1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// Convert negative-polarity reset to positive-polarity
(* techmap_celltype = "$_DFF_NN0_" *)
module _90_dff_nn0_to_np0 (input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN0_" *)
module _90_dff_pn0_to_pp0 (input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_NN1_" *)
module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN1_" *)
module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
module \$__SHREG_ (input C, input D, input E, output Q);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;
parameter CLKPOL = 1;
parameter ENPOL = 2;
\$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
endmodule
module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;
parameter CLKPOL = 1;
parameter ENPOL = 2;
// shregmap's INIT parameter shifts out LSB first;
// however Xilinx expects MSB first
function [DEPTH-1:0] brev;
input [DEPTH-1:0] din;
integer i;
begin
for (i = 0; i < DEPTH; i=i+1)
brev[i] = din[DEPTH-1-i];
end
endfunction
localparam [DEPTH-1:0] INIT_R = brev(INIT);
parameter _TECHMAP_CONSTMSK_L_ = 0;
wire CE;
generate
if (ENPOL == 0)
assign CE = ~E;
else if (ENPOL == 1)
assign CE = E;
else
assign CE = 1'b1;
if (DEPTH == 1) begin
if (CLKPOL)
FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
else
FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
end else
if (DEPTH <= 16) begin
SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 17 && DEPTH <= 32) begin
SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 33 && DEPTH <= 64) begin
wire T0, T1, T2;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T2;
else
MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
end else
if (DEPTH > 65 && DEPTH <= 96) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T4;
else
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q));
end else
if (DEPTH > 97 && DEPTH < 128) begin
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
end
else if (DEPTH == 128) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
end
// For fixed length, if just 1 over a convenient value, decompose
else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin
wire T;
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(D), .L({32{1'b1}}), .E(E), .Q(T));
\$__XILINX_SHREG_ #(.DEPTH(1), .INIT(INIT[0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(T), .L(L), .E(E), .Q(Q));
end
// For variable length, if just 1 over a convenient value, then bump up one more
else if (DEPTH < 129 && ~&_TECHMAP_CONSTMSK_L_)
\$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
else begin
localparam depth0 = 128;
localparam num_srl128 = DEPTH / depth0;
localparam depthN = DEPTH % depth0;
wire [num_srl128 + (depthN > 0 ? 1 : 0) - 1:0] T;
wire [num_srl128 + (depthN > 0 ? 1 : 0) :0] S;
assign S[0] = D;
genvar i;
for (i = 0; i < num_srl128; i++)
\$__XILINX_SHREG_ #(.DEPTH(depth0), .INIT(INIT[DEPTH-1-i*depth0-:depth0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(S[i]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[i]), .SO(S[i+1]));
if (depthN > 0)
\$__XILINX_SHREG_ #(.DEPTH(depthN), .INIT(INIT[depthN-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(S[num_srl128]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[num_srl128]));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T[num_srl128 + (depthN > 0 ? 1 : 0) - 1];
else
assign Q = T[L[DEPTH-1:$clog2(depth0)]];
end
endgenerate
endmodule
`ifdef MIN_MUX_INPUTS
module \$__XILINX_SHIFTX (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
function integer A_WIDTH_trimmed;
input integer start;
begin
A_WIDTH_trimmed = start;
while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx)
A_WIDTH_trimmed = A_WIDTH_trimmed - 1;
end
endfunction
generate
genvar i, j;
// Bit-blast
if (Y_WIDTH > 1) begin
for (i = 0; i < Y_WIDTH; i++)
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
end
// If the LSB of B is constant zero (and Y_WIDTH is 1) then
// we can optimise by removing every other entry from A
// and popping the constant zero from B
else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
wire [(A_WIDTH+1)/2-1:0] A_i;
for (i = 0; i < (A_WIDTH+1)/2; i++)
assign A_i[i] = A[i*2];
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
end
// Trim off any leading 1'bx -es in A
else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin
localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1);
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y));
end
else if (A_WIDTH < `MIN_MUX_INPUTS) begin
wire _TECHMAP_FAIL_ = 1;
end
else if (A_WIDTH == 2) begin
MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y));
end
else if (A_WIDTH <= 4) begin
wire [4-1:0] Ax;
if (A_WIDTH == 4)
assign Ax = A;
else
// Rather than extend with 1'bx which gets flattened to 1'b0
// causing the "don't care" status to get lost, extend with
// the same driver of F7B.I0 so that we can optimise F7B away
// later
assign Ax = {A[1], A};
\$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y));
end
// Note that the following decompositions are 'backwards' in that
// the LSBs are placed on the hard resources, and the soft resources
// are used for MSBs.
