1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
|
(* abc9_lut=1, lib_whitebox *)
module LUT4(input A, B, C, D, output Z);
parameter INIT = "0x0000";
`include "parse_init.vh"
localparam initp = parse_init(INIT);
wire [7:0] s3 = D ? initp[15:8] : initp[7:0];
wire [3:0] s2 = C ? s3[ 7:4] : s3[3:0];
wire [1:0] s1 = B ? s2[ 3:2] : s2[1:0];
assign Z = A ? s1[1] : s1[0];
// Per-input delay differences are considered 'interconnect'
// so not known yet
specify
(A => Z) = 233;
(B => Z) = 233;
(C => Z) = 233;
(D => Z) = 233;
endspecify
endmodule
// This is a placeholder for ABC9 to extract the area/delay
// cost of 5-input LUTs and is not intended to be instantiated
(* abc9_lut=2 *)
module \$__ABC9_LUT5 (input SEL, D, C, B, A, output Z);
specify
(SEL => Z) = 171;
(D => Z) = 303;
(C => Z) = 311;
(B => Z) = 309;
(A => Z) = 306;
endspecify
endmodule
// Two LUT4s and MUX2
module WIDEFN9(input A0, B0, C0, D0, A1, B1, C1, D1, SEL, output Z);
parameter INIT0 = "0x0000";
parameter INIT1 = "0x0000";
wire z0, z1;
LUT4 #(.INIT(INIT0)) lut4_0 (.A(A0), .B(B0), .C(C0), .D(D0), .Z(z0));
LUT4 #(.INIT(INIT1)) lut4_1 (.A(A1), .B(B1), .C(C1), .D(D1), .Z(z1));
assign Z = SEL ? z1 : z0;
endmodule
(* abc9_box, lib_whitebox *)
module INV(input A, output Z);
assign Z = !A;
specify
(A => Z) = 10;
endspecify
endmodule
// Bidirectional IO buffer
module BB(input T, I, output O,
(* iopad_external_pin *) inout B);
assign B = T ? 1'bz : O;
assign I = B;
endmodule
// Input buffer
module IB(
(* iopad_external_pin *) input I,
output O);
assign O = I;
endmodule
// Output buffer
module OB(input I,
(* iopad_external_pin *) output O);
assign O = I;
endmodule
// Output buffer with tristate
module OBZ(input I, T,
(* iopad_external_pin *) output O);
assign O = T ? 1'bz : I;
endmodule
// Constants
module VLO(output Z);
assign Z = 1'b0;
endmodule
module VHI(output Z);
assign Z = 1'b1;
endmodule
// Vendor flipflops
// (all have active high clock, enable and set/reset - use INV to invert)
// Async preset
(* abc9_box, lib_whitebox *)
module FD1P3BX(input D, CK, SP, PD, output reg Q);
parameter GSR = "DISABLED";
initial Q = 1'b1;
always @(posedge CK or posedge PD)
if (PD)
Q <= 1'b1;
else if (SP)
Q <= D;
specify
$setup(D, posedge CK, 0);
$setup(SP, posedge CK, 212);
$setup(PD, posedge CK, 224);
`ifndef YOSYS
if (PD) (posedge CLK => (Q : 1)) = 0;
`else
if (PD) (PD => Q) = 0; // Technically, this should be an edge sensitive path
// but for facilitating a bypass box, let's pretend it's
// a simple path
`endif
if (!PD && SP) (posedge CK => (Q : D)) = 336;
endspecify
endmodule
// Async clear
(* abc9_box, lib_whitebox *)
module FD1P3DX(input D, CK, SP, CD, output reg Q);
parameter GSR = "DISABLED";
initial Q = 1'b0;
always @(posedge CK or posedge CD)
if (CD)
