aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/abc9_map.v
blob: 53d9a3c9a2ece76fd8a74a7e2a3f26ac0ffc6ae9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *                2019  Eddie Hung    <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// The following techmapping rules are intended to be run (with -max_iter 1)
//   before invoking the `abc9` pass in order to transform the design into
//   a format that it understands.

`ifdef DFF_MODE
// For example, (complex) flip-flops are expected to be described as an
//   combinatorial box (containing all control logic such as clock enable
//   or synchronous resets) followed by a basic D-Q flop.
// Yosys will automatically analyse the simulation model (described in
//   cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
//   order to extract the combinatorial control logic left behind.
//   Specifically, a simulation model similar to the one below:
//
//                ++===================================++
//                ||                        Sim model  ||
//                ||      /\/\/\/\                     ||
//            D -->>-----<        >     +------+       ||
//            R -->>-----<  Comb. >     |$_DFF_|       ||
//           CE -->>-----<  logic >-----| [NP]_|---+---->>-- Q
//                ||  +--<        >     +------+   |   ||
//                ||  |   \/\/\/\/                 |   ||
//                ||  |                            |   ||
//                ||  +----------------------------+   ||
//                ||                                   ||
//                ++===================================++
//
//   is transformed into:
//
//                ++==================++
//                ||         Comb box ||
//                ||                  ||
//                ||      /\/\/\/\    ||
//           D  -->>-----<        >   ||
//           R  -->>-----<  Comb. >   ||        +-----------+
//          CE  -->>-----<  logic >--->>-- $Q --|$__ABC9_FF_|--+-->> Q
//   abc9_ff.Q +-->>-----<        >   ||        +-----------+  |
//             |  ||      \/\/\/\/    ||                       |
//             |  ||                  ||                       |
//             |  ++==================++                       |
//             |                                               |
//             +-----------------------------------------------+
//
// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
//     the connectivity of its basic D-Q flop
// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
//     capture asynchronous behaviour
// (c) a special abc9_ff.clock wire to capture its clock domain and polarity
//     (indicated to `abc9' so that it only performs sequential synthesis
//     (with reachability analysis) correctly on one domain at a time)
// (d) an (* abc9_init *) attribute on the $__ABC9_FF_ cell capturing its
//     initial state
//     NOTE: in order to perform sequential synthesis, `abc9' requires that
//     the initial value of all flops be zero
// (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback
//     into the (combinatorial) FD* cell to facilitate clock-enable behaviour

module FDRE (output Q, (* techmap_autopurge *) input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_R_INVERTED = 1'b0;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDSE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_S_INVERTED(IS_R_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
    );
  end
  else begin
    assign Q = QQ;
    FDRE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_R_INVERTED(IS_R_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
    );
  end
  endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDRE_1 (output Q, (* techmap_autopurge *) input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDSE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
    );
  end
  else begin
    assign Q = QQ;
    FDRE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
    );
  end
  endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule

module FDSE (output Q, (* techmap_autopurge *) input C, CE, D, S);
  parameter [0:0] INIT = 1'b1;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_S_INVERTED = 1'b0;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDRE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_R_INVERTED(IS_S_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
    );
  end
  else begin
    assign Q = QQ;
    FDSE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_S_INVERTED(IS_S_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
    );
  end endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDSE_1 (output Q, (* techmap_autopurge *) input C, CE, D, S);
  parameter [0:0] INIT = 1'b1;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDRE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
    );
  end
  else begin
    assign Q = QQ;
    FDSE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
    );
  end endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule

module FDCE (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDPE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_PRE_INVERTED(IS_CLR_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
                                        // ^^^ Note that async
                                        //     control is not directly
                                        //     supported by abc9 but its
                                        //     behaviour is captured by
                                        //     $__ABC9_ASYNC1 below
    );
    // Since this is an async flop, async behaviour is dealt with here
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDCE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_CLR_INVERTED(IS_CLR_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
                                       // ^^^ Note that async
                                       //     control is not directly
                                       //     supported by abc9 but its
                                       //     behaviour is captured by
                                       //     $__ABC9_ASYNC0 below
    );
    // Since this is an async flop, async behaviour is dealt with here
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
  end endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDCE_1 (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDPE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
                                        // ^^^ Note that async
                                        //     control is not directly
                                        //     supported by abc9 but its
                                        //     behaviour is captured by
                                        //     $__ABC9_ASYNC1 below
    );
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDCE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
                                       // ^^^ Note that async
                                       //     control is not directly
                                       //     supported by abc9 but its
                                       //     behaviour is captured by
                                       //     $__ABC9_ASYNC0 below
    );
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR), .Y(QQ));
  end endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule

