aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/sf2/synth_sf2.cc
blob: 0924df7a67780d78f1d96ec50319302a43df78c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/rtlil.h"
#include "kernel/log.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct SynthSf2Pass : public ScriptPass
{
	SynthSf2Pass() : ScriptPass("synth_sf2", "synthesis for SmartFusion2 and IGLOO2 FPGAs") { }

	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    synth_sf2 [options]\n");
		log("\n");
		log("This command runs synthesis for SmartFusion2 and IGLOO2 FPGAs.\n");
		log("\n");
		log("    -top <module>\n");
		log("        use the specified module as top module\n");
		log("\n");
		log("    -edif <file>\n");
		log("        write the design to the specified EDIF file. writing of an output file\n");
		log("        is omitted if this parameter is not specified.\n");
		log("\n");
		log("    -vlog <file>\n");
		log("        write the design to the specified Verilog file. writing of an output file\n");
		log("        is omitted if this parameter is not specified.\n");
		log("\n");
		log("    -json <file>\n");
		log("        write the design to the specified JSON file. writing of an output file\n");
		log("        is omitted if this parameter is not specified.\n");
		log("\n");
		log("    -run <from_label>:<to_label>\n");
		log("        only run the commands between the labels (see below). an empty\n");
		log("        from label is synonymous to 'begin', and empty to label is\n");
		log("        synonymous to the end of the command list.\n");
		log("\n");
		log("    -noflatten\n");
		log("        do not flatten design before synthesis\n");
		log("\n");
		log("    -noiobs\n");
		log("        run synthesis in \"block mode\", i.e. do not insert IO buffers\n");
		log("\n");
		log("    -clkbuf\n");
		log("        insert direct PAD->global_net buffers\n");
		log("\n");
		log("    -retime\n");
		log("        run 'abc' with -dff option\n");
		log("\n");
		log("\n");
		log("The following commands are executed by this synthesis command:\n");
		help_script();
		log("\n");
	}

	string top_opt, edif_file, vlog_file, json_file;
	bool flatten, retime, iobs, clkbuf;

	void clear_flags() YS_OVERRIDE
	{
		top_opt = "-auto-top";
		edif_file = "";
		vlog_file = "";
		json_file = "";
		flatten = true;
		retime = false;
		iobs = true;
		clkbuf = false;
	}

	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		string run_from, run_to;
		clear_flags();

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-top" && argidx+1 < args.size()) {
				top_opt = "-top " + args[++argidx];
				continue;
			}
			if (args[argidx] == "-edif" && argidx+1 < args.size()) {
				edif_file = args[++argidx];
				continue;
			}
			if (args[argidx] == "-vlog" && argidx+1 < args.size()) {
				vlog_file = args[++argidx];
				continue;
			}
			if (args[argidx] == "-json" && argidx+1 < args.size()) {
				json_file = args[++argidx];
				continue;
			}
			if (args[argidx] == "-run" && argidx+1 < args.size()) {
				size_t pos = args[argidx+1].find(':');
				if (pos == std::string::npos)
					break;
				run_from = args[++argidx].substr(0, pos);
				run_to = args[argidx].substr(pos+1);
				continue;
			}
			if (args[argidx] == "-noflatten") {
				flatten = false;
				continue;
			}
			if (args[argidx] == "-retime") {
				retime = true;
				continue;
			}
			if (args[argidx] == "-noiobs") {
				iobs = false;
				continue;
			}
			if (args[argidx] == "-clkbuf") {
				clkbuf = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		if (!design->full_selection())
			log_cmd_error("This command only operates on fully selected designs!\n");

		log_header(design, "Executing SYNTH_SF2 pass.\n");
		log_push();

		run_script(design, run_from, run_to);

		log_pop();
	}

	void script() YS_OVERRIDE
	{
		if (check_label("begin"))
		{
			run("read_verilog -lib +/sf2/cells_sim.v");
			run(stringf("hierarchy -check %s", help_mode ? "-top <top>" : top_opt.c_str()));
		}

		if (flatten && check_label("flatten", "(unless -noflatten)"))
		{
			run("proc");
			run("flatten");
			run("tribuf -logic");
			run("deminout");
		}