Q <= 1'b0;
else if (SP)
Q <= D;
specify
$setup(D, posedge CK, 0);
$setup(SP, posedge CK, 212);
$setup(CD, posedge CK, 224);
`ifndef YOSYS
if (CD) (posedge CLK => (Q : 0)) = 0;
`else
if (CD) (CD => Q) = 0; // Technically, this should be an edge sensitive path
// but for facilitating a bypass box, let's pretend it's
// a simple path
`endif
if (!CD && SP) (posedge CK => (Q : D)) = 336;
endspecify
endmodule
// Sync clear
(* abc9_flop, lib_whitebox *)
module FD1P3IX(input D, CK, SP, CD, output reg Q);
parameter GSR = "DISABLED";
initial Q = 1'b0;
always @(posedge CK)
if (CD)
Q <= 1'b0;
else if (SP)
Q <= D;
specify
$setup(D, posedge CK, 0);
$setup(SP, posedge CK, 212);
$setup(CD, posedge CK, 224);
if (!CD && SP) (posedge CK => (Q : D)) = 336;
endspecify
endmodule
// Sync preset
(* abc9_flop, lib_whitebox *)
module FD1P3JX(input D, CK, SP, PD, output reg Q);
parameter GSR = "DISABLED";
initial Q = 1'b1;
always @(posedge CK)
if (PD)
Q <= 1'b1;
else if (SP)
Q <= D;
specify
$setup(D, posedge CK, 0);
$setup(SP, posedge CK, 212);
$setup(PD, posedge CK, 224);
if (!PD && SP) (posedge CK => (Q : D)) = 336;
endspecify
endmodule
// LUT4 with LUT3 tap for CCU2 use only
(* lib_whitebox *)
module LUT4_3(input A, B, C, D, output Z, Z3);
parameter INIT = "0x0000";
`include "parse_init.vh"
localparam initp = parse_init(INIT);
wire [7:0] s3 = D ? initp[15:8] : initp[7:0];
wire [3:0] s2 = C ? s3[ 7:4] : s3[3:0];
wire [1:0] s1 = B ? s2[ 3:2] : s2[1:0];
assign Z = A ? s1[1] : s1[0];
wire [3:0] s2_3 = C ? initp[ 7:4] : initp[3:0];
wire [1:0] s1_3 = B ? s2_3[ 3:2] : s2_3[1:0];
assign Z3 = A ? s1_3[1] : s1_3[0];
endmodule
// Carry primitive (incoporating two LUTs)
(* abc9_box, lib_whitebox *)
module CCU2(
(* abc9_carry *) input CIN,
input A1, B1, C1, D1, A0, B0, C0, D0,
output S1, S0,
(* abc9_carry *) output COUT);
parameter INJECT = "YES";
parameter INIT0 = "0x0000";
parameter INIT1 = "0x1111";
localparam inject_p = (INJECT == "YES") ? 1'b1 : 1'b0;
wire LUT3_0, LUT4_0, LUT3_1, LUT4_1, carry_0;
LUT4_3 #(.INIT(INIT0)) lut0 (.A(A0), .B(B0), .C(C0), .D(D0), .Z(LUT4_0), .Z3(LUT3_0));
LUT4_3 #(.INIT(INIT1)) lut1 (.A(A1), .B(B1), .C(C1), .D(D1), .Z(LUT4_1), .Z3(LUT3_1));
assign S0 = LUT4_0 ^ (CIN & ~inject_p);
assign carry_0 = LUT4_0 ? CIN : (LUT3_0 & ~inject_p);
assign S1 = LUT4_1 ^ (carry_0 & ~inject_p);
assign COUT = LUT4_1 ? carry_0 : (LUT3_1 & ~inject_p);
specify
(A0 => S0) = 233;
(B0 => S0) = 233;
(C0 => S0) = 233;
(D0 => S0) = 233;
(CIN => S0) = 228;
(A0 => S1) = 481;
(B0 => S1) = 481;
(C0 => S1) = 481;
(D0 => S1) = 481;
(A1 => S1) = 233;
(B1 => S1) = 233;
(C1 => S1) = 233;
(D1 => S1) = 233;
(CIN => S1) = 307;
(A0 => COUT) = 347;
(B0 => COUT) = 347;
(C0 => COUT) = 347;
(D0 => COUT) = 347;
(A1 => COUT) = 347;
(B1 => COUT) = 347;