// This has the effect of more effectively utilising the hard mux;
// take for example a 5:1 multiplexer, currently this would map as:
//
// A[0] \___ __ A[0] \__ __
// A[4] / \| \ whereas the more A[1] / \| \
// A[1] _____| | obvious mapping A[2] \___| |
// A[2] _____| |-- of MSBs to hard A[3] / | |__
// A[3]______| | resources would A[4] ____| |
// |__/ lead to: 1'bx ____| |
// || |__/
// || ||
// B[1:0] B[1:2]
//
// Expectation would be that the 'forward' mapping (right) is more
// area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers
// on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs)
// but that the 'backwards' mapping (left) is more delay efficient
// since smaller LUTs are faster than wider ones.
else if (A_WIDTH <= 8) begin
wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A};
wire T0 = B[2] ? Ax[4] : Ax[0];
wire T1 = B[2] ? Ax[5] : Ax[1];
wire T2 = B[2] ? Ax[6] : Ax[2];
wire T3 = B[2] ? Ax[7] : Ax[3];
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
end
else if (A_WIDTH <= 16) begin
wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A};
wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4]
: B[3] ? Ax[ 8] : Ax[0];
wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5]
: B[3] ? Ax[ 9] : Ax[1];
wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6]
: B[3] ? Ax[10] : Ax[2];
wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7]
: B[3] ? Ax[11] : Ax[3];
\$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
end
else begin
localparam num_mux16 = (A_WIDTH+15) / 16;
localparam clog2_num_mux16 = $clog2(num_mux16);
wire [num_mux16-1:0] T;
wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A};
for (i = 0; i < num_mux16; i++)
\$__XILINX_SHIFTX #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(16),
.B_WIDTH(4),
.Y_WIDTH(Y_WIDTH)
) fpga_mux (
.A(Ax[i*16+:16]),
.B(B[3:0]),
.Y(T[i])
);
\$__XILINX_SHIFTX #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(num_mux16),
.B_WIDTH(clog2_num_mux16),
.Y_WIDTH(Y_WIDTH)
) _TECHMAP_REPLACE_ (
.A(T),
.B(B[B_WIDTH-1-:clog2_num_mux16]),
.Y(Y));
end
endgenerate
endmodule
(* techmap_celltype = "$__XILINX_SHIFTX" *)
module _90__XILINX_SHIFTX (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
endmodule
module \$_MUX_ (A, B, S, Y);
input A, B, S;
output Y;
generate
if (`MIN_MUX_INPUTS == 2)
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y));
else
wire _TECHMAP_FAIL_ = 1;
endgenerate
endmodule
module \$_MUX4_ (A, B, C, D, S, T, Y);
input A, B, C, D, S, T;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y));
endmodule
module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y);
input A, B, C, D, E, F, G, H, S, T, U;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y));
endmodule
module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y);
input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y));
endmodule
`endif
module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1);
output O;
input I0, I1, I2, I3, S0, S1;
wire T0, T1;
parameter _TECHMAP_BITS_CONNMAP_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0;
parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0;
parameter _TECHMAP_CONSTMSK_S0_ = 0;
parameter _TECHMAP_CONSTVAL_S0_ = 0;
parameter _TECHMAP_CONSTMSK_S1_ = 0;
parameter _TECHMAP_CONSTVAL_S1_ = 0;
if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
assign T0 = I1;
else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_)
assign T0 = I0;
else
MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0));
if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
assign T1 = I3;
else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)
assign T1 = I2;
else
MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1));
if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1)
assign O = T1;
else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_))
assign O = T0;
else
MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O));
endmodule
|