module FDPE (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b1;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDCE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_CLR_INVERTED(IS_PRE_INVERTED),
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
                                        // ^^^ Note that async
                                        //     control is not directly
                                        //     supported by abc9 but its
                                        //     behaviour is captured by
                                        //     $__ABC9_ASYNC0 below
    );
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDPE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_PRE_INVERTED(IS_PRE_INVERTED),
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
                                       // ^^^ Note that async
                                       //     control is not directly
                                       //     supported by abc9 but its
                                       //     behaviour is captured by
                                       //     $__ABC9_ASYNC1 below
    );
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
  end endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDPE_1 (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b1;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDCE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
                                        // ^^^ Note that async
                                        //     control is not directly
                                        //     supported by abc9 but its
                                        //     behaviour is captured by
                                        //     $__ABC9_ASYNC0 below
    );
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDPE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
                                       // ^^^ Note that async
                                       //     control is not directly
                                       //     supported by abc9 but its
                                       //     behaviour is captured by
                                       //     $__ABC9_ASYNC1 below
    );
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE), .Y(QQ));
  end endgenerate
  (* abc9_init = 1'b0 *)
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
`endif

// Attach a (combinatorial) black-box onto the output
//   of thes LUTRAM primitives to capture their
//   asynchronous read behaviour
module RAM32X1D (
  output DPO, SPO,
  (* techmap_autopurge *) input  D,
  (* techmap_autopurge *) input  WCLK,
  (* techmap_autopurge *) input  WE,
  (* techmap_autopurge *) input  A0, A1, A2, A3, A4,
  (* techmap_autopurge *) input  DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
);
  parameter INIT = 32'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire $DPO, $SPO;
  RAM32X1D #(
    .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DPO($DPO), .SPO($SPO),
    .D(D), .WCLK(WCLK), .WE(WE),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
    .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
  );
  $__ABC9_RAM6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
  $__ABC9_RAM6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule

module RAM64X1D (
  output DPO, SPO,
  (* techmap_autopurge *) input  D,
  (* techmap_autopurge *) input  WCLK,
  (* techmap_autopurge *) input  WE,
  (* techmap_autopurge *) input  A0, A1, A2, A3, A4, A5,
  (* techmap_autopurge *) input  DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
);
  parameter INIT = 64'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire $DPO, $SPO;
  RAM64X1D #(
    .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DPO($DPO), .SPO($SPO),
    .D(D), .WCLK(WCLK), .WE(WE),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
    .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
  );
  $__ABC9_RAM6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
  $__ABC9_RAM6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule

module RAM128X1D (
  output       DPO, SPO,
  (* techmap_autopurge *) input        D,
  (* techmap_autopurge *) input        WCLK,
  (* techmap_autopurge *) input        WE,
  (* techmap_autopurge *) input  [6:0] A, DPRA
);
  parameter INIT = 128'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire $DPO, $SPO;
  RAM128X1D #(
    .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DPO($DPO), .SPO($SPO),
    .D(D), .WCLK(WCLK), .WE(WE),
    .A(A),
    .DPRA(DPRA)
  );
  $__ABC9_RAM7 spo (.A($SPO), .S(A), .Y(SPO));
  $__ABC9_RAM7 dpo (.A($DPO), .S(DPRA), .Y(DPO));
endmodule