		if (check_label("coarse"))
		{
			run("synth -run coarse");
		}

		if (check_label("fine"))
		{
			run("opt -fast -mux_undef -undriven -fine");
			run("memory_map");
			run("opt -undriven -fine");
			run("techmap -map +/techmap.v -map +/sf2/arith_map.v");
			if (retime || help_mode)
				run("abc -dff", "(only if -retime)");
		}

		if (check_label("map_ffs"))
		{
			run("dffsr2dff");
			run("techmap -D NO_LUT -map +/sf2/cells_map.v");
			run("opt_expr -mux_undef");
			run("simplemap");
			// run("sf2_ffinit");
			// run("sf2_ffssr");
			// run("sf2_opt -full");
		}

		if (check_label("map_luts"))
		{
			run("abc -lut 4");
			run("clean");
		}

		if (check_label("map_cells"))
		{
			run("techmap -map +/sf2/cells_map.v");
			run("clean");
		}

		if (check_label("map_iobs"))
		{
			if (help_mode)
				run("sf2_iobs [-clkbuf]", "(unless -noiobs)");
			else if (iobs)
				run(clkbuf ? "sf2_iobs -clkbuf" : "sf2_iobs");
			run("clean");
		}

		if (check_label("check"))
		{
			run("hierarchy -check");
			run("stat");
			run("check -noinit");
		}

		if (check_label("edif"))
		{
			if (!edif_file.empty() || help_mode)
				run(stringf("write_edif -gndvccy %s", help_mode ? "<file-name>" : edif_file.c_str()));
		}

		if (check_label("vlog"))
		{
			if (!vlog_file.empty() || help_mode)
				run(stringf("write_verilog %s", help_mode ? "<file-name>" : vlog_file.c_str()));
		}

		if (check_label("json"))
		{
			if (!json_file.empty() || help_mode)
				run(stringf("write_json %s", help_mode ? "<file-name>" : json_file.c_str()));
		}
	}
} SynthSf2Pass;

