Indir then
               Free_Insn_Regs (Get_Expr_Operand (Insn));
            else
               raise Program_Error;
            end if;
         when R_B_Off
           | R_B_I
           | R_I_Off
           | R_Sib =>
            case Get_Expr_Kind (Insn) is
               when OE_Add =>
                  Free_Insn_Regs (Get_Expr_Left (Insn));
                  Free_Insn_Regs (Get_Expr_Right (Insn));
               when OE_Addrl =>
                  if Get_Addrl_Frame (Insn) /= O_Enode_Null then
                     Free_Insn_Regs (Get_Addrl_Frame (Insn));
                  end if;
               when OE_Addrd =>
                  --  RIP-relative, no reg to free.
                  null;
               when others =>
                  raise Program_Error;
            end case;
         when R_I =>
            Free_Insn_Regs (Get_Expr_Left (Insn));
         when R_Imm =>
            null;
         when R_Spill =>
            null;
         when others =>
            Error_Reg ("free_insn_regs: unknown reg", Insn, R);
      end case;
   end Free_Insn_Regs;

   procedure Insert_Reg (Mode : Mode_Type)
   is
      pragma Assert (not Flags.M64);
      N : O_Enode;
      Num : O_Inum;
   begin
      Num := Get_Insn_Num;
      N := New_Enode (OE_Reg, Mode, O_Tnode_Null,
                      O_Enode_Null, O_Enode_Null);
      Set_Expr_Reg (N, Alloc_Reg (Get_Reg_Any (Mode), N, Num));
      Link_Stmt (N);
      Free_Insn_Regs (N);
   end Insert_Reg;

   --  REG is mandatory: the result of STMT must satisfy the REG constraint.
   function Gen_Insn (Stmt : O_Enode; Reg : O_Reg; Pnum : O_Inum)
                     return O_Enode;

   function Gen_Conv_From_Fp_Insn (Stmt : O_Enode;
                                   Reg : O_Reg;
                                   Pnum : O_Inum)
                                  return O_Enode
   is
      Left : O_Enode;
      Num : O_Inum;
   begin
      if not Flags.M64 then
         --  Need a temporary to work.  Always use FPU.
         Need_Fp_Conv_Slot := True;
      end if;
      Num := Get_Insn_Num;
      Left := Get_Expr_Operand (Stmt);
      Left := Gen_Insn (Left, Get_Reg_Any (Left), Num);
      Free_Insn_Regs (Left);
      Set_Expr_Operand (Stmt, Left);
      case Reg is
         when R_Any32
           | Regs_R64
           | R_Any64
           | Regs_Pair
           | R_AnyPair =>
            Set_Expr_Reg (Stmt, Alloc_Reg (Reg, Stmt, Pnum));
         when R_Rm
           | R_Irm
           | R_Ir =>
            Set_Expr_Reg (Stmt, Alloc_Reg (Get_Reg_Any (Stmt), Stmt, Pnum));
         when others =>
            raise Program_Error;
      end case;
      Link_Stmt (Stmt);
      return Stmt;
   end Gen_Conv_From_Fp_Insn;

   --  Mark all registers that aren't preserved by a call as clobbered, so that
   --  they are saved.
   procedure Clobber_Caller_Saved_Registers_32
   is
      pragma Assert (not Flags.M64);
   begin
      Clobber_Gp (R_Ax);
      Clobber_Gp (R_Dx);
      Clobber_Gp (R_Cx);
      --  FIXME: fp regs.

      if Abi.Flag_Sse2 then
         for R in Regs_Xmm loop
            Clobber_Xmm (R);
         end loop;
      end if;
   end Clobber_Caller_Saved_Registers_32;

   procedure Clobber_Caller_Saved_Registers_64
     (First_Arg : O_Enode; Subprg : O_Dnode; Num : O_Inum)
   is
      pragma Assert (Flags.M64);
      Inter : O_Dnode;
      Arg : O_Enode;
      Expr : O_Enode;
      Reg : O_Reg;
      T : O_Enode;
   begin
      --  Reload all parameters passed in registers and free regs.
      Inter := Get_Subprg_Interfaces (Subprg);
      Arg := First_Arg;
      while Inter /= O_Dnode_Null loop
         Reg := Get_Decl_Reg (Inter);
         if Reg /= R_None then
            Expr := Get_Expr_Operand (Arg);
            T := Reload (Expr, Reg, Num);
            Free_Insn_Regs (T);
         end if;
         Inter := Get_Interface_Chain (Inter);
         Arg := Get_Arg_Link (Arg);
      end loop;

      --  Mark caller saved registers as clobbered.
      if Flags.Win64 then
         --  R12-R15, RSI, RDI, RBX, RBP are preserved by callee.
         for R in Preserved_Regs_Win64'Range loop
            if not Preserved_Regs_Win64 (R) then
               Clobber_Gp (R);
            end if;
         end loop;
      else
         --  RBX, R12-R15 are callee-saved (preserved)
         for R in Preserved_Regs_Lin64'Range loop
            if not Preserved_Regs_Lin64 (R) then
               Clobber_Gp (R);
            end if;
         end loop;
      end if;

      if Flags.Win64 then
         --  Xmm6 - xmm15 are preserved.
         for R in Preserved_Xmm_Win64'Range loop
            if not Preserved_Xmm_Win64 (R) then
               Clobber_Xmm (R);
            end if;
         end loop;
      else
         --  All Xmm registers are for arguments or volatile.
         for R in Regs_Xmm loop
            Clobber_Xmm (R);
         end loop;
      end if;
   end Clobber_Caller_Saved_Registers_64;

   --  Insert an argument for an intrinsic call.
   procedure Insert_Arg (Expr : O_Enode)
   is
      pragma Assert (not Flags.M64);
      N : O_Enode;
   begin
      Free_Insn_Regs (Expr);
      N := New_Enode (OE_Arg, Get_Expr_Mode (Expr), O_Tnode_Null,
                      Expr, O_Enode_Null);
      Set_Expr_Reg (N, R_None);
      Link_Stmt (N);
   end Insert_Arg;