(C1 => COUT) = 347;
(D1 => COUT) = 347;
(CIN => COUT) = 59;
endspecify
endmodule
// Packed flipflop
module OXIDE_FF(input CLK, LSR, CE, DI, M, output reg Q);
parameter GSR = "ENABLED";
parameter [127:0] CEMUX = "1";
parameter CLKMUX = "CLK";
parameter LSRMUX = "LSR";
parameter REGDDR = "DISABLED";
parameter SRMODE = "LSR_OVER_CE";
parameter REGSET = "RESET";
parameter [127:0] LSRMODE = "LSR";
wire muxce;
generate
case (CEMUX)
"1": assign muxce = 1'b1;
"0": assign muxce = 1'b0;
"INV": assign muxce = ~CE;
default: assign muxce = CE;
endcase
endgenerate
wire muxlsr = (LSRMUX == "INV") ? ~LSR : LSR;
wire muxclk = (CLKMUX == "INV") ? ~CLK : CLK;
wire srval;
generate
if (LSRMODE == "PRLD")
assign srval = M;
else
assign srval = (REGSET == "SET") ? 1'b1 : 1'b0;
endgenerate
initial Q = srval;
generate
if (REGDDR == "ENABLED") begin
if (SRMODE == "ASYNC") begin
always @(posedge muxclk, negedge muxclk, posedge muxlsr)
if (muxlsr)
Q <= srval;
else if (muxce)
Q <= DI;
end else begin
always @(posedge muxclk, negedge muxclk)
if (muxlsr)
Q <= srval;
else if (muxce)
Q <= DI;
end
end else begin
if (SRMODE == "ASYNC") begin
always @(posedge muxclk, posedge muxlsr)
if (muxlsr)
Q <= srval;
else if (muxce)
Q <= DI;
end else begin
always @(posedge muxclk)
if (muxlsr)
Q <= srval;
else if (muxce)
Q <= DI;
end
end
endgenerate
endmodule
// Packed combinational logic (for post-pnr sim)
module OXIDE_COMB(
input A, B, C, D, // LUT inputs
input SEL, // mux select input
input F1, // output from LUT 1 for mux
input FCI, // carry input
input WAD0, WAD1, WAD2, WAD3, // LUTRAM write address inputs
input WD, // LUTRAM write data input
input WCK, WRE, // LUTRAM write clock and enable
output F, // LUT/carry output
output OFX // mux output
);
parameter MODE = "LOGIC"; // LOGIC, CCU2, DPRAM
parameter [15:0] INIT = 16'h0000;
parameter INJECT = "YES";
localparam inject_p = (INJECT == "YES") ? 1'b1 : 1'b0;
reg [15:0] lut = INIT;
wire [7:0] s3 = D ? INIT[15:8] : INIT[7:0];
wire [3:0] s2 = C ? s3[ 7:4] : s3[3:0];
wire [1:0] s1 = B ? s2[ 3:2] : s2[1:0];
wire Z = A ? s1[1] : s1[0];
wire [3:0] s2_3 = C ? INIT[ 7:4] : INIT[3:0];
wire [1:0] s1_3 = B ? s2_3[ 3:2] : s2_3[1:0];
wire Z3 = A ? s1_3[1] : s1_3[0];
generate
if (MODE == "DPRAM") begin
always @(posedge WCK)
if (WRE)
lut[{WAD3, WAD2, WAD1, WAD0}] <= WD;
end
if (MODE == "CCU2") begin
assign F = Z ^ (FCI & ~inject_p);
assign FCO = Z ? FCI : (Z3 & ~inject_p);
end else begin
assign F = Z;
end
endgenerate
assign OFX = SEL ? F1 : F;
endmodule
// LUTRAM
module DPR16X4(
input [3:0] RAD, DI, WAD,
input WRE, WCK,
output [3:0] DO
);
parameter INITVAL = "0x0000000000000000";
`include "parse_init.vh"
localparam [63:0] parsed_init = parse_init_64(INITVAL);
reg [3:0] mem[0:15];
integer i;
initial begin