PRIVATE_NAMESPACE_END
lass="n">code) { unregister_code(code); if (IS_MOD(code) || code == KC_NO) { do_code16(code, unregister_mods); } else { do_code16(code, unregister_weak_mods); } } void tap_code16(uint16_t code) { register_code16(code); #if TAP_CODE_DELAY > 0 wait_ms(TAP_CODE_DELAY); #endif unregister_code16(code); } __attribute__((weak)) bool process_action_kb(keyrecord_t *record) { return true; } __attribute__((weak)) bool process_record_kb(uint16_t keycode, keyrecord_t *record) { return process_record_user(keycode, record); } __attribute__((weak)) bool process_record_user(uint16_t keycode, keyrecord_t *record) { return true; } void reset_keyboard(void) { clear_keyboard(); #if defined(MIDI_ENABLE) && defined(MIDI_BASIC) process_midi_all_notes_off(); #endif #ifdef AUDIO_ENABLE # ifndef NO_MUSIC_MODE music_all_notes_off(); # endif uint16_t timer_start = timer_read(); PLAY_SONG(goodbye_song); shutdown_user(); while (timer_elapsed(timer_start) < 250) wait_ms(1); stop_all_notes(); #else shutdown_user(); wait_ms(250); #endif #ifdef HAPTIC_ENABLE haptic_shutdown(); #endif // this is also done later in bootloader.c - not sure if it's neccesary here #ifdef BOOTLOADER_CATERINA *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific #endif bootloader_jump(); } /* Convert record into usable keycode via the contained event. */ uint16_t get_record_keycode(keyrecord_t *record) { return get_event_keycode(record->event); } /* Convert event into usable keycode. Checks the layer cache to ensure that it * retains the correct keycode after a layer change, if the key is still pressed. */ uint16_t get_event_keycode(keyevent_t event) { #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE) /* TODO: Use store_or_get_action() or a similar function. */ if (!disable_action_cache) { uint8_t layer; if (event.pressed) { layer = layer_switch_get_layer(event.key); update_source_layers_cache(event.key, layer); } else { layer = read_source_layers_cache(event.key); } return keymap_key_to_keycode(layer, event.key); } else #endif return keymap_key_to_keycode(layer_switch_get_layer(event.key), event.key); } /* Main keycode processing function. Hands off handling to other functions, * then processes internal Quantum keycodes, then processes ACTIONs. */ bool process_record_quantum(keyrecord_t *record) { uint16_t keycode = get_record_keycode(record); // This is how you use actions here // if (keycode == KC_LEAD) { // action_t action; // action.code = ACTION_DEFAULT_LAYER_SET(0); // process_action(record, action); // return false; // } #ifdef VELOCIKEY_ENABLE if (velocikey_enabled() && record->event.pressed) { velocikey_accelerate(); } #endif #ifdef TAP_DANCE_ENABLE preprocess_tap_dance(keycode, record); #endif if (!( #if defined(KEY_LOCK_ENABLE) // Must run first to be able to mask key_up events. process_key_lock(&keycode, record) && #endif #if defined(DYNAMIC_MACRO_ENABLE) && !defined(DYNAMIC_MACRO_USER_CALL) // Must run asap to ensure all keypresses are recorded. process_dynamic_macro(keycode, record) && #endif #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY) process_clicky(keycode, record) && #endif // AUDIO_CLICKY #ifdef HAPTIC_ENABLE process_haptic(keycode, record) && #endif // HAPTIC_ENABLE #if defined(RGB_MATRIX_ENABLE) process_rgb_matrix(keycode, record) && #endif process_record_kb(keycode, record) && #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED) process_midi(keycode, record) && #endif #ifdef AUDIO_ENABLE process_audio(keycode, record) && #endif #ifdef STENO_ENABLE process_steno(keycode, record) && #endif #if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE) process_music(keycode, record) && #endif #ifdef TAP_DANCE_ENABLE process_tap_dance(keycode, record) && #endif #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE) process_unicode_common(keycode, record) && #endif #ifdef LEADER_ENABLE process_leader(keycode, record) && #endif #ifdef COMBO_ENABLE process_combo(keycode, record) && #endif #ifdef PRINTING_ENABLE process_printer(keycode, record) && #endif #ifdef AUTO_SHIFT_ENABLE process_auto_shift(keycode, record) && #endif #ifdef TERMINAL_ENABLE process_terminal(keycode, record) && #endif #ifdef SPACE_CADET_ENABLE process_space_cadet(keycode, record) && #endif #ifdef MAGIC_KEYCODE_ENABLE process_magic(keycode, record) && #endif true)) { return false; } if (record->event.pressed) { switch (keycode) { case RESET: reset_keyboard(); return false; #ifndef NO_DEBUG case DEBUG: debug_enable ^= 1; if (debug_enable) { print("DEBUG: enabled.\n"); } else { print("DEBUG: disabled.