aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/cells_sim.v
blob: 68f6783857b29ea62bb1b7146d19b1221a3cac54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// See Xilinx UG953 and UG474 for a description of the cell types below.
// http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
// http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf

module VCC(output P);
  assign P = 1;
endmodule

module GND(output G);
  assign G = 0;
endmodule

module IBUF(output O, input I);
  assign O = I;
endmodule

module OBUF(output O, input I);
  assign O = I;
endmodule

module BUFG(output O, input I);
  assign O = I;
endmodule

// module OBUFT(output O, input I, T);
//   assign O = T ? 1'bz : I;
// endmodule

// module IOBUF(inout IO, output O, input I, T);
//   assign O = IO, IO = T ? 1'bz : I;
// endmodule

module INV(output O, input I);
  assign O = !I;
endmodule

module LUT1(output O, input I0);
  parameter [1:0] INIT = 0;
  assign O = I0 ? INIT[1] : INIT[0];
endmodule

module LUT2(output O, input I0, I1);
  parameter [3:0] INIT = 0;
  wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT3(output O, input I0, I1, I2);
  parameter [7:0] INIT = 0;
  wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT4(output O, input I0, I1, I2, I3);
  parameter [15:0] INIT = 0;
  wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT5(output O, input I0, I1, I2, I3, I4);
  parameter [31:0] INIT = 0;
  wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT6(output O, input I0, I1, I2, I3, I4, I5);
  parameter [63:0] INIT = 0;
  wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
  wire [15: 0] s4 = I4 ?   s5[31:16] :   s5[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module MUXCY(output O, input CI, DI, S);
  assign O = S ? CI : DI;
endmodule

module MUXF7(output O, input I0, I1, S);
  assign O = S ? I1 : I0;
endmodule

module MUXF8(output O, input I0, I1, S);
  assign O = S ? I1 : I0;
endmodule

module XORCY(output O, input CI, LI);
  assign O = CI ^ LI;
endmodule

module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
  assign O = S ^ {CO[2:0], CI | CYINIT};
  assign CO[0] = S[0] ? CI | CYINIT : DI[0];
  assign CO[1] = S[1] ? CO[0] : DI[1];
  assign CO[2] = S[2] ? CO[1] : DI[2];
  assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule

module FDRE (output reg Q, input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_R_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case (|IS_C_INVERTED)
    1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDSE (output reg Q, input C, CE, D, S);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_S_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case (|IS_C_INVERTED)
    1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDCE (output reg Q, input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDPE (output reg Q, input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module RAM64X1D (
  output DPO, SPO,
  input  D, WCLK, WE,
  input  A0, A1, A2, A3, A4, A5,
  input  DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
);
  parameter INIT = 64'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire [5:0] a = {A5, A4, A3, A2, A1, A0};
  wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
  reg [63:0] mem = INIT;
  assign SPO = mem[a];
  assign DPO = mem[dpra];
  wire clk = WCLK ^ IS_WCLK_INVERTED;
  always @(posedge clk) if (WE) mem[a] <= D;
endmodule

module RAM128X1D (
  output       DPO, SPO,
  input        D, WCLK, WE,
  input  [6:0] A, DPRA
);
  parameter INIT = 128'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  reg [127:0] mem = INIT;
  assign SPO = mem[A];
  assign DPO = mem[DPRA];
  wire clk = WCLK ^ IS_WCLK_INVERTED;
  always @(posedge clk) if (WE) mem[A] <= D;
endmodule

module SRL16E (
  output Q,
  input A0, A1, A2, A3, CE, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;

  reg [15:0] r = INIT;
  assign Q = r[{A3,A2,A1,A0}];
  generate
    if (IS_CLK_INVERTED) begin
      always @(negedge CLK) if (CE) r <= { r[14:0], D };
    end
    else
        always @(posedge CLK) if (CE) r <= { r[14:0], D };
  endgenerate
endmodule

module SRLC32E (
  output Q,
  output Q31,
  input [4:0] A,
  input CE, CLK, D
);
  parameter [31:0] INIT = 32'h00000000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;

  reg [31:0] r = INIT;
  assign Q31 = r[31];
  assign Q = r[A];
  generate
    if (IS_CLK_INVERTED) begin
      always @(negedge CLK) if (CE) r <= { r[30:0], D };
    end
    else
      always @(posedge CLK) if (CE) r <= { r[30:0], D };
  endgenerate
endmodule