for (i = 0; i < 15; i++)
mem[i] = parsed_init[i * 4 +: 4];
end
always @(posedge WCK)
if (WRE)
mem[WAD] <= DI;
assign DO = mem[RAD];
endmodule
// Used for all the DSP models to reduce duplication
module OXIDE_DSP_REG #(
parameter W = 18,
parameter USED = "REGISTER",
parameter RESETMODE = "SYNC"
) (
input CLK, CE, RST,
input [W-1:0] D,
output reg [W-1:0] Q
);
generate
if (USED == "BYPASS")
always @* Q = D;
else if (USED == "REGISTER") begin
initial Q = 0;
if (RESETMODE == "ASYNC")
always @(posedge CLK, posedge RST) begin
if (RST)
Q <= 0;
else if (CE)
Q <= D;
end
else if (RESETMODE == "SYNC")
always @(posedge CLK) begin
if (RST)
Q <= 0;
else if (CE)
Q <= D;
end
end
endgenerate
endmodule
module OXIDE_DSP_SIM #(
// User facing parameters
parameter REGINPUTA = "BYPASS",
parameter REGINPUTB = "BYPASS",
parameter REGINPUTC = "BYPASS",
parameter REGADDSUB = "BYPASS",
parameter REGLOADC = "BYPASS",
parameter REGLOADC2 = "BYPASS",
parameter REGCIN = "BYPASS",
parameter REGPIPELINE = "BYPASS",
parameter REGOUTPUT = "BYPASS",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC",
// Internally used parameters
parameter A_WIDTH = 36,
parameter B_WIDTH = 36,
parameter C_WIDTH = 36,
parameter Z_WIDTH = 72,
parameter PREADD_USED = 0,
parameter ADDSUB_USED = 0
) (
input [A_WIDTH-1:0] A,
input [B_WIDTH-1:0] B,
input [C_WIDTH-1:0] C,
input SIGNEDA,
input SIGNEDB,
input SIGNEDC,
input CIN,
input LOADC,
input ADDSUB,
input CLK,
input CEA, CEB, CEC, CEPIPE, CECTRL, CECIN, CEOUT,
input RSTA, RSTB, RSTC, RSTPIPE, RSTCTRL, RSTCIN, RSTOUT,
output wire [Z_WIDTH-1:0] Z
);
localparam M_WIDTH = (A_WIDTH+B_WIDTH);
/******** REGISTERS ********/
wire [M_WIDTH-1:0] pipe_d, pipe_q;
wire [Z_WIDTH-1:0] z_d;
wire [A_WIDTH-1:0] a_r;
wire [B_WIDTH-1:0] b_r;
wire [C_WIDTH-1:0] c_r, c_r2;
wire asgd_r, bsgd_r, csgd_r, csgd_r2;
wire addsub_r, addsub_r2, cin_r, cin_r2, sgd_r, sgd_r2;
wire loadc_r, loadc_r2;
OXIDE_DSP_REG #(A_WIDTH+1, REGINPUTA, RESETMODE) a_reg(CLK, CEA, RSTA, {SIGNEDA, A}, {asgd_r, a_r});
OXIDE_DSP_REG #(B_WIDTH+1, REGINPUTB, RESETMODE) b_reg(CLK, CEB, RSTB, {SIGNEDB, B}, {bsgd_r, b_r});
OXIDE_DSP_REG #(C_WIDTH+1, REGINPUTC, RESETMODE) c_reg(CLK, CEC, RSTC, {SIGNEDC, C}, {csgd_r, c_r});
OXIDE_DSP_REG #(M_WIDTH, REGPIPELINE, RESETMODE) pipe_reg(CLK, CEPIPE, RSTPIPE, pipe_d, pipe_q);
OXIDE_DSP_REG #(2, REGADDSUB, RESETMODE) addsub_reg(CLK, CECTRL, RSTCTRL, {SIGNEDA, ADDSUB}, {sgd_r, addsub_r});
OXIDE_DSP_REG #(1, REGLOADC, RESETMODE) loadc_reg(CLK, CECTRL, RSTCTRL, LOADC, loadc_r);
OXIDE_DSP_REG #(2, REGPIPELINE, RESETMODE) addsub2_reg(CLK, CECTRL, RSTCTRL, {sgd_r, addsub_r}, {sgd_r2, addsub_r2});
OXIDE_DSP_REG #(1, REGLOADC2, RESETMODE) loadc2_reg(CLK, CECTRL, RSTCTRL, loadc_r, loadc_r2);
OXIDE_DSP_REG #(1, REGCIN, RESETMODE) cin_reg(CLK, CECIN, RSTCIN, CIN, cin_r);