\n"); } #endif return false; case EEPROM_RESET: eeconfig_init(); return false; #ifdef FAUXCLICKY_ENABLE case FC_TOG: FAUXCLICKY_TOGGLE; return false; case FC_ON: FAUXCLICKY_ON; return false; case FC_OFF: FAUXCLICKY_OFF; return false; #endif #ifdef VELOCIKEY_ENABLE case VLK_TOG: velocikey_toggle(); return false; #endif #ifdef BLUETOOTH_ENABLE case OUT_AUTO: set_output(OUTPUT_AUTO); return false; case OUT_USB: set_output(OUTPUT_USB); return false; case OUT_BT: set_output(OUTPUT_BLUETOOTH); return false; #endif #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING) case BL_BRTG: backlight_toggle_breathing(); return false; #endif } } #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE) # ifndef SPLIT_KEYBOARD if (record->event.pressed) { # else // Split keyboards need to trigger on key-up for edge-case issue if (!record->event.pressed) { # endif uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)); switch (keycode) { case RGB_TOG: rgblight_toggle(); return false; case RGB_MODE_FORWARD: if (shifted) { rgblight_step_reverse(); } else { rgblight_step(); } return false; case RGB_MODE_REVERSE: if (shifted) { rgblight_step(); } else { rgblight_step_reverse(); } return false; case RGB_HUI: if (shifted) { rgblight_decrease_hue(); } else { rgblight_increase_hue(); } return false; case RGB_HUD: if (shifted) { rgblight_increase_hue(); } else { rgblight_decrease_hue(); } return false; case RGB_SAI: if (shifted) { rgblight_decrease_sat(); } else { rgblight_increase_sat(); } return false; case RGB_SAD: if (shifted) { rgblight_increase_sat(); } else { rgblight_decrease_sat(); } return false; case RGB_VAI: if (shifted) { rgblight_decrease_val(); } else { rgblight_increase_val(); } return false; case RGB_VAD: if (shifted) { rgblight_increase_val(); } else { rgblight_decrease_val(); } return false; case RGB_SPI: if (shifted) { rgblight_decrease_speed(); } else { rgblight_increase_speed(); } return false; case RGB_SPD: if (shifted) { rgblight_increase_speed(); } else { rgblight_decrease_speed(); } return false; case RGB_MODE_PLAIN: rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT); return false; case RGB_MODE_BREATHE: # ifdef RGBLIGHT_EFFECT_BREATHING if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) { rgblight_step(); } else { rgblight_mode(RGBLIGHT_MODE_BREATHING); } # endif return false; case RGB_MODE_RAINBOW: # ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) { rgblight_step(); } else { rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD); } # endif case RGB_MODE_SWIRL: # ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) { rgblight_step(); } else { rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL); } # endif return false; case RGB_MODE_SNAKE: # ifdef RGBLIGHT_EFFECT_SNAKE if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) { rgblight_step(); } else { rgblight_mode(RGBLIGHT_MODE_SNAKE); } # endif return false; case RGB_MODE_KNIGHT: # ifdef RGBLIGHT_EFFECT_KNIGHT if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) { rgblight_step(); } else { rgblight_mode(RGBLIGHT_MODE_KNIGHT); } # endif return false; case RGB_MODE_XMAS: # ifdef RGBLIGHT_EFFECT_CHRISTMAS rgblight_mode(RGBLIGHT_MODE_CHRISTMAS); # endif return false; case RGB_MODE_GRADIENT: # ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) { rgblight_step(); } else { rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT); } # endif return false; case RGB_MODE_RGBTEST: # ifdef RGBLIGHT_EFFECT_RGB_TEST rgblight_mode(RGBLIGHT_MODE_RGB_TEST); # endif return false; } } #endif // keycodes that depend on both pressed and non-pressed state switch (keycode) { case GRAVE_ESC: { /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise. * Used to ensure that the correct keycode is released if the key is released. */ static bool grave_esc_was_shifted = false; uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT) | MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))); #ifdef GRAVE_ESC_ALT_OVERRIDE // if ALT is pressed, ESC is always sent // this is handy for the cmd+opt+esc shortcut on macOS, among other things. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) { shifted = 0; } #endif #ifdef GRAVE_ESC_CTRL_OVERRIDE // if CTRL is pressed, ESC is always sent // this is handy for the ctrl+shift+esc shortcut on windows, among other things. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) { shifted = 0; } #endif #ifdef GRAVE_ESC_GUI_OVERRIDE // if GUI is pressed, ESC is always sent if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) { shifted = 0; } #endif #ifdef GRAVE_ESC_SHIFT_OVERRIDE // if SHIFT is pressed, ESC is always sent if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) { shifted = 0; } #endif if (record->event.pressed) { grave_esc_was_shifted = shifted; add_key(shifted ? KC_GRAVE : KC_ESCAPE); } else { del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE); } send_keyboard_report(); return false; } } return process_action_kb(record); } __attribute__((weak)) const bool ascii_to_shift_lut[128] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0}; __attribute__((weak)) const bool