module RAM32M (
  output [1:0] DOA,
  output [1:0] DOB,
  output [1:0] DOC,
  output [1:0] DOD,
  (* techmap_autopurge *) input [4:0] ADDRA,
  (* techmap_autopurge *) input [4:0] ADDRB,
  (* techmap_autopurge *) input [4:0] ADDRC,
  (* techmap_autopurge *) input [4:0] ADDRD,
  (* techmap_autopurge *) input [1:0] DIA,
  (* techmap_autopurge *) input [1:0] DIB,
  (* techmap_autopurge *) input [1:0] DIC,
  (* techmap_autopurge *) input [1:0] DID,
  (* techmap_autopurge *) input WCLK,
  (* techmap_autopurge *) input WE
);
  parameter [63:0] INIT_A = 64'h0000000000000000;
  parameter [63:0] INIT_B = 64'h0000000000000000;
  parameter [63:0] INIT_C = 64'h0000000000000000;
  parameter [63:0] INIT_D = 64'h0000000000000000;
  parameter [0:0] IS_WCLK_INVERTED = 1'b0;
  wire [1:0] $DOA, $DOB, $DOC, $DOD;
  RAM32M #(
    .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
    .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
    .WCLK(WCLK), .WE(WE),
    .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
    .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
  );
  $__ABC9_RAM6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
  $__ABC9_RAM6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
  $__ABC9_RAM6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
  $__ABC9_RAM6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
  $__ABC9_RAM6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
  $__ABC9_RAM6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
  $__ABC9_RAM6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
  $__ABC9_RAM6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
endmodule

module RAM64M (
  output DOA,
  output DOB,
  output DOC,
  output DOD,
  (* techmap_autopurge *) input [5:0] ADDRA,
  (* techmap_autopurge *) input [5:0] ADDRB,
  (* techmap_autopurge *) input [5:0] ADDRC,
  (* techmap_autopurge *) input [5:0] ADDRD,
  (* techmap_autopurge *) input DIA,
  (* techmap_autopurge *) input DIB,
  (* techmap_autopurge *) input DIC,
  (* techmap_autopurge *) input DID,
  (* techmap_autopurge *) input WCLK,
  (* techmap_autopurge *) input WE
);
  parameter [63:0] INIT_A = 64'h0000000000000000;
  parameter [63:0] INIT_B = 64'h0000000000000000;
  parameter [63:0] INIT_C = 64'h0000000000000000;
  parameter [63:0] INIT_D = 64'h0000000000000000;
  parameter [0:0] IS_WCLK_INVERTED = 1'b0;
  wire $DOA, $DOB, $DOC, $DOD;
  RAM64M #(
    .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
    .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
    .WCLK(WCLK), .WE(WE),
    .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
    .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
  );
  $__ABC9_RAM6 doa (.A($DOA), .S(ADDRA), .Y(DOA));
  $__ABC9_RAM6 dob (.A($DOB), .S(ADDRB), .Y(DOB));
  $__ABC9_RAM6 doc (.A($DOC), .S(ADDRC), .Y(DOC));
  $__ABC9_RAM6 dod (.A($DOD), .S(ADDRD), .Y(DOD));
endmodule

module SRL16 (
  output Q,
  (* techmap_autopurge *) input A0, A1, A2, A3, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  wire $Q;
  SRL16 #(
    .INIT(INIT),
  ) _TECHMAP_REPLACE_ (
    .Q($Q),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CLK(CLK), .D(D)
  );
  $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule

module SRL16E (
  output Q,
  (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;
  wire $Q;
  SRL16E #(
    .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .Q($Q),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
  );
  $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule

module SRLC16 (
  output Q, Q15,
  (* techmap_autopurge *) input A0, A1, A2, A3, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  wire $Q;
  SRLC16 #(
    .INIT(INIT),
  ) _TECHMAP_REPLACE_ (
    .Q($Q), .Q(Q15),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CLK(CLK), .D(D)
  );
  $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule

module SRLC16E (
  output Q, Q15,
  (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;
  wire $Q;
  SRLC16E #(
    .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .Q($Q), .Q(Q15),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
  );
  $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule

module SRLC32E (
  output Q,
  output Q31,
  (* techmap_autopurge *) input [4:0] A,
  (* techmap_autopurge *) input CE, CLK, D
);
  parameter [31:0] INIT = 32'h00000000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;
  wire $Q;
  SRLC32E #(
    .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .Q($Q), .Q31(Q31),
    .A(A), .CE(CE), .CLK(CLK), .D(D)
  );
  $__ABC9_RAM6 q (.A($Q), .S({1'b1, A}), .Y(Q));
endmodule

