1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
module LUT1(output F, input I0);
parameter [1:0] INIT = 0;
assign F = I0 ? INIT[1] : INIT[0];
endmodule
module LUT2(output F, input I0, I1);
parameter [3:0] INIT = 0;
wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
assign F = I0 ? s1[1] : s1[0];
endmodule
module LUT3(output F, input I0, I1, I2);
parameter [7:0] INIT = 0;
wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign F = I0 ? s1[1] : s1[0];
endmodule
module LUT4(output F, input I0, I1, I2, I3);
parameter [15:0] INIT = 0;
wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign F = I0 ? s1[1] : s1[0];
endmodule
module MUX2 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
assign O = S0 ? I1 : I0;
endmodule
module MUX2_LUT5 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
MUX2 mux2_lut5 (O, I0, I1, S0);
endmodule
module MUX2_LUT6 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
MUX2 mux2_lut6 (O, I0, I1, S0);
endmodule
module MUX2_LUT7 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
MUX2 mux2_lut7 (O, I0, I1, S0);
endmodule
module MUX2_LUT8 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
MUX2 mux2_lut8 (O, I0, I1, S0);
endmodule
module DFF (output reg Q, input CLK, D);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK)
Q <= D;
endmodule
module DFFE (output reg Q, input D, CLK, CE);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK) begin
if (CE)
Q <= D;
end
endmodule // DFFE (positive clock edge; clock enable)
module DFFS (output reg Q, input D, CLK, SET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK) begin
if (SET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFS (positive clock edge; synchronous set)
module DFFSE (output reg Q, input D, CLK, CE, SET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK) begin
if (SET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFSE (positive clock edge; synchronous set takes precedence over clock enable)
module DFFR (output reg Q, input D, CLK, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK) begin
if (RESET)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFR (positive clock edge; synchronous reset)
module DFFRE (output reg Q, input D, CLK, CE, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK) begin
if (RESET)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFRE (positive clock edge; synchronous reset takes precedence over clock enable)
module DFFP (output reg Q, input D, CLK, PRESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFP (positive clock edge; asynchronous preset)
module DFFPE (output reg Q, input D, CLK, CE, PRESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFPE (positive clock edge; asynchronous preset; clock enable)
module DFFC (output reg Q, input D, CLK, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFC (positive clock edge; asynchronous clear)
module DFFCE (output reg Q, input D, CLK, CE, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(posedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFCE (positive clock edge; asynchronous clear; clock enable)
module DFFN (output reg Q, input CLK, D);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK)
Q <= D;
endmodule
module DFFNE (output reg Q, input D, CLK, CE);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK) begin
if (CE)
Q <= D;
end
endmodule // DFFNE (negative clock edge; clock enable)
module DFFNS (output reg Q, input D, CLK, SET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK) begin
if (SET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFNS (negative clock edge; synchronous set)
module DFFNSE (output reg Q, input D, CLK, CE, SET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK) begin
if (SET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFNSE (negative clock edge; synchronous set takes precedence over clock enable)
module DFFNR (output reg Q, input D, CLK, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK) begin
if (RESET)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFNR (negative clock edge; synchronous reset)
module DFFNRE (output reg Q, input D, CLK, CE, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK) begin
if (RESET)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFNRE (negative clock edge; synchronous reset takes precedence over clock enable)
module DFFNP (output reg Q, input D, CLK, PRESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFNP (negative clock edge; asynchronous preset)
module DFFNPE (output reg Q, input D, CLK, CE, PRESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFNPE (negative clock edge; asynchronous preset; clock enable)