ascii_to_altgr_lut[128] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; __attribute__((weak)) const uint8_t ascii_to_keycode_lut[128] PROGMEM = {// NUL SOH STX ETX EOT ENQ ACK BEL XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, // BS TAB LF VT FF CR SO SI KC_BSPC, KC_TAB, KC_ENT, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, // DLE DC1 DC2 DC3 DC4 NAK SYN ETB XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, // CAN EM SUB ESC FS GS RS US XXXXXXX, XXXXXXX, XXXXXXX, KC_ESC, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, // ! " # $ % & ' KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT, // ( ) * + , - . / KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH, // 0 1 2 3 4 5 6 7 KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, // 8 9 : ; < = > ? KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH, // @ A B C D E F G KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G, // H I J K L M N O KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O, // P Q R S T U V W KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W, // X Y Z [ \ ] ^ _ KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS, // ` a b c d e f g KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G, // h i j k l m n o KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O, // p q r s t u v w KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W, // x y z { | } ~ DEL KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL}; void send_string(const char *str) { send_string_with_delay(str, 0); } void send_string_P(const char *str) { send_string_with_delay_P(str, 0); } void send_string_with_delay(const char *str, uint8_t interval) { while (1) { char ascii_code = *str; if (!ascii_code) break; if (ascii_code == SS_TAP_CODE) { // tap uint8_t keycode = *(++str); register_code(keycode); unregister_code(keycode); } else if (ascii_code == SS_DOWN_CODE) { // down uint8_t keycode = *(++str); register_code(keycode); } else if (ascii_code == SS_UP_CODE) { // up uint8_t keycode = *(++str); unregister_code(keycode); } else { send_char(ascii_code); } ++str; // interval { uint8_t ms = interval; while (ms--) wait_ms(1); } } } void send_string_with_delay_P(const char *str, uint8_t interval) { while (1) { char ascii_code = pgm_read_byte(str); if (!ascii_code) break; if (ascii_code == SS_TAP_CODE) { // tap uint8_t keycode = pgm_read_byte(++str); register_code(keycode); unregister_code(keycode); } else if (ascii_code == SS_DOWN_CODE) { // down uint8_t keycode = pgm_read_byte(++str); register_code(keycode); } else if (ascii_code == SS_UP_CODE) { // up uint8_t keycode = pgm_read_byte(++str); unregister_code(keycode); } else { send_char(ascii_code); } ++str; // interval { uint8_t ms = interval; while (ms--) wait_ms(1); } } } void send_char(char ascii_code) { uint8_t keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]); bool is_shifted = pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code]); bool is_altgred = pgm_read_byte(&ascii_to_altgr_lut[(uint8_t)ascii_code]); if (is_shifted) { register_code(KC_LSFT); } if (is_altgred) { register_code(KC_RALT); } tap_code(keycode); if (is_altgred) { unregister_code(KC_RALT); } if (is_shifted) { unregister_code(KC_LSFT); } } void set_single_persistent_default_layer(uint8_t default_layer) { #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS) PLAY_SONG(default_layer_songs[default_layer]); #endif eeconfig_update_default_layer(1U << default_layer); default_layer_set(1U << default_layer); } layer_state_t update_tri_layer_state(layer_state_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_t mask12 = (1UL << layer1) | (1UL << layer2); layer_state_t mask3 = 1UL << layer3; return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3); } void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3)); } void tap_random_base64(void) { #if defined(__AVR_ATmega32U4__) uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64; #else uint8_t key = rand() % 64; #endif switch (key) { case 0 ... 25: register_code(KC_LSFT); register_code(key + KC_A); unregister_code(key + KC_A); unregister_code(KC_LSFT); break; case 26 ... 51: register_code(key - 26 + KC_A); unregister_code(key - 26 + KC_A); break; case 52: register_code(KC_0); unregister_code(KC_0); break; case 53 ... 