module DSP48E1 (
    (* techmap_autopurge *) output [29:0] ACOUT,
    (* techmap_autopurge *) output [17:0] BCOUT,
    (* techmap_autopurge *) output reg CARRYCASCOUT,
    (* techmap_autopurge *) output reg [3:0] CARRYOUT,
    (* techmap_autopurge *) output reg MULTSIGNOUT,
    (* techmap_autopurge *) output OVERFLOW,
    (* techmap_autopurge *) output reg signed [47:0] P,
    (* techmap_autopurge *) output PATTERNBDETECT,
    (* techmap_autopurge *) output PATTERNDETECT,
    (* techmap_autopurge *) output [47:0] PCOUT,
    (* techmap_autopurge *) output UNDERFLOW,
    (* techmap_autopurge *) input signed [29:0] A,
    (* techmap_autopurge *) input [29:0] ACIN,
    (* techmap_autopurge *) input [3:0] ALUMODE,
    (* techmap_autopurge *) input signed [17:0] B,
    (* techmap_autopurge *) input [17:0] BCIN,
    (* techmap_autopurge *) input [47:0] C,
    (* techmap_autopurge *) input CARRYCASCIN,
    (* techmap_autopurge *) input CARRYIN,
    (* techmap_autopurge *) input [2:0] CARRYINSEL,
    (* techmap_autopurge *) input CEA1,
    (* techmap_autopurge *) input CEA2,
    (* techmap_autopurge *) input CEAD,
    (* techmap_autopurge *) input CEALUMODE,
    (* techmap_autopurge *) input CEB1,
    (* techmap_autopurge *) input CEB2,
    (* techmap_autopurge *) input CEC,
    (* techmap_autopurge *) input CECARRYIN,
    (* techmap_autopurge *) input CECTRL,
    (* techmap_autopurge *) input CED,
    (* techmap_autopurge *) input CEINMODE,
    (* techmap_autopurge *) input CEM,
    (* techmap_autopurge *) input CEP,
    (* techmap_autopurge *) input CLK,
    (* techmap_autopurge *) input [24:0] D,
    (* techmap_autopurge *) input [4:0] INMODE,
    (* techmap_autopurge *) input MULTSIGNIN,
    (* techmap_autopurge *) input [6:0] OPMODE,
    (* techmap_autopurge *) input [47:0] PCIN,
    (* techmap_autopurge *) input RSTA,
    (* techmap_autopurge *) input RSTALLCARRYIN,
    (* techmap_autopurge *) input RSTALUMODE,
    (* techmap_autopurge *) input RSTB,
    (* techmap_autopurge *) input RSTC,
    (* techmap_autopurge *) input RSTCTRL,
    (* techmap_autopurge *) input RSTD,
    (* techmap_autopurge *) input RSTINMODE,
    (* techmap_autopurge *) input RSTM,
    (* techmap_autopurge *) input RSTP
);
    parameter integer ACASCREG = 1;
    parameter integer ADREG = 1;
    parameter integer ALUMODEREG = 1;
    parameter integer AREG = 1;
    parameter AUTORESET_PATDET = "NO_RESET";
    parameter A_INPUT = "DIRECT";
    parameter integer BCASCREG = 1;
    parameter integer BREG = 1;
    parameter B_INPUT = "DIRECT";
    parameter integer CARRYINREG = 1;
    parameter integer CARRYINSELREG = 1;
    parameter integer CREG = 1;
    parameter integer DREG = 1;
    parameter integer INMODEREG = 1;
    parameter integer MREG = 1;
    parameter integer OPMODEREG = 1;
    parameter integer PREG = 1;
    parameter SEL_MASK = "MASK";
    parameter SEL_PATTERN = "PATTERN";
    parameter USE_DPORT = "FALSE";
    parameter USE_MULT = "MULTIPLY";
    parameter USE_PATTERN_DETECT = "NO_PATDET";
    parameter USE_SIMD = "ONE48";
    parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
    parameter [47:0] PATTERN = 48'h000000000000;
    parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
    parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
    parameter [0:0] IS_CLK_INVERTED = 1'b0;
    parameter [4:0] IS_INMODE_INVERTED = 5'b0;
    parameter [6:0] IS_OPMODE_INVERTED = 7'b0;

    wire [47:0] $P, $PCOUT;