   --  Insert a call to an instrinsic (a libgcc helper).
   function Insert_Intrinsic (Stmt : O_Enode; Reg : O_Reg; Num : O_Inum)
                             return O_Enode
   is
      pragma Assert (not Flags.M64);
      Mode : constant Mode_Type := Get_Expr_Mode (Stmt);
      N : O_Enode;
      Op : Int32;
   begin
      case Get_Expr_Kind (Stmt) is
         when OE_Mul_Ov =>
            case Mode is
               when Mode_U64 =>
                  Op := Intrinsic_Mul_Ov_U64;
               when Mode_I64 =>
                  Op := Intrinsic_Mul_Ov_I64;
               when others =>
                  raise Program_Error;
            end case;
         when OE_Div_Ov =>
            case Mode is
               when Mode_U64 =>
                  Op := Intrinsic_Div_Ov_U64;
               when Mode_I64 =>
                  Op := Intrinsic_Div_Ov_I64;
               when others =>
                  raise Program_Error;
            end case;
         when OE_Mod =>
            case Mode is
               when Mode_U64 =>
                  Op := Intrinsic_Mod_Ov_U64;
               when Mode_I64 =>
                  Op := Intrinsic_Mod_Ov_I64;
               when others =>
                  raise Program_Error;
            end case;
         when OE_Rem =>
            case Mode is
               when Mode_U64 =>
                  --  For unsigned, MOD == REM.
                  Op := Intrinsic_Mod_Ov_U64;
               when Mode_I64 =>
                  Op := Intrinsic_Rem_Ov_I64;
               when others =>
                  raise Program_Error;
            end case;
         when others =>
            raise Program_Error;
      end case;

      --  Save caller-saved registers.
      Clobber_Caller_Saved_Registers_32;

      N := New_Enode (OE_Intrinsic, Mode, O_Tnode_Null,
                      O_Enode (Op), O_Enode_Null);
      Set_Expr_Reg (N, Alloc_Reg (Reg, N, Num));
      Link_Stmt (N);
      return N;
   end Insert_Intrinsic;

   procedure Gen_Stack_Adjust (Off : Int32)
   is
      use Ortho_Code.Abi;
      Stmt : O_Enode;
   begin
      if Get_Expr_Kind (Last_Link) = OE_Stack_Adjust then
         --  The last instruction was already a stack_adjust.  Change the
         --  value.
         Set_Stack_Adjust (Last_Link,
                           Get_Stack_Adjust (Last_Link) + Off);
         if Debug.Flag_Debug_Insn then
            Ada.Text_IO.Put ("  patched:");
            Disp_Stmt (Last_Link);
         end if;
      else
         Stmt := New_Enode (OE_Stack_Adjust, Mode_Nil, O_Tnode_Null,
                            O_Enode (Off), O_Enode_Null);
         Link_Stmt (Stmt);
      end if;
   end Gen_Stack_Adjust;

   procedure Gen_Call_Arg (Arg : O_Enode; Inter : O_Dnode; Pnum : O_Inum)
   is
   begin
      if Arg = O_Enode_Null then
         --  End of args.
         pragma Assert (Inter = O_Dnode_Null);
         return;
      else
         --  Recurse on next argument, so the first argument is pushed
         --  the last one.
         pragma Assert (Inter /= O_Dnode_Null);
         Gen_Call_Arg (Get_Arg_Link (Arg), Get_Interface_Chain (Inter), Pnum);
      end if;

      declare
         Inter_Reg : constant O_Reg := Get_Decl_Reg (Inter);
         Reg : O_Reg;
         Expr : O_Enode;
      begin
         Expr := Get_Expr_Operand (Arg);
         if Inter_Reg = R_None then
            --  On the stack.
            case Get_Expr_Mode (Expr) is
               when Mode_F32 .. Mode_F64 =>
                  --  fstp instruction.
                  if Abi.Flag_Sse2 then
                     Reg := R_Any_Xmm;
                  else
                     Reg := R_St0;
                  end if;
               when others =>
                  --  Push instruction.
                  Reg := R_Irm;
            end case;
         else
            Reg := Inter_Reg;
         end if;
         Expr := Gen_Insn (Expr, Reg, Pnum);
         Set_Expr_Operand (Arg, Expr);
         if Inter_Reg = R_None then
            --  Link the OE_Arg code (it will be translated as a push).
            Link_Stmt (Arg);
            --  Use Mode_Ptr for a 32 or 64 bit word.
            Push_Offset := Push_Offset +
              Do_Align (Get_Mode_Size (Get_Expr_Mode (Expr)), Abi.Mode_Ptr);
            Free_Insn_Regs (Expr);
         end if;
      end;
   end Gen_Call_Arg;

   function Gen_Call (Stmt : O_Enode; Reg : O_Reg; Pnum : O_Inum)
                     return O_Enode
   is
      use Interfaces;
      Subprg : constant O_Dnode := Get_Call_Subprg (Stmt);
      Push_Size : constant Uns32 := Uns32 (Get_Subprg_Stack (Subprg));
      Reg_Res : O_Reg;
      Pad : Uns32;
      Res_Stmt : O_Enode;
   begin
      --  Note: Push_Offset may not be 0 if an argument contains a call.
      --  In that case, the stack may not be aligned.