61: register_code(key - 53 + KC_1); unregister_code(key - 53 + KC_1); break; case 62: register_code(KC_LSFT); register_code(KC_EQL); unregister_code(KC_EQL); unregister_code(KC_LSFT); break; case 63: register_code(KC_SLSH); unregister_code(KC_SLSH); break; } } __attribute__((weak)) void bootmagic_lite(void) { // The lite version of TMK's bootmagic based on Wilba. // 100% less potential for accidentally making the // keyboard do stupid things. // We need multiple scans because debouncing can't be turned off. matrix_scan(); #if defined(DEBOUNCING_DELAY) && DEBOUNCING_DELAY > 0 wait_ms(DEBOUNCING_DELAY * 2); #elif defined(DEBOUNCE) && DEBOUNCE > 0 wait_ms(DEBOUNCE * 2); #else wait_ms(30); #endif matrix_scan(); // If the Esc and space bar are held down on power up, // reset the EEPROM valid state and jump to bootloader. // Assumes Esc is at [0,0]. // This isn't very generalized, but we need something that doesn't // rely on user's keymaps in firmware or EEPROM. if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) { eeconfig_disable(); // Jump to bootloader. bootloader_jump(); } } void matrix_init_quantum() { #ifdef BOOTMAGIC_LITE bootmagic_lite(); #endif if (!eeconfig_is_enabled()) { eeconfig_init(); } #ifdef BACKLIGHT_ENABLE # ifdef LED_MATRIX_ENABLE led_matrix_init(); # else backlight_init_ports(); # endif #endif #ifdef AUDIO_ENABLE audio_init(); #endif #ifdef RGB_MATRIX_ENABLE rgb_matrix_init(); #endif #ifdef ENCODER_ENABLE encoder_init(); #endif #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE) unicode_input_mode_init(); #endif #ifdef HAPTIC_ENABLE haptic_init(); #endif #ifdef OUTPUT_AUTO_ENABLE set_output(OUTPUT_AUTO); #endif #ifdef DIP_SWITCH_ENABLE dip_switch_init(); #endif matrix_init_kb(); } void matrix_scan_quantum() { #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE) matrix_scan_music(); #endif #ifdef TAP_DANCE_ENABLE matrix_scan_tap_dance(); #endif #ifdef COMBO_ENABLE matrix_scan_combo(); #endif #if defined(BACKLIGHT_ENABLE) # if defined(LED_MATRIX_ENABLE) led_matrix_task(); # elif defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS) backlight_task(); # endif #endif #ifdef RGB_MATRIX_ENABLE rgb_matrix_task(); #endif #ifdef ENCODER_ENABLE encoder_read(); #endif #ifdef HAPTIC_ENABLE haptic_task(); #endif #ifdef DIP_SWITCH_ENABLE dip_switch_read(false); #endif matrix_scan_kb(); } #ifdef HD44780_ENABLED # include "hd44780.h" #endif // Functions for spitting out values // void send_dword(uint32_t number) { // this might not actually work uint16_t word = (number >> 16); send_word(word); send_word(number & 0xFFFFUL); } void send_word(uint16_t number) { uint8_t byte = number >> 8; send_byte(byte); send_byte(number & 0xFF); } void send_byte(uint8_t number) { uint8_t nibble = number >> 4; send_nibble(nibble); send_nibble(number & 0xF); } void send_nibble(uint8_t number) { switch (number) { case 0: register_code(KC_0); unregister_code(KC_0); break; case 1 ... 9: register_code(KC_1 + (number - 1)); unregister_code(KC_1 + (number - 1)); break; case 0xA ... 0xF: register_code(KC_A + (number - 0xA)); unregister_code(KC_A + (number - 0xA)); break; } } __attribute__((weak)) uint16_t hex_to_keycode(uint8_t hex) { hex = hex & 0xF; if (hex == 0x0) { return KC_0; } else if (hex < 0xA) { return KC_1 + (hex - 0x1); } else { return KC_A + (hex - 0xA); } } void api_send_unicode(uint32_t unicode) { #ifdef API_ENABLE uint8_t chunk[4]; dword_to_bytes(unicode, chunk); MT_SEND_DATA(DT_UNICODE, chunk, 5); #endif } /** \brief Lock LED set callback - keymap/user level * * \deprecated Use led_update_user() instead. */ __attribute__((weak)) void led_set_user(uint8_t usb_led) {} /** \brief Lock LED set callback - keyboard level * * \deprecated Use led_update_kb() instead. */ __attribute__((weak)) void led_set_kb(uint8_t usb_led) { led_set_user(usb_led); } /** \brief Lock LED update callback - keymap/user level * * \return True if led_update_kb() should run its own code, false otherwise. */ __attribute__((weak)) bool led_update_user(led_t led_state) { return true; } /** \brief Lock LED update callback - keyboard level * * \return Ignored for now. */ __attribute__((weak)) bool led_update_kb(led_t led_state) { return led_update_user(led_state); } __attribute__((weak)) void led_init_ports(void) {} __attribute__((weak)) void led_set(uint8_t usb_led) { #if defined(BACKLIGHT_CAPS_LOCK) && defined(BACKLIGHT_ENABLE) // Use backlight as Caps Lock indicator uint8_t bl_toggle_lvl = 0; if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK) && !backlight_config.enable) { // Turning Caps Lock ON and backlight is disabled in config // Toggling backlight to the brightest level bl_toggle_lvl = BACKLIGHT_LEVELS; } else if (IS_LED_OFF(usb_led, USB_LED_CAPS_LOCK) && backlight_config.enable) { // Turning Caps Lock OFF and backlight is enabled in config // Toggling backlight and restoring config level bl_toggle_lvl = backlight_config.level; } // Set level without modify backlight_config to keep ability to restore state backlight_set(bl_toggle_lvl); #endif led_set_kb(usb_led); led_update_kb((led_t)usb_led); } //------------------------------------------------------------------------------ // Override these functions in your keymap file to play different tunes on // different events such as startup and bootloader jump __attribute__((weak)) void startup_user() {} __attribute__((weak)) void shutdown_user() {} //------------------------------------------------------------------------------