aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/cells_sim.v
blob: d9aa366665f0a39d8e08e3275b087a619ee19a62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// See Xilinx UG953 and UG474 for a description of the cell types below.
// http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
// http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf

module VCC(output P);
  assign P = 1;
endmodule

module GND(output G);
  assign G = 0;
endmodule

module IBUF(output O, input I);
  parameter IOSTANDARD = "default";
  parameter IBUF_LOW_PWR = 0;
  assign O = I;
endmodule

module OBUF(output O, input I);
  parameter IOSTANDARD = "default";
  parameter DRIVE = 12;
  parameter SLEW = "SLOW";
  assign O = I;
endmodule

module BUFG(output O, input I);
  assign O = I;
endmodule

module BUFGCTRL(
    output O,
    input I0, input I1,
    input S0, input S1,
    input CE0, input CE1,
    input IGNORE0, input IGNORE1);

parameter [0:0] INIT_OUT = 1'b0;
parameter PRESELECT_I0 = "FALSE";
parameter PRESELECT_I1 = "FALSE";
parameter [0:0] IS_CE0_INVERTED = 1'b0;
parameter [0:0] IS_CE1_INVERTED = 1'b0;
parameter [0:0] IS_S0_INVERTED = 1'b0;
parameter [0:0] IS_S1_INVERTED = 1'b0;
parameter [0:0] IS_IGNORE0_INVERTED = 1'b0;
parameter [0:0] IS_IGNORE1_INVERTED = 1'b0;

wire I0_internal = ((CE0 ^ IS_CE0_INVERTED) ? I0 : INIT_OUT);
wire I1_internal = ((CE1 ^ IS_CE1_INVERTED) ? I1 : INIT_OUT);
wire S0_true = (S0 ^ IS_S0_INVERTED);
wire S1_true = (S1 ^ IS_S1_INVERTED);

assign O = S0_true ? I0_internal : (S1_true ? I1_internal : INIT_OUT);

endmodule

module BUFHCE(output O, input I, input CE);

parameter [0:0] INIT_OUT = 1'b0;
parameter CE_TYPE = "SYNC";
parameter [0:0] IS_CE_INVERTED = 1'b0;

assign O = ((CE ^ IS_CE_INVERTED) ? I : INIT_OUT);

endmodule

// module OBUFT(output O, input I, T);
//   assign O = T ? 1'bz : I;
// endmodule

// module IOBUF(inout IO, output O, input I, T);
//   assign O = IO, IO = T ? 1'bz : I;
// endmodule

module INV(output O, input I);
  assign O = !I;
endmodule

module LUT1(output O, input I0);
  parameter [1:0] INIT = 0;
  assign O = I0 ? INIT[1] : INIT[0];
endmodule

module LUT2(output O, input I0, I1);
  parameter [3:0] INIT = 0;
  wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT3(output O, input I0, I1, I2);
  parameter [7:0] INIT = 0;
  wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT4(output O, input I0, I1, I2, I3);
  parameter [15:0] INIT = 0;
  wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT5(output O, input I0, I1, I2, I3, I4);
  parameter [31:0] INIT = 0;
  wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT6(output O, input I0, I1, I2, I3, I4, I5);
  parameter [63:0] INIT = 0;
  wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
  wire [15: 0] s4 = I4 ?   s5[31:16] :   s5[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT6_2(output O6, output O5, input I0, I1, I2, I3, I4, I5);
  parameter [63:0] INIT = 0;
  wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
  wire [15: 0] s4 = I4 ?   s5[31:16] :   s5[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O6 = I0 ? s1[1] : s1[0];

  wire [15: 0] s5_4 = I4 ? INIT[31:16] : INIT[15: 0];
  wire [ 7: 0] s5_3 = I3 ? s5_4[15: 8] : s5_4[ 7: 0];
  wire [ 3: 0] s5_2 = I2 ? s5_3[ 7: 4] : s5_3[ 3: 0];
  wire [ 1: 0] s5_1 = I1 ? s5_2[ 3: 2] : s5_2[ 1: 0];
  assign O5 = I0 ? s5_1[1] : s5_1[0];
endmodule

module MUXCY(output O, input CI, DI, S);
  assign O = S ? CI : DI;
endmodule

(* abc_box_id = 1, lib_whitebox *)
module MUXF7(output O, input I0, I1, S);
  assign O = S ? I1 : I0;
endmodule