OXIDE_DSP_REG #(1, REGPIPELINE, RESETMODE) cin2_reg(CLK, CECIN, RSTCIN, cin_r, cin_r2);
OXIDE_DSP_REG #(C_WIDTH+1, REGPIPELINE, RESETMODE) c2_reg(CLK, CEC, RSTC, {csgd_r, c_r}, {csgd_r2, c_r2});
OXIDE_DSP_REG #(Z_WIDTH, REGOUTPUT, RESETMODE) z_reg(CLK, CEOUT, RSTOUT, z_d, Z);
/******** PREADDER ********/
wire [B_WIDTH-1:0] mult_b;
wire mult_b_sgd;
generate
if (PREADD_USED) begin
assign mult_b = (b_r + c_r);
assign mult_b_sgd = (bsgd_r | csgd_r);
end else begin
assign mult_b = b_r;
assign mult_b_sgd = bsgd_r;
end
endgenerate
/******** MULTIPLIER ********/
// sign extend operands if needed
wire [M_WIDTH-1:0] mult_a_ext = {{(M_WIDTH-A_WIDTH){asgd_r ? a_r[A_WIDTH-1] : 1'b0}}, a_r};
wire [M_WIDTH-1:0] mult_b_ext = {{(M_WIDTH-B_WIDTH){mult_b_sgd ? mult_b[B_WIDTH-1] : 1'b0}}, mult_b};
wire [M_WIDTH-1:0] mult_m = mult_a_ext * mult_b_ext;
/******** ACCUMULATOR ********/
wire [Z_WIDTH-1:0] m_ext;
generate
if (ADDSUB_USED) begin
assign pipe_d = mult_m;
assign m_ext = {{(Z_WIDTH-M_WIDTH){sgd_r2 ? pipe_q[M_WIDTH-1] : 1'b0}}, pipe_q};
assign z_d = (loadc_r2 ? c_r2 : Z) + cin_r2 + (addsub_r2 ? -m_ext : m_ext);
end else begin
assign z_d = mult_m;
end
endgenerate
endmodule
module MULT9X9 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [8:0] A,
input [8:0] B,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input SIGNEDA,
input SIGNEDB,
input RSTOUT,
input CEOUT,
output [17:0] Z
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(9),
.B_WIDTH(9),
.Z_WIDTH(18),
.PREADD_USED(0),
.ADDSUB_USED(0)
) dsp_i (
.A(A), .B(B),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.SIGNEDA(SIGNEDA), .SIGNEDB(SIGNEDB),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULT18X18 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [17:0] A,
input [17:0] B,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input SIGNEDA,
input SIGNEDB,
input RSTOUT,
input CEOUT,
output [35:0] Z
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(18),
.B_WIDTH(18),
.Z_WIDTH(36),
.PREADD_USED(0),
.ADDSUB_USED(0)
) dsp_i (
.A(A), .B(B),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.SIGNEDA(SIGNEDA), .SIGNEDB(SIGNEDB),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULT18X36 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [17:0] A,
input [35:0] B,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input SIGNEDA,
input SIGNEDB,
input RSTOUT,
input CEOUT,
output [53:0] Z
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(18),
.B_WIDTH(36),
.Z_WIDTH(54),
.PREADD_USED(0),
.ADDSUB_USED(0)
) dsp_i (
.A(A), .B(B),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.SIGNEDA(SIGNEDA), .SIGNEDB(SIGNEDB),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULT36X36 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [35:0] A,