      --  Emit Setup_Frame (to align stack).
      --  Pad the stack if necessary.
      Pad := (Push_Size + Push_Offset) and Uns32 (Flags.Stack_Boundary - 1);
      if Pad /= 0 then
         Pad := Uns32 (Flags.Stack_Boundary) - Pad;
         Gen_Stack_Adjust (Int32 (Pad));
      end if;
      --  The stack has been adjusted by Pad bytes.
      Push_Offset := Push_Offset + Pad;

      --  Generate code for arguments (if any).
      Gen_Call_Arg (Get_Arg_Link (Stmt), Get_Subprg_Interfaces (Subprg), Pnum);

      --  Clobber registers.  They are saved in reserved slots (at the top
      --  of the frame).
      if Flags.M64 then
         Clobber_Caller_Saved_Registers_64 (Get_Arg_Link (Stmt), Subprg, Pnum);
      else
         Clobber_Caller_Saved_Registers_32;
      end if;

      if Flags.M64 and Flags.Win64 then
         --  Need to reserve 4*8 bytes to home registers
         Gen_Stack_Adjust (4*8);
         Push_Offset := Push_Offset + 32;
      end if;

      --  Add the call.
      Reg_Res := Get_Return_Register (Get_Expr_Mode (Stmt));
      Set_Expr_Reg (Stmt, Reg_Res);
      Link_Stmt (Stmt);
      Res_Stmt := Stmt;

      if Push_Size + Pad /= 0 then
         Gen_Stack_Adjust (-Int32 (Push_Size + Pad));

         --  The stack has been restored (just after the call).
         Push_Offset := Push_Offset - (Push_Size + Pad);
      end if;

      case Reg is
         when R_Any32
           | R_Any64
           | R_AnyPair
           | R_Any8
           | R_Any_Xmm
           | R_Irm
           | R_Rm
           | R_Ir
           | R_Sib
           | R_St0
           | R_Edx_Eax =>
            Reg_Res := Alloc_Reg (Reg_Res, Res_Stmt, Pnum);
            return Res_Stmt;
         when Regs_R64 =>
            if Reg /= Reg_Res then
               Res_Stmt := Insert_Move (Res_Stmt, Reg);
            end if;
            Alloc_Gp (Reg, Res_Stmt, Pnum);
            return Res_Stmt;
         when Regs_Xmm =>
            if Reg /= Reg_Res then
               Res_Stmt := Insert_Move (Res_Stmt, Reg);
            end if;
            Alloc_Xmm (Reg, Res_Stmt, Pnum);
            return Res_Stmt;
         when R_Any_Cc =>
            --  Move to register.
            --  (use the 'test' instruction).
            Alloc_Cc (Res_Stmt, Pnum);
            return Insert_Move (Res_Stmt, R_Ne);
         when R_None =>
            pragma Assert (Reg_Res = R_None);
            return Res_Stmt;
         when others =>
            Error_Gen_Insn (Stmt, Reg);
      end case;
   end Gen_Call;

   function Gen_Insn (Stmt : O_Enode; Reg : O_Reg; Pnum : O_Inum)
                     return O_Enode
   is
      Kind : constant OE_Kind := Get_Expr_Kind (Stmt);

      Left : O_Enode;
      Right : O_Enode;
      Res : O_Enode;

      Reg1 : O_Reg;
      --      P_Reg : O_Reg;
      Reg_L : O_Reg;
      Reg_Res : O_Reg;

      Num : O_Inum;
   begin
      case Kind is
         when OE_Addrl =>
            Right := Get_Addrl_Frame (Stmt);
            if Right /= O_Enode_Null then
               --  Outer frame.
               Num := Get_Insn_Num;
               Right := Gen_Insn (Right, R_Any64, Num);
               Set_Addrl_Frame (Stmt, Right);
            else
               Num := O_Free;
            end if;
            case Reg is
               when R_Sib =>
                  Set_Expr_Reg (Stmt, R_B_Off);
                  return Stmt;
               when R_Irm
                 | R_Ir
                 | Regs_R64 =>
                  if Right /= O_Enode_Null then
                     Free_Insn_Regs (Right);
                  end if;
                  if Reg in Regs_R64 then
                     Reg1 := Reg;
                  else
                     Reg1 := R_Any64;
                  end if;
                  Set_Expr_Reg (Stmt, Alloc_Reg (Reg1, Stmt, Pnum));
                  Link_Stmt (Stmt);
                  return Stmt;
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
         when OE_Addrd =>
            if Flags.M64 then
               --  Use RIP-Relative addressing.
               if Reg = R_Sib
                 and then not Is_External_Object (Get_Addr_Decl (Stmt))
               then
                  Set_Expr_Reg (Stmt, R_Sib);
               else
                  if Reg in Regs_R64 then
                     Reg1 := Reg;
                  else
                     Reg1 := R_Any64;
                  end if;
                  Set_Expr_Reg (Stmt, Alloc_Reg (Reg1, Stmt, Pnum));
                  Link_Stmt (Stmt);
               end if;
            else
               case Reg is
                  when R_Sib
                    | R_Irm
                    | R_Ir =>
                     Set_Expr_Reg (Stmt, R_Imm);
                  when R_Any32
                    | Regs_R32 =>
                     Set_Expr_Reg (Stmt, Alloc_Reg (Reg, Stmt, Pnum));
                     Link_Stmt (Stmt);
                  when others =>
                     Error_Gen_Insn (Stmt, Reg);
               end case;
            end if;
            return Stmt;
         when OE_Indir =>
            Left := Get_Expr_Operand (Stmt);
            case Reg is
               when R_Irm
                 | R_Rm =>
                  Left := Gen_Insn (Left, R_Sib, Pnum);
                  Set_Expr_Reg (Stmt, R_Mem);
                  Set_Expr_Operand (Stmt, Left);
               when R_Ir
                 | R_Sib
                 | R_I_Off =>
                  Num := Get_Insn_Num;
                  Left := Gen_Insn (Left, R_Sib, Num);
                  Reg1 := Get_Reg_Any (Stmt);
                  if Reg1 = R_AnyPair then
                     pragma Assert (not Flags.M64);
                     Reg1 := Alloc_Reg (Reg1, Stmt, Pnum);
                     Free_Insn_Regs (Left);
                  else
                     Free_Insn_Regs (Left);
                     Reg1 := Alloc_Reg (Reg1, Stmt, Pnum);
                  end if;
                  Set_Expr_Reg (Stmt, Reg1);
                  Set_Expr_Operand (Stmt, Left);
                  Link_Stmt (Stmt);
               when Regs_R64
                 | R_Any64
                 | R_Any32
                 | R_Any8
                 | R_Any_Xmm
                 | Regs_Fp
                 | Regs_Xmm =>
                  Num := Get_Insn_Num;
                  Left := Gen_Insn (Left, R_Sib, Num);
                  Free_Insn_Regs (Left);
                  Set_Expr_Reg (Stmt, Alloc_Reg (Reg, Stmt, Pnum));
                  Set_Expr_Operand (Stmt, Left);
                  Link_Stmt (Stmt);
               when Regs_Pair
                 | R_AnyPair =>
                  pragma Assert (not Flags.M64);
                  --  Avoid overwritting:
                  --  Eg: axdx = indir (ax)
                  --      axdx = indir (ax+dx)
                  Num := Get_Insn_Num;
                  Left := Gen_Insn (Left, R_Sib, Num);
                  Set_Expr_Reg (Stmt, Alloc_Reg (Reg, Stmt, Pnum));
                  Left := Reload (Left, R_Sib, Num);
                  Free_Insn_Regs (Left);
                  Set_Expr_Operand (Stmt, Left);
                  Link_Stmt (Stmt);
               when R_Any_Cc =>
                  Num := Get_Insn_Num;
                  Left := Gen_Insn (Left, R_Sib, Num);
                  --  Generate a cmp $1, XX
                  Set_Expr_Reg (Stmt, R_Eq);
                  Set_Expr_Operand (Stmt, Left);
                  Free_Insn_Regs (Left);
                  Link_Stmt (Stmt);
                  Alloc_Cc (Stmt, Pnum);
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
            return Stmt;
         when OE_Conv_Ptr =>
            --  Delete nops.
            return Gen_Insn (Get_Expr_Operand (Stmt), Reg, Pnum);