(* abc_box_id = 2, lib_whitebox *)
module MUXF8(output O, input I0, I1, S);
  assign O = S ? I1 : I0;
endmodule

module XORCY(output O, input CI, LI);
  assign O = CI ^ LI;
endmodule

(* abc_box_id = 3, abc_carry, lib_whitebox *)
module CARRY4((* abc_carry_out *) output [3:0] CO, output [3:0] O, (* abc_carry_in *) input CI, input CYINIT, input [3:0] DI, S);
  assign O = S ^ {CO[2:0], CI | CYINIT};
  assign CO[0] = S[0] ? CI | CYINIT : DI[0];
  assign CO[1] = S[1] ? CO[0] : DI[1];
  assign CO[2] = S[2] ? CO[1] : DI[2];
  assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule

`ifdef _EXPLICIT_CARRY

module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S);
  parameter CYINIT_FABRIC = 0;
  wire CI_COMBINE;
  if(CYINIT_FABRIC) begin
    assign CI_COMBINE = CI_INIT;
  end else begin
    assign CI_COMBINE = CI;
  end
  assign CO_CHAIN = S ? CI_COMBINE : DI;
  assign CO_FABRIC = S ? CI_COMBINE : DI;
  assign O = S ^ CI_COMBINE;
endmodule

module CARRY(output CO_CHAIN, CO_FABRIC, O, input CI, DI, S);
  assign CO_CHAIN = S ? CI : DI;
  assign CO_FABRIC = S ? CI : DI;
  assign O = S ^ CI;
endmodule

`endif

module FDRE ((* abc_flop_q *) output reg Q, input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_R_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case (|IS_C_INVERTED)
    1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDSE ((* abc_flop_q *) output reg Q, input C, CE, D, S);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_S_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case (|IS_C_INVERTED)
    1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDCE ((* abc_flop_q *) output reg Q, input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDPE ((* abc_flop_q *) output reg Q, input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDRE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  initial Q <= INIT;
  always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule

module FDSE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, S);
  parameter [0:0] INIT = 1'b1;
  initial Q <= INIT;
  always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule

module FDCE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  initial Q <= INIT;
  always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule

module FDPE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b1;
  initial Q <= INIT;
  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule

//(* abc_box_id = 4 /*, lib_whitebox*/ *)
module RAM64X1D (
  output DPO, SPO,
  input  D, WCLK, WE,
  input  A0, A1, A2, A3, A4, A5,
  input  DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
);
  parameter INIT = 64'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire [5:0] a = {A5, A4, A3, A2, A1, A0};
  wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
  reg [63:0] mem = INIT;
  assign SPO = mem[a];
  assign DPO = mem[dpra];
  wire clk = WCLK ^ IS_WCLK_INVERTED;
  always @(posedge clk) if (WE) mem[a] <= D;
endmodule

//(* abc_box_id = 5 /*, lib_whitebox*/ *)
module RAM128X1D (
  output       DPO, SPO,
  input        D, WCLK, WE,
  input  [6:0] A, DPRA
);
  parameter INIT = 128'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  reg [127:0] mem = INIT;
  assign SPO = mem[A];
  assign DPO = mem[DPRA];
  wire clk = WCLK ^ IS_WCLK_INVERTED;
  always @(posedge clk) if (WE) mem[A] <= D;
endmodule

module SRL16E (
  (* abc_flop_q *) output Q,
  input A0, A1, A2, A3, CE, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;

  reg [15:0] r = INIT;
  assign Q = r[{A3,A2,A1,A0}];
  generate
    if (IS_CLK_INVERTED) begin
      always @(negedge CLK) if (CE) r <= { r[14:0], D };
    end
    else
        always @(posedge CLK) if (CE) r <= { r[14:0], D };
  endgenerate
endmodule

module SRLC32E (
  (* abc_flop_q *) output Q,
  output Q31,
  input [4:0] A,
  input CE, CLK, D
);
  parameter [31:0] INIT = 32'h00000000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;

  reg [31:0] r = INIT;
  assign Q31 = r[31];
  assign Q = r[A];
  generate
    if (IS_CLK_INVERTED) begin
      always @(negedge CLK) if (CE) r <= { r[30:0], D };
    end
    else
      always @(posedge CLK) if (CE) r <= { r[30:0], D };
  endgenerate
endmodule