input [35:0] B,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input SIGNEDA,
input SIGNEDB,
input RSTOUT,
input CEOUT,
output [71:0] Z
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(36),
.B_WIDTH(36),
.Z_WIDTH(72),
.PREADD_USED(0),
.ADDSUB_USED(0)
) dsp_i (
.A(A), .B(B),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.SIGNEDA(SIGNEDA), .SIGNEDB(SIGNEDB),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULTPREADD9X9 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGINPUTC = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [8:0] A,
input [8:0] B,
input [8:0] C,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input CEC,
input RSTC,
input SIGNEDA,
input SIGNEDB,
input SIGNEDC,
input RSTOUT,
input CEOUT,
output [17:0] Z
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGINPUTC(REGINPUTC),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(9),
.B_WIDTH(9),
.C_WIDTH(9),
.Z_WIDTH(18),
.PREADD_USED(1),
.ADDSUB_USED(0)
) dsp_i (
.A(A), .B(B), .C(C),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.CEC(CEC), .RSTC(RSTC),
.SIGNEDA(SIGNEDA), .SIGNEDB(SIGNEDB), .SIGNEDC(SIGNEDC),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULTPREADD18X18 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGINPUTC = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [17:0] A,
input [17:0] B,
input [17:0] C,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input CEC,
input RSTC,
input SIGNEDA,
input SIGNEDB,
input SIGNEDC,
input RSTOUT,
input CEOUT,
output [35:0] Z
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGINPUTC(REGINPUTC),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(18),
.B_WIDTH(18),
.C_WIDTH(18),
.Z_WIDTH(36),
.PREADD_USED(1),
.ADDSUB_USED(0)
) dsp_i (
.A(A), .B(B), .C(C),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.CEC(CEC), .RSTC(RSTC),
.SIGNEDA(SIGNEDA), .SIGNEDB(SIGNEDB), .SIGNEDC(SIGNEDC),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULTADDSUB18X18 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGINPUTC = "REGISTER",
parameter REGADDSUB = "REGISTER",
parameter REGLOADC = "REGISTER",
parameter REGLOADC2 = "REGISTER",
parameter REGCIN = "REGISTER",
parameter REGPIPELINE = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [17:0] A,
input [17:0] B,
input [53:0] C,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input CEC,
input RSTC,
input SIGNED,
input RSTPIPE,
input CEPIPE,
input RSTCTRL,
input CECTRL,
input RSTCIN,
input CECIN,
input LOADC,
input ADDSUB,
output [53:0] Z,
input RSTOUT,
input CEOUT,
input CIN
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGINPUTC(REGINPUTC),
.REGADDSUB(REGADDSUB),
.REGLOADC(REGLOADC),
.REGLOADC2(REGLOADC2),
.REGCIN(REGCIN),
.REGPIPELINE(REGPIPELINE),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(18),