         when OE_Const =>
            --  2.2.1.3 Displacement
            --  They remain 8 bits or 32 bits and are sign-extended to 64 bits.
            --
            --  2.2.1.5 Immediates
            --  [..] the processor sign-extends all immediates to 64 bits prior
            --  their use.
            case Get_Expr_Mode (Stmt) is
               when Mode_U8 .. Mode_U32
                 | Mode_I8 .. Mode_I32
                 | Mode_P32
                 | Mode_B2 =>
                  case Reg is
                     when R_Imm
                       | Regs_Imm32 =>
                        Set_Expr_Reg (Stmt, R_Imm);
                     when Regs_R64
                       | R_Any32
                       | R_Any8 =>
                        Set_Expr_Reg (Stmt, Alloc_Reg (Reg, Stmt, Pnum));
                        Link_Stmt (Stmt);
                     when R_Rm =>
                        Set_Expr_Reg
                          (Stmt, Alloc_Reg (Get_Reg_Any (Stmt), Stmt, Pnum));
                        Link_Stmt (Stmt);
                     when R_Any_Cc =>
                        Num := Get_Insn_Num;
                        Set_Expr_Reg (Stmt, Alloc_Reg (R_Any8, Stmt, Num));
                        Link_Stmt (Stmt);
                        Free_Insn_Regs (Stmt);
                        Right := Insert_Move (Stmt, R_Ne);
                        Alloc_Cc (Right, Pnum);
                        return Right;
                     when others =>
                        Error_Gen_Insn (Stmt, Reg);
                  end case;
               when Mode_F32
                 | Mode_F64 =>
                  Num := Get_Insn_Num;
                  case Reg is
                     when R_Ir
                       | R_Irm
                       | R_Rm =>
                        if Abi.Flag_Sse2 then
                           Reg1 := R_Any_Xmm;
                        else
                           Reg1 := R_St0;
                        end if;
                     when R_St0
                       | R_Any_Xmm
                       | Regs_Xmm =>
                        Reg1 := Reg;
                     when others =>
                        raise Program_Error;
                  end case;
                  Set_Expr_Reg (Stmt, Alloc_Reg (Reg1, Stmt, Num));
                  Link_Stmt (Stmt);
               when Mode_U64
                 | Mode_I64
                 | Mode_P64 =>
                  if Flags.M64 then
                     if Is_Expr_S32 (Stmt) then
                        --  Fit in a disp, can use SIB.
                        case Reg is
                           when R_Irm
                             | R_Ir =>
                              Reg1 := R_Imm;
                           when R_Mem =>
                              Reg1 := R_Mem;
                           when Regs_R64 =>
                              Alloc_Gp (Reg, Stmt, Pnum);
                              Reg1 := Reg;
                           when R_Any64
                             | R_Rm =>
                              Reg1 := Alloc_Reg (R_Any64, Stmt, Pnum);
                           when others =>
                              raise Program_Error;
                        end case;
                        Set_Expr_Reg (Stmt, Reg1);
                        if Reg1 in Regs_R64 then
                           Link_Stmt (Stmt);
                        end if;
                     else
                        --  Need a register to load the constants.
                        if Reg in Regs_R64 then
                           Reg1 := Reg;
                        else
                           Reg1 := R_Any64;
                        end if;
                        Set_Expr_Reg (Stmt, Alloc_Reg (Reg1, Stmt, Pnum));
                        Link_Stmt (Stmt);
                     end if;
                  else
                     case Reg is
                        when R_Irm
                          | R_Ir
                          | R_Rm =>
                           Set_Expr_Reg (Stmt, R_Imm);
                        when R_Mem =>
                           Set_Expr_Reg (Stmt, R_Mem);
                        when Regs_Pair
                          | R_AnyPair =>
                           Set_Expr_Reg (Stmt, Alloc_Reg (Reg, Stmt, Pnum));
                           Link_Stmt (Stmt);
                        when others =>
                           raise Program_Error;
                     end case;
                  end if;
               when others =>
                  raise Program_Error;
            end case;
            return Stmt;

