1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
module GP_DFF(input D, CLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK) begin
Q <= D;
end
endmodule
module GP_DFFS(input D, CLK, nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
Q <= 1'b1;
else
Q <= D;
end
endmodule
module GP_DFFR(input D, CLK, nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
Q <= 1'b0;
else
Q <= D;
end
endmodule
module GP_DFFSR(input D, CLK, nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
Q <= SRMODE;
else
Q <= D;
end
endmodule
module GP_2LUT(input IN0, IN1, output OUT);
parameter [3:0] INIT = 0;
assign OUT = INIT[{IN1, IN0}];
endmodule
module GP_3LUT(input IN0, IN1, IN2, output OUT);
parameter [7:0] INIT = 0;
assign OUT = INIT[{IN2, IN1, IN0}];
endmodule
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
parameter [15:0] INIT = 0;
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
endmodule
module GP_VDD(output OUT);
assign OUT = 1;
endmodule
module GP_VSS(output OUT);
assign OUT = 0;
endmodule
module GP_LFOSC(input PWRDN, output reg CLKOUT);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1;
initial CLKOUT = 0;
always begin
if(PWRDN)
clkout = 0;
else begin
//half period of 1730 Hz
#289017;
clkout = ~clkout;
end
end
endmodule
module GP_COUNT8(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
reg[7:0] count = COUNT_TO;
//Combinatorially output whenever we wrap low
always @(*) begin
OUT <= (count == 8'h0);
end
//POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm.
//Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now.
//Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues...
always @(posedge CLK) begin
count <= count - 1'd1;
if(count == 0)
count <= COUNT_MAX;
/*
if((RESET_MODE == "RISING") && RST)
count <= 0;
if((RESET_MODE == "FALLING") && !RST)
count <= 0;
if((RESET_MODE == "BOTH") && RST)
count <= 0;
*/
end
endmodule
module GP_COUNT14(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
//keep constraint needed to prevent optimization since we have no outputs
(* keep *)
module GP_SYSRESET(input RST);
parameter RESET_MODE = "RISING";
//cannot simulate whole system reset
endmodule
|