.B_WIDTH(18),
.C_WIDTH(54),
.Z_WIDTH(54),
.PREADD_USED(0),
.ADDSUB_USED(1)
) dsp_i (
.A(A), .B(B), .C(C),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.CEC(CEC), .RSTC(RSTC),
.CEPIPE(CEPIPE), .RSTPIPE(RSTPIPE),
.CECTRL(CECTRL), .RSTCTRL(RSTCTRL),
.CECIN(CECIN), .RSTCIN(RSTCIN),
.CIN(CIN), .LOADC(LOADC), .ADDSUB(ADDSUB),
.SIGNEDA(SIGNED), .SIGNEDB(SIGNED), .SIGNEDC(SIGNED),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULTADDSUB36X36 #(
parameter REGINPUTA = "REGISTER",
parameter REGINPUTB = "REGISTER",
parameter REGINPUTC = "REGISTER",
parameter REGADDSUB = "REGISTER",
parameter REGLOADC = "REGISTER",
parameter REGLOADC2 = "REGISTER",
parameter REGCIN = "REGISTER",
parameter REGPIPELINE = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [35:0] A,
input [35:0] B,
input [107:0] C,
input CLK,
input CEA,
input RSTA,
input CEB,
input RSTB,
input CEC,
input RSTC,
input SIGNED,
input RSTPIPE,
input CEPIPE,
input RSTCTRL,
input CECTRL,
input RSTCIN,
input CECIN,
input LOADC,
input ADDSUB,
output [107:0] Z,
input RSTOUT,
input CEOUT,
input CIN
);
OXIDE_DSP_SIM #(
.REGINPUTA(REGINPUTA),
.REGINPUTB(REGINPUTB),
.REGINPUTC(REGINPUTC),
.REGADDSUB(REGADDSUB),
.REGLOADC(REGLOADC),
.REGLOADC2(REGLOADC2),
.REGCIN(REGCIN),
.REGPIPELINE(REGPIPELINE),
.REGOUTPUT(REGOUTPUT),
.GSR(GSR),
.RESETMODE(RESETMODE),
.A_WIDTH(36),
.B_WIDTH(36),
.C_WIDTH(108),
.Z_WIDTH(108),
.PREADD_USED(0),
.ADDSUB_USED(1)
) dsp_i (
.A(A), .B(B), .C(C),
.CLK(CLK),
.CEA(CEA), .RSTA(RSTA),
.CEB(CEB), .RSTB(RSTB),
.CEC(CEC), .RSTC(RSTC),
.CEPIPE(CEPIPE), .RSTPIPE(RSTPIPE),
.CECTRL(CECTRL), .RSTCTRL(RSTCTRL),
.CECIN(CECIN), .RSTCIN(RSTCIN),
.CIN(CIN), .LOADC(LOADC), .ADDSUB(ADDSUB),
.SIGNEDA(SIGNED), .SIGNEDB(SIGNED), .SIGNEDC(SIGNED),
.RSTOUT(RSTOUT), .CEOUT(CEOUT),
.Z(Z)
);
endmodule
module MULTADDSUB9X9WIDE #(
parameter REGINPUTAB0 = "REGISTER",
parameter REGINPUTAB1 = "REGISTER",
parameter REGINPUTAB2 = "REGISTER",
parameter REGINPUTAB3 = "REGISTER",
parameter REGINPUTC = "REGISTER",
parameter REGADDSUB = "REGISTER",
parameter REGLOADC = "REGISTER",
parameter REGLOADC2 = "REGISTER",
parameter REGPIPELINE = "REGISTER",
parameter REGOUTPUT = "REGISTER",
parameter GSR = "ENABLED",
parameter RESETMODE = "SYNC"
) (
input [8:0] A0, B0, A1, B1, A2, B2, A3, B3,
input [53:0] C,
input CLK,
input CEA0A1, CEA2A3,
input RSTA0A1, RSTA2A3,
input CEB0B1, CEB2B3,
input RSTB0B1, RSTB2B3,
input CEC, RSTC,
input CECTRL, RSTCTRL,
input SIGNED,
input RSTPIPE, CEPIPE,
input RSTOUT, CEOUT,
input LOADC,
input [3:0] ADDSUB,
output [53:0] Z
);
wire [17:0] m0, m1, m2, m3;
localparam M_WIDTH = 18;
localparam Z_WIDTH = 54;
MULT9X9 #(
.REGINPUTA(REGINPUTAB0), .REGINPUTB(REGINPUTAB0), .REGOUTPUT(REGPIPELINE), .GSR(GSR), .RESETMODE(RESETMODE)