         when OE_Alloca =>
            --  Roughly speaking, emited code is: (MASK is a constant).
            --  VAL := (VAL + MASK) & ~MASK
            --  SP := SP - VAL
            --  res <- SP
            Left := Get_Expr_Operand (Stmt);
            case Reg is
               when R_Ir
                 | R_Irm
                 | R_Any32 =>
                  Num := Get_Insn_Num;
                  if X86.Flags.Flag_Alloca_Call then
                     --  The alloca function returns its result in ax.
                     Reg_L := R_Ax;
                  else
                     Reg_L := R_Any32;
                  end if;
                  Left := Gen_Insn (Left, Reg_L, Num);
                  Set_Expr_Operand (Stmt, Left);
                  Link_Stmt (Left);
                  Free_Insn_Regs (Left);
                  Set_Expr_Reg (Stmt, Alloc_Reg (Reg_L, Stmt, Pnum));
                  Link_Stmt (Stmt);
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
            return Stmt;

         when OE_Kind_Cmp =>
            --  Return LEFT cmp RIGHT, ie compute RIGHT - LEFT
            Num := Get_Insn_Num;
            Left := Get_Expr_Left (Stmt);
            Reg_L := Get_Reg_Any (Left);
            Left := Gen_Insn (Left, Reg_L, Num);

            Right := Get_Expr_Right (Stmt);
            case Get_Expr_Mode (Right) is
               when Mode_F32
                 | Mode_F64 =>
                  if Abi.Flag_Sse2 then
                     Reg1 := R_Rm;
                  else
                     Reg1 := R_St0;
                  end if;
               when others =>
                  Reg1 := R_Irm;
            end case;
            Right := Gen_Insn (Right, Reg1, Num);

            --  FIXME: what about if right was spilled out of FP regs ?
            --  (it is reloaded in reverse).
            Left := Reload (Left, Reg_L, Num);

            Set_Expr_Right (Stmt, Right);
            Set_Expr_Left (Stmt, Left);

            Link_Stmt (Stmt);

            Reg_Res := Ekind_To_Cc (Stmt, Get_Expr_Mode (Left));
            case Get_Expr_Mode (Left) is
               when Mode_F32
                 | Mode_F64 =>
                  if not Abi.Flag_Sse2 then
                     --  Reverse only for FPU.
                     Reg_Res := Reverse_Cc (Reg_Res);
                  end if;
               when Mode_I64 =>
                  --  I64 is a little bit special on x86-32.
                  if not Flags.M64 then
                     Reg_Res := Get_Pair_High (Get_Expr_Reg (Left));
                     if Reg_Res not in Regs_R8 then
                        Reg_Res := R_Nil;
                        for I in Regs_R8 loop
                           if Regs (I).Num = O_Free then
                              Reg_Res := I;
                              exit;
                           end if;
                        end loop;
                        if Reg_Res = R_Nil then
                           --  FIXME: to be handled.
                           --  Can this happen ?
                           raise Program_Error;
                        end if;
                     end if;

                     Free_Insn_Regs (Left);
                     Free_Insn_Regs (Right);

                     Set_Expr_Reg (Stmt, Reg_Res);
                     case Reg is
                        when R_Any_Cc =>
                           Right := Insert_Move (Stmt, R_Ne);
                           Alloc_Cc (Right, Pnum);
                           return Right;
                        when R_Any8
                          | Regs_R8
                          | R_Irm
                          | R_Ir
                          | R_Rm =>
                           Reg_Res := Alloc_Reg (Reg_Res, Stmt, Pnum);
                           return Stmt;
                        when others =>
                           Error_Gen_Insn (Stmt, Reg);
                     end case;
                  end if;
               when others =>
                  null;
            end case;
            Set_Expr_Reg (Stmt, Reg_Res);

            Free_Insn_Regs (Left);
            Free_Insn_Regs (Right);