module DFFNC (output reg Q, input D, CLK, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFNC (negative clock edge; asynchronous clear)
module DFFNCE (output reg Q, input D, CLK, CE, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
always @(negedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFNCE (negative clock edge; asynchronous clear; clock enable)
// TODO add more DFF sim cells
module VCC(output V);
assign V = 1;
endmodule
module GND(output G);
assign G = 0;
endmodule
module IBUF(output O, input I);
assign O = I;
endmodule
module OBUF(output O, input I);
assign O = I;
endmodule
module TBUF (O, I, OEN);
input I, OEN;
output O;
assign O = OEN ? I : 1'bz;
endmodule
module IOBUF (O, IO, I, OEN);
input I,OEN;
output O;
inout IO;
assign IO = OEN ? I : 1'bz;
assign I = IO;
endmodule
module GSR (input GSRI);
wire GSRO = GSRI;
endmodule
module ALU (SUM, COUT, I0, I1, I3, CIN);
input I0;
input I1;
input I3;
input CIN;
output SUM;
output COUT;
localparam ADD = 0;
localparam SUB = 1;
localparam ADDSUB = 2;
localparam NE = 3;
localparam GE = 4;
localparam LE = 5;
localparam CUP = 6;
localparam CDN = 7;
localparam CUPCDN = 8;
localparam MULT = 9;
parameter ALU_MODE = 0;
reg S, C;
assign SUM = S ^ CIN;
assign COUT = S? CIN : C;
always @* begin
case (ALU_MODE)
ADD: begin
S = I0 ^ I1;
C = I0;
end
SUB: begin
S = I0 ^ ~I1;
C = I0;
end
ADDSUB: begin
S = I3? I0 ^ I1 : I0 ^ ~I1;
C = I0;
end
NE: begin
S = I0 ^ ~I1;
C = 1'b1;
end
GE: begin
S = I0 ^ ~I1;
C = I0;
end
LE: begin
S = ~I0 ^ I1;
C = I1;
end
CUP: begin
S = I0;
C = 1'b0;
end
CDN: begin
S = ~I0;
C = 1'b1;
end
CUPCDN: begin
S = I3? I0 : ~I0;
C = I0;
end
MULT: begin
S = I0 & I1;
C = I0 & I1;
end
endcase
end
endmodule
module RAM16S4 (DO, DI, AD, WRE, CLK);
parameter WIDTH = 4;
parameter INIT_0 = 16'h0000;
parameter INIT_1 = 16'h0000;
parameter INIT_2 = 16'h0000;
parameter INIT_3 = 16'h0000;
input [WIDTH-1:0] AD;
input [WIDTH-1:0] DI;
output [WIDTH-1:0] DO;
input CLK;
input WRE;
reg [15:0] mem0, mem1, mem2, mem3;
initial begin
mem0 = INIT_0;
mem1 = INIT_1;
mem2 = INIT_2;
mem3 = INIT_3;
end
assign DO[0] = mem0[AD];
assign DO[1] = mem1[AD];
assign DO[2] = mem2[AD];
assign DO[3] = mem3[AD];
always @(posedge CLK) begin
if (WRE) begin
mem0[AD] <= DI[0];
mem1[AD] <= DI[1];
mem2[AD] <= DI[2];
mem3[AD] <= DI[3];
end
end
endmodule // RAM16S4
(* blackbox *)
module SDP (DO, DI, BLKSEL, ADA, ADB, WREA, WREB, CLKA, CLKB, CEA, CEB, OCE, RESETA, RESETB);
//1'b0: Bypass mode; 1'b1 Pipeline mode
parameter READ_MODE = 1'b0;
parameter BIT_WIDTH_0 = 32; // 1, 2, 4, 8, 16, 32
parameter BIT_WIDTH_1 = 32; // 1, 2, 4, 8, 16, 32
parameter BLK_SEL = 3'b000;
parameter RESET_MODE = "SYNC";
parameter INIT_RAM_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_10 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_11 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_12 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_13 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_14 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_15 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_16 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_17 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_18 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_19 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_20 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_21 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_22 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_23 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_24 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_25 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_26 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_27 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_28 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_29 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_30 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_31 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_32 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_33 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_34 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_35 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_36 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_37 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_38 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_39 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
input CLKA, CEA, CLKB, CEB;
input OCE; // clock enable of memory output register
input RESETA, RESETB; // resets output registers, not memory contents
input WREA, WREB; // 1'b0: read enabled; 1'b1: write enabled
input [13:0] ADA, ADB;
input [31:0] DI;
input [2:0] BLKSEL;
output [31:0] DO;
endmodule
|