) m9_0 (
.A(A0), .B(B0), .SIGNEDA(SIGNED), .SIGNEDB(SIGNED),
.CLK(CLK),
.CEA(CEA0A1), .RSTA(RSTA0A1),
.CEB(CEB0B1), .RSTB(RSTB0B1),
.CEOUT(CEPIPE), .RSTOUT(RSTPIPE),
.Z(m0)
);
MULT9X9 #(
.REGINPUTA(REGINPUTAB1), .REGINPUTB(REGINPUTAB1), .REGOUTPUT(REGPIPELINE), .GSR(GSR), .RESETMODE(RESETMODE)
) m9_1 (
.A(A1), .B(B1), .SIGNEDA(SIGNED), .SIGNEDB(SIGNED),
.CLK(CLK),
.CEA(CEA0A1), .RSTA(RSTA0A1),
.CEB(CEB0B1), .RSTB(RSTB0B1),
.CEOUT(CEPIPE), .RSTOUT(RSTPIPE),
.Z(m1)
);
MULT9X9 #(
.REGINPUTA(REGINPUTAB2), .REGINPUTB(REGINPUTAB2), .REGOUTPUT(REGPIPELINE), .GSR(GSR), .RESETMODE(RESETMODE)
) m9_2 (
.A(A2), .B(B2), .SIGNEDA(SIGNED), .SIGNEDB(SIGNED),
.CLK(CLK),
.CEA(CEA2A3), .RSTA(RSTA2A3),
.CEB(CEB2B3), .RSTB(RSTB2B3),
.CEOUT(CEPIPE), .RSTOUT(RSTPIPE),
.Z(m2)
);
MULT9X9 #(
.REGINPUTA(REGINPUTAB3), .REGINPUTB(REGINPUTAB3), .REGOUTPUT(REGPIPELINE), .GSR(GSR), .RESETMODE(RESETMODE)
) m9_3 (
.A(A3), .B(B3), .SIGNEDA(SIGNED), .SIGNEDB(SIGNED),
.CLK(CLK),
.CEA(CEA2A3), .RSTA(RSTA2A3),
.CEB(CEB2B3), .RSTB(RSTB2B3),
.CEOUT(CEPIPE), .RSTOUT(RSTPIPE),
.Z(m3)
);
wire [53:0] c_r, c_r2;
wire [3:0] addsub_r, addsub_r2;
wire sgd_r, sgd_r2, csgd_r, csgd_r2;
wire loadc_r, loadc_r2;
OXIDE_DSP_REG #(5, REGADDSUB, RESETMODE) addsub_reg(CLK, CECTRL, RSTCTRL, {SIGNED, ADDSUB}, {sgd_r, addsub_r});
OXIDE_DSP_REG #(5, REGADDSUB, RESETMODE) addsub2_reg(CLK, CECTRL, RSTCTRL, {sgd_r, addsub_r}, {sgd_r2, addsub_r2});
OXIDE_DSP_REG #(1, REGLOADC, RESETMODE) loadc_reg(CLK, CECTRL, RSTCTRL, LOADC, loadc_r);
OXIDE_DSP_REG #(1, REGLOADC2, RESETMODE) loadc2_reg(CLK, CECTRL, RSTCTRL, loadc_r, loadc_r2);
OXIDE_DSP_REG #(55, REGINPUTC, RESETMODE) c_reg(CLK, CEC, RSTC, {SIGNED, C}, {csgd_r, c_r});
OXIDE_DSP_REG #(55, REGPIPELINE, RESETMODE) c2_reg(CLK, CEC, RSTC, {csgd_r, c_r}, {csgd_r2, c_r2});
wire [18:0] m0_ext, m1_ext, m2_ext, m3_ext;
assign m0_ext = {sgd_r2 ? m0[M_WIDTH-1] : 1'b0, m0};
assign m1_ext = {sgd_r2 ? m1[M_WIDTH-1] : 1'b0, m1};
assign m2_ext = {sgd_r2 ? m2[M_WIDTH-1] : 1'b0, m2};
assign m3_ext = {sgd_r2 ? m3[M_WIDTH-1] : 1'b0, m3};
wire [18:0] s0 = addsub_r2[2] ? (m0_ext - m1_ext) : (m0_ext + m1_ext);
wire [18:0] s1 = addsub_r2[3] ? (m2_ext - m3_ext) : (m2_ext + m3_ext);
wire [53:0] s0_ext = {{(54-19){sgd_r2 ? s0[18] : 1'b0}}, s0};
wire [53:0] s1_ext = {{(54-19){sgd_r2 ? s1[18] : 1'b0}}, s1};
wire [53:0] c_op = loadc_r2 ? c_r2 : Z;
// The diagram in the docs is wrong! It is not two cascaded 2-input add/subs as shown,
// but a three-input unit with negation controls on two inputs (i.e. addsub_r2[0]
// negates s1 not (s1 +/- s0))
wire [53:0] z_d = c_op + (addsub_r2[0] ? -s1_ext : s1_ext) + (addsub_r2[1] ? -s0_ext : s0_ext);
OXIDE_DSP_REG #(Z_WIDTH, REGOUTPUT, RESETMODE) z_reg(CLK, CEOUT, RSTOUT, z_d, Z);
endmodule
|