            case Reg is
               when R_Any_Cc =>
                  Alloc_Cc (Stmt, Pnum);
                  return Stmt;
               when R_Any8
                 | Regs_R8 =>
                  Res := Insert_Move (Stmt, R_Any8);
                  Reg_Res := Alloc_Reg (Reg, Res, Pnum);
                  Set_Expr_Reg (Res, Reg_Res);
                  return Res;
               when R_Irm
                 | R_Ir
                 | R_Rm =>
                  Res := Insert_Move (Stmt, R_Any32);
                  Reg_Res := Alloc_Reg (R_Any8, Res, Pnum);
                  Set_Expr_Reg (Res, Reg_Res);
                  return Res;
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
         when OE_Add =>
            declare
               R_L : O_Reg;
               R_R : O_Reg;
            begin
               Left := Gen_Insn (Get_Expr_Left (Stmt), R_Sib, Pnum);
               Right := Gen_Insn (Get_Expr_Right (Stmt), R_Sib, Pnum);
               Left := Reload (Left, R_Sib, Pnum);
               Set_Expr_Right (Stmt, Right);
               Set_Expr_Left (Stmt, Left);
               R_L := Get_Expr_Reg (Left);
               R_R := Get_Expr_Reg (Right);
               --  Results can be: Reg, R_B_Off, R_Sib, R_Imm, R_B_I
               case R_L is
                  when R_Any32
                    | R_Any64
                    | Regs_R64 =>
                     case R_R is
                        when R_Imm =>
                           Set_Expr_Reg (Stmt, R_B_Off);
                        when R_B_Off
                          | R_I
                          | R_I_Off =>
                           Set_Expr_Reg (Stmt, R_Sib);
                        when R_Any32
                          | R_Any64
                          | Regs_R64 =>
                           Set_Expr_Reg (Stmt, R_B_I);
                        when others =>
                           Error_Gen_Insn (Stmt, R_R);
                     end case;
                  when R_Imm =>
                     case R_R is
                        when R_Imm =>
                           Set_Expr_Reg (Stmt, R_Imm);
                        when R_Any32
                          | R_Any64
                          | Regs_R64
                          | R_B_Off =>
                           Set_Expr_Reg (Stmt, R_B_Off);
                        when R_I
                          | R_I_Off =>
                           Set_Expr_Reg (Stmt, R_I_Off);
                        when others =>
                           Error_Gen_Insn (Stmt, R_R);
                     end case;
                  when R_B_Off =>
                     case R_R is
                        when R_Imm =>
                           Set_Expr_Reg (Stmt, R_B_Off);
                        when R_Any32
                          | R_Any64
                          | Regs_R64
                          | R_I =>
                           Set_Expr_Reg (Stmt, R_Sib);
                        when others =>
                           Error_Gen_Insn (Stmt, R_R);
                     end case;
                  when R_I_Off =>
                     case R_R is
                        when R_Imm =>
                           Set_Expr_Reg (Stmt, R_I_Off);
                        when R_Any32
                          | R_Any64
                          | Regs_R64 =>
                           Set_Expr_Reg (Stmt, R_Sib);
                        when R_I =>
                           Num := Get_Insn_Num;
                           Free_Insn_Regs (Right);
                           Set_Expr_Reg
                             (Right, Alloc_Reg (R_Any32, Right, Num));
                           Link_Stmt (Right);
                           Set_Expr_Reg (Stmt, R_Sib);
                        when others =>
                           Error_Gen_Insn (Stmt, R_R);
                     end case;
                  when R_I =>
                     case R_R is
                        when R_Imm
                          | Regs_R64
                          | R_B_Off =>
                           Set_Expr_Reg (Stmt, R_Sib);
                        when others =>
                           Error_Gen_Insn (Stmt, R_R);
                     end case;
                  when R_Sib
                    | R_B_I =>
                     if R_R = R_Imm then
                        Set_Expr_Reg (Stmt, R_Sib);
                     else
                        Num := Get_Insn_Num;
                        Free_Insn_Regs (Left);
                        Set_Expr_Reg (Left, Alloc_Reg (R_Any32, Left, Num));
                        Link_Stmt (Left);
                        case R_R is
                           when R_Any32
                             | R_Any64
                             | Regs_R64
                             | R_I =>
                              Set_Expr_Reg (Stmt, R_B_I);
                           when others =>
                              Error_Gen_Insn (Stmt, R_R);
                        end case;
                     end if;
                  when others =>
                     Error_Gen_Insn (Stmt, R_L);
               end case;

               case Reg is
                  when R_Sib =>
                     null;
                  when R_Ir
                    | R_Irm
                    | R_Any32
                    | R_Any64
                    | Regs_R64 =>
                     if Get_Expr_Reg (Stmt) /= R_Imm then
                        Free_Insn_Regs (Left);
                        Free_Insn_Regs (Right);
                        Set_Expr_Reg (Stmt, Alloc_Reg (R_Any32, Stmt, Pnum));
                        Link_Stmt (Stmt);
                     end if;
                  when others =>
                     Error_Gen_Insn (Stmt, Reg);
               end case;
            end;
            return Stmt;
         when OE_Mul =>
            Num := Get_Insn_Num;
            Left := Gen_Insn (Get_Expr_Left (Stmt), R_Ax, Num);
            Set_Expr_Left (Stmt, Left);

            Right := Gen_Insn (Get_Expr_Right (Stmt), R_Any32, Num);
            --  Only used to compute memory offset
            pragma Assert (Get_Expr_Kind (Right) = OE_Const);
            Set_Expr_Right (Stmt, Right);

            Free_Insn_Regs (Left);
            Free_Insn_Regs (Right);
            Clobber_Gp (R_Dx);
            Set_Expr_Reg (Stmt, Alloc_Reg (R_Ax, Stmt, Pnum));
            case Reg is
               when R_Sib
                 | R_B_Off =>
                  null;
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
            Link_Stmt (Stmt);
            return Stmt;
         when OE_Shl =>
            Num := Get_Insn_Num;
            Right := Get_Expr_Right (Stmt);
            if Get_Expr_Kind (Right) /= OE_Const then
               Right := Gen_Insn (Right, R_Cx, Num);
            else
               Right := Gen_Insn (Right, R_Imm, Num);
            end if;
            Left := Get_Expr_Left (Stmt);
            Reg1 := Get_Reg_Any (Stmt);
            Left := Gen_Insn (Left, Reg1, Pnum);
            if Get_Expr_Kind (Right) /= OE_Const then
               Right := Reload (Right, R_Cx, Num);
            end if;
            Left := Reload (Left, Reg1, Pnum);
            Set_Expr_Left (Stmt, Left);
            Set_Expr_Right (Stmt, Right);
            if Reg = R_Sib
              and then Get_Expr_Kind (Right) = OE_Const
              and then Get_Expr_Low (Right) in 0 .. 3
            then
               --  Becomes the index of the SIB.
               Set_Expr_Reg (Stmt, R_I);
            else
               Reg_Res := Get_Expr_Reg (Left);
               Set_Expr_Reg (Stmt, Reg_Res);
               Renum_Reg (Reg_Res, Stmt, Pnum);
               Link_Stmt (Stmt);
               Free_Insn_Regs (Right);
            end if;
            return Stmt;