    DSP48E1 #(
        .ACASCREG(ACASCREG),
        .ADREG(ADREG),
        .ALUMODEREG(ALUMODEREG),
        .AREG(AREG),
        .AUTORESET_PATDET(AUTORESET_PATDET),
        .A_INPUT(A_INPUT),
        .BCASCREG(BCASCREG),
        .BREG(BREG),
        .B_INPUT(B_INPUT),
        .CARRYINREG(CARRYINREG),
        .CARRYINSELREG(CARRYINSELREG),
        .CREG(CREG),
        .DREG(DREG),
        .INMODEREG(INMODEREG),
        .MREG(MREG),
        .OPMODEREG(OPMODEREG),
        .PREG(PREG),
        .SEL_MASK(SEL_MASK),
        .SEL_PATTERN(SEL_PATTERN),
        .USE_DPORT(USE_DPORT),
        .USE_MULT(USE_MULT),
        .USE_PATTERN_DETECT(USE_PATTERN_DETECT),
        .USE_SIMD(USE_SIMD),
        .MASK(MASK),
        .PATTERN(PATTERN),
        .IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
        .IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
        .IS_CLK_INVERTED(IS_CLK_INVERTED),
        .IS_INMODE_INVERTED(IS_INMODE_INVERTED),
        .IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
    ) _TECHMAP_REPLACE_ (
        .ACOUT(ACOUT),
        .BCOUT(BCOUT),
        .CARRYCASCOUT(CARRYCASCOUT),
        .CARRYOUT(CARRYOUT),
        .MULTSIGNOUT(MULTSIGNOUT),
        .OVERFLOW(OVERFLOW),
        .P($P),
        .PATTERNBDETECT(PATTERNBDETECT),
        .PATTERNDETECT(PATTERNDETECT),
        .PCOUT($PCOUT),
        .UNDERFLOW(UNDERFLOW),
        .A(A),
        .ACIN(ACIN),
        .ALUMODE(ALUMODE),
        .B(B),
        .BCIN(BCIN),
        .C(C),
        .CARRYCASCIN(CARRYCASCIN),
        .CARRYIN(CARRYIN),
        .CARRYINSEL(CARRYINSEL),
        .CEA1(CEA1),
        .CEA2(CEA2),
        .CEAD(CEAD),
        .CEALUMODE(CEALUMODE),
        .CEB1(CEB1),
        .CEB2(CEB2),
        .CEC(CEC),
        .CECARRYIN(CECARRYIN),
        .CECTRL(CECTRL),
        .CED(CED),
        .CEINMODE(CEINMODE),
        .CEM(CEM),
        .CEP(CEP),
        .CLK(CLK),
        .D(D),
        .INMODE(INMODE),
        .MULTSIGNIN(MULTSIGNIN),
        .OPMODE(OPMODE),
        .PCIN(PCIN),
        .RSTA(RSTA),
        .RSTALLCARRYIN(RSTALLCARRYIN),
        .RSTALUMODE(RSTALUMODE),
        .RSTB(RSTB),
        .RSTC(RSTC),
        .RSTCTRL(RSTCTRL),
        .RSTD(RSTD),
        .RSTINMODE(RSTINMODE),
        .RSTM(RSTM),
        .RSTP(RSTP)
    );

    generate
        wire [29:0] $A;
        wire [17:0] $B;
        wire [47:0] $C;
        wire [24:0] $D;

        if (PREG == 0) begin
            if (MREG == 0 && AREG == 0) assign $A = A;
            else assign $A = 30'bx;
            if (MREG == 0 && BREG == 0) assign $B = B;
            else  assign $B = 18'bx;
            if (MREG == 0 && DREG == 0) assign $D = D;
            else assign $D = 25'bx;

            if (CREG == 0) assign $C = C;
            else assign $C = 48'bx;
        end
        else begin
            assign $A = 30'bx, $B = 18'bx, $C = 48'bx, $D = 25'bx;
        end

        if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE")
            $__ABC9_DSP48E1_MULT dsp_comb(.$A($A), .$B($B), .$C($C), .$D($D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT));
        else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE")
            $__ABC9_DSP48E1_MULT_DPORT dsp_comb(.$A($A), .$B($B), .$C($C), .$D($D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT));
        else if (USE_MULT == "NONE" && USE_DPORT == "FALSE")
            $__ABC9_DSP48E1 dsp_comb(.$A($A), .$B($B), .$C($C), .$D($D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT));
        else
            $error("Invalid DSP48E1 configuration");
    endgenerate
endmodule