         when OE_Add_Ov
           | OE_Sub_Ov
           | OE_And
           | OE_Xor
           | OE_Or =>
            --  Accepted is: R with IMM or R/M
            Num := Get_Insn_Num;
            Right := Get_Expr_Right (Stmt);
            Left := Get_Expr_Left (Stmt);
            case Reg is
               when R_Irm
                 | R_Rm
                 | R_Ir
                 | R_Sib =>
                  Right := Gen_Insn (Right, R_Irm, Num);
                  Reg1 := Get_Reg_Any (Stmt);
                  Left := Gen_Insn (Left, Reg1, Num);
                  Right := Reload (Right, R_Irm, Num);
                  Left := Reload (Left, Reg1, Num);
                  Reg_Res := Get_Expr_Reg (Left);
               when R_Any_Cc =>
                  Right := Gen_Insn (Right, R_Irm, Num);
                  Left := Gen_Insn (Left, R_Any8, Num);
                  Left := Reload (Left, R_Irm, Num);
                  Right := Reload (Right, R_Any8, Num);
                  Reg_Res := R_Ne;
                  Alloc_Cc (Stmt, Num);
                  Free_Insn_Regs (Left);
               when R_Any32
                 | R_Any64
                 | Regs_R64
                 | R_Any8
                 | R_AnyPair
                 | R_Any_Xmm
                 | Regs_Pair
                 | Regs_Fp
                 | Regs_Xmm =>
                  Left := Gen_Insn (Left, Reg, Num);
                  Right := Gen_Insn (Right, R_Irm, Num);
                  Left := Reload (Left, Reg, Num);
                  Right := Reload (Right, R_Irm, Num);
                  Reg_Res := Get_Expr_Reg (Left);
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
            Set_Expr_Right (Stmt, Right);
            Set_Expr_Left (Stmt, Left);
            Set_Expr_Reg (Stmt, Reg_Res);
            Renum_Reg (Reg_Res, Stmt, Pnum);
            Link_Stmt (Stmt);
            Free_Insn_Regs (Right);
            return Stmt;

         when OE_Mod
           | OE_Rem
           | OE_Mul_Ov
           | OE_Div_Ov =>
            declare
               Mode : constant Mode_Type := Get_Expr_Mode (Stmt);
            begin
               Num := Get_Insn_Num;
               Left := Get_Expr_Left (Stmt);
               Right := Get_Expr_Right (Stmt);

               if not Flags.M64
                 and (Mode = Mode_I64 or Mode = Mode_U64)
               then
                  --  Call libgcc helper on x86-32.
                  --  FIXME: align stack
                  Insert_Arg (Gen_Insn (Right, R_Irm, Num));
                  Insert_Arg (Gen_Insn (Left, R_Irm, Num));
                  return Insert_Intrinsic (Stmt, R_Edx_Eax, Pnum);
               end if;

               case Mode is
                  when Mode_I32
                    | Mode_U32
                    | Mode_I64
                    | Mode_U64
                    | Mode_I16
                    | Mode_U16 =>
                     Left := Gen_Insn (Left, R_Ax, Num);
                     Right := Gen_Insn (Right, R_Rm, Num);
                     Left := Reload (Left, R_Ax, Num);
                     case Kind is
                        when OE_Div_Ov
                          | OE_Rem
                          | OE_Mod =>
                           --  Be sure EDX is free.
                           Reg_Res := Alloc_Reg (R_Dx, Stmt, Pnum);
                        when others =>
                           Reg_Res := R_Nil;
                     end case;
                     Right := Reload (Right, R_Rm, Num);
                     Set_Expr_Right (Stmt, Right);
                     Set_Expr_Left (Stmt, Left);
                     Free_Insn_Regs (Left);
                     Free_Insn_Regs (Right);
                     if Reg_Res /= R_Nil then
                        Free_Gp (Reg_Res);
                     end if;
                     if Kind = OE_Div_Ov or Kind = OE_Mul_Ov then
                        Reg_Res := R_Ax;
                        Clobber_Gp (R_Dx);
                     else
                        Reg_Res := R_Dx;
                        Clobber_Gp (R_Ax);
                     end if;
                     Set_Expr_Reg (Stmt, Alloc_Reg (Reg_Res, Stmt, Pnum));
                     Link_Stmt (Stmt);
                     return Reload (Stmt, Reg, Pnum);
                  when Mode_F32
                    | Mode_F64 =>
                     if Abi.Flag_Sse2 then
                        if Reg in Regs_Xmm then
                           Reg_Res := Reg;
                        else
                           Reg_Res := R_Any_Xmm;
                        end if;
                     else
                        Reg_Res := R_St0;
                     end if;
                     Left := Gen_Insn (Left, Reg_Res, Num);
                     Right := Gen_Insn (Right, R_Irm, Num);
                     Left := Reload (Left, Reg_Res, Num);
                     Right := Reload (Right, R_Irm, Num);
                     Reg_Res := Get_Expr_Reg (Left);
                     Set_Expr_Right (Stmt, Right);
                     Set_Expr_Left (Stmt, Left);
                     Set_Expr_Reg (Stmt, Reg_Res);
                     Renum_Reg (Reg_Res, Stmt, Pnum);
                     Free_Insn_Regs (Right);
                     Link_Stmt (Stmt);
                     return Stmt;
                  when others =>
                     Error_Gen_Insn (Stmt, Mode);
               end case;
            end;

         when OE_Not
           | OE_Abs_Ov
           | OE_Neg_Ov =>
            Left := Get_Expr_Operand (Stmt);
            case Reg is
               when R_Any32
                 | R_Any64
                 | R_AnyPair
                 | Regs_Pair
                 | R_Any8
                 | R_St0
                 | Regs_R64
                 | Regs_Xmm
                 | R_Any_Xmm =>
                  Reg_Res := Reg;
               when R_Any_Cc =>
                  --  Only oe_not is allowed for booleans.
                  pragma Assert (Kind = OE_Not);
                  Left := Gen_Insn (Left, R_Any_Cc, Pnum);
                  Set_Expr_Operand (Stmt, Left);
                  Reg_Res := Inverse_Cc (Get_Expr_Reg (Left));
                  Free_Cc;
                  Set_Expr_Reg (Stmt, Reg_Res);
                  Alloc_Cc (Stmt, Pnum);
                  return Stmt;
               when R_Irm
                 | R_Rm
                 | R_Ir =>
                  Reg_Res := Get_Reg_Any (Left);
               when others =>
                  Error_Gen_Insn (Stmt, Reg);
            end case;
            Left := Gen_Insn (Left, Reg_Res, Pnum);
            Set_Expr_Operand (Stmt, Left);
            Reg_Res := Get_Expr_Reg (Left);
            Free_Insn_Regs (Left);
            Set_Expr_Reg (Stmt, Alloc_Reg (Reg_Res, Stmt, Pnum));
            Link_Stmt (Stmt);
            return Stmt;
         when OE_Conv_Ov
            | OE_Conv =>
            Left := Get_Expr_Operand (Stmt);
            declare
               --  Operand mode
               O_Mode : constant Mode_Type := Get_Expr_Mode (Left);

               --  Result mode
               R_Mode : constant Mode_Type := Get_Expr_Mode (Stmt);

               Reg_Op : O_Reg;
            begin
               --  Simple case: no conversion.
               --  FIXME: should be handled by EXPR and convert to NOP.
               if Get_Expr_Mode (Left) = Get_Expr_Mode (Stmt) then
                  --  A no-op.
                  return Gen_Insn (Left, Reg, Pnum);
               end if;

               --  By default, can work on reg or memory.
               Reg_Op := R_Rm;

               --  Case on target.
               case R_Mode is
                  when Mode_B2 =>
                     --  To B2
                     case O_Mode is
                        when Mode_U32
                          | Mode_I32 =>
                           --  Detect for bound.
                           null;
                        when Mode_I64 =>
                           if not Flags.M64 then
                              --  Work on registers.
                              Reg_Op := R_AnyPair;
                           end if;
                        when others =>
                           Error_Gen_Insn (Stmt, O_Mode);
                     end case;
                  when Mode_U8 =>
                     --  To U8
                     case O_Mode is
                        when Mode_U16
                          | Mode_U32
                          | Mode_I32 =>
                           --  Detect for bound.
                           null;
                        when Mode_I64 =>
                           if not Flags.M64 then
                              --  Work on registers.
                              Reg_Op := R_AnyPair;
                           end if;
                        when others =>
                           Error_Gen_Insn (Stmt, O_Mode);
                     end case;
                  when Mode_U32 =>
                     --  To U32
                     case O_Mode is
                        when Mode_I32 =>
                           --  Detect for bound.
                           null;
                        when Mode_B2
                          | Mode_U8
                          | Mode_U16 =>
                           --  Zero extend.
                           null;
                        when others =>
                           Error_Gen_Insn (Stmt, O_Mode);
                     end case;
                  when Mode_I32 =>
                     --  To I32
                     case O_Mode is
                        when Mode_U8
                          | Mode_I8
                          | Mode_B2
                          | Mode_U16
                          | Mode_U32 =>
                           --  Zero extend
                           --  Detect for bound (U32).
                           null;
                        when Mode_I64 =>
                           --  Detect for bound (U32)
                           Num := Get_Insn_Num;
                           if Flags.M64 then
                              --  Use movsxd to compare.
                              Left := Gen_Insn (Left, R_Any64, Num);
                              Set_Expr_Reg
                                (Stmt, Alloc_Reg (R_Any32, Stmt, Num));
                              Free_Insn_Regs (Left);
                           else
                              --  Use cdq to compare, keep ax.
                              Left := Gen_Insn (Left, R_Edx_Eax, Num);
                              Free_Insn_Regs (Left);
                              case Reg is
                                 when R_Ax
                                   | R_Any32
                                   | R_Rm
                                   | R_Irm
                                   | R_Ir =>
                                    Set_Expr_Reg
                                      (Stmt, Alloc_Reg (R_Ax, Stmt, Num));
                                 when others =>
                                    raise Program_Error;
                              end case;
                              --  Need an extra register to compare.
                              Insert_Reg (Mode_U32);
                           end if;
                           Set_Expr_Operand (Stmt, Left);
                           Link_Stmt (Stmt);
                           return Stmt;
                        when Mode_F64
                          | Mode_F32 =>
                           return Gen_Conv_From_Fp_Insn (Stmt, Reg, Pnum);
                        when others =>
                           Error_Gen_Insn (Stmt, O_Mode);
                     end case;
                  when Mode_I64 =>
                     --  To I64
                     case O_Mode is
                        when Mode_I32
                          | Mode_U32
                          | Mode_U8
                          | Mode_B2 =>
                           --  Zero or Sign extend.
                           Num := Get_Insn_Num;
                           if Flags.M64 then
                              --  Use movsxd / movl
                              Left :=
                                Gen_Insn (Left, Get_Reg_Any (O_Mode), Num);
                              case Reg is
                                 when Regs_R64 =>
                                    Reg1 := Reg;
                                 when R_Any64
                                   | R_Rm
                                   | R_Irm
                                   | R_Ir =>
                                    Reg1 := R_Any64;
                                 when others =>
                                    raise Program_Error;
                              end case;
                           else
                              Left := Gen_Insn (Left, R_Ax, Num);
                              case Reg is
                                 when R_Edx_Eax
                                   | R_AnyPair
                                   | R_Rm
                                   | R_Irm
                                   | R_Ir =>
                                    Reg1 := R_Edx_Eax;
                                 when others =>
                                    raise Program_Error;
                              end case;
                           end if;
                           Set_Expr_Operand (Stmt, Left);
                           Free_Insn_Regs (Left);
                           Set_Expr_Reg (Stmt, Alloc_Reg (Reg1, Stmt, Pnum));
                           Link_Stmt (Stmt);
                           return Stmt;
                        when Mode_F64
                          | Mode_F32 =>
                           return Gen_Conv_From_Fp_Insn (Stmt, Reg, Pnum);
                        when others =>
                           Error_Gen_Insn (Stmt, O_Mode);
                     end case;
                  when Mode_F64 =>
                     --  To F64
                     case O_Mode is
                        when Mode_I32
                          | Mode_I64 =>
                           null;
                        when others =>
                           Error_Gen_Insn (Stmt, O_Mode);
                     end case;
                  when others =>
                     Error_Gen_Insn (Stmt, O_Mode);
               end case;
               Left := Gen_Insn (Left, Reg_Op, Pnum);
               Set_Expr_Operand (Stmt, Left);
               case Reg is
                  when R_Irm
                    | R_Rm
                    | R_Ir
                    | R_Sib
                    | R_Any64