1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* The internal logic cell technology mapper.
*
* This Verilog library contains the mapping of internal cells (e.g. $not with
* variable bit width) to the internal logic cells (such as the single bit $_NOT_
* gate). Usually this logic network is then mapped to the actual technology
* using e.g. the "abc" pass.
*
* Note that this library does not map $mem cells. They must be mapped to logic
* and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
* which is of course highly recommended for larger memories.)
*
*/
`define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
`define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b))
// --------------------------------------------------------
// Use simplemap for trivial cell types
// --------------------------------------------------------
(* techmap_simplemap *)
(* techmap_celltype = "$not $and $or $xor $xnor" *)
module _90_simplemap_bool_ops;
endmodule
(* techmap_simplemap *)
(* techmap_celltype = "$reduce_and $reduce_or $reduce_xor $reduce_xnor $reduce_bool" *)
module _90_simplemap_reduce_ops;
endmodule
(* techmap_simplemap *)
(* techmap_celltype = "$logic_not $logic_and $logic_or" *)
module _90_simplemap_logic_ops;
endmodule
(* techmap_simplemap *)
(* techmap_celltype = "$eq $eqx $ne $nex" *)
module _90_simplemap_compare_ops;
endmodule
(* techmap_simplemap *)
(* techmap_celltype = "$pos $slice $concat $mux $tribuf" *)
module _90_simplemap_various;
endmodule
(* techmap_simplemap *)
(* techmap_celltype = "$sr $ff $dff $dffe $adff $adffe $aldff $aldffe $sdff $sdffe $sdffce $dffsr $dffsre $dlatch $adlatch $dlatchsr" *)
module _90_simplemap_registers;
endmodule
// --------------------------------------------------------
// Shift operators
// --------------------------------------------------------
(* techmap_celltype = "$shr $shl $sshl $sshr" *)
module _90_shift_ops_shr_shl_sshl_sshr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter _TECHMAP_CELLTYPE_ = "";
localparam shift_left = _TECHMAP_CELLTYPE_ == "$shl" || _TECHMAP_CELLTYPE_ == "$sshl";
localparam sign_extend = A_SIGNED && _TECHMAP_CELLTYPE_ == "$sshr";
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH);
localparam BB_WIDTH = `MIN($clog2(shift_left ? Y_WIDTH : A_SIGNED ? WIDTH : A_WIDTH) + 1, B_WIDTH);
wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
wire [1023:0] _TECHMAP_DO_01_ = "RECURSION; CONSTMAP; opt_muxtree; opt_expr -mux_undef -mux_bool -fine;;;";
integer i;
(* force_downto *)
reg [WIDTH-1:0] buffer;
reg overflow;
always @* begin
overflow = B_WIDTH > BB_WIDTH ? |B[B_WIDTH-1:BB_WIDTH] : 1'b0;
buffer = overflow ? {WIDTH{sign_extend ? A[A_WIDTH-1] : 1'b0}} : {{WIDTH-A_WIDTH{A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A};
for (i = 0; i < BB_WIDTH; i = i+1)
if (B[i]) begin
if (shift_left)
buffer = {buffer, (2**i)'b0};
else if (2**i < WIDTH)
buffer = {{2**i{sign_extend ? buffer[WIDTH-1] : 1'b0}}, buffer[WIDTH-1 : 2**i]};
else
buffer = {WIDTH{sign_extend ? buffer[WIDTH-1] : 1'b0}};
end
end
assign Y = buffer;
endmodule
(* techmap_celltype = "$shift $shiftx" *)
module _90_shift_shiftx (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
parameter _TECHMAP_CELLTYPE_ = "";
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx;
wire a_padding = _TECHMAP_CELLTYPE_ == "$shiftx" ? extbit : (A_SIGNED ? A[A_WIDTH-1] : 1'b0);
localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_expr -mux_undef -mux_bool -fine;;;";
integer i;
(* force_downto *)
reg [WIDTH-1:0] buffer;
reg overflow;
always @* begin
overflow = 0;
buffer = {WIDTH{extbit}};
buffer[Y_WIDTH-1:0] = {Y_WIDTH{a_padding}};
buffer[A_WIDTH-1:0] = A;
if (B_WIDTH > BB_WIDTH) begin
if (B_SIGNED) begin
for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
if (B[i] != B[BB_WIDTH-1])
overflow = 1;
end else
overflow = |B[B_WIDTH-1:BB_WIDTH];
if (overflow)
buffer = {WIDTH{extbit}};
end
if (B_SIGNED && B[BB_WIDTH-1])
buffer = {buffer, {2**(BB_WIDTH-1){extbit}}};
for (i = 0; i < (B_SIGNED ? BB_WIDTH-1 : BB_WIDTH); i = i+1)
if (B[i]) begin
if (2**i < WIDTH)
buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
else
buffer = {WIDTH{extbit}};
end
end
assign Y = buffer;
endmodule
// --------------------------------------------------------
// Arithmetic operators
// --------------------------------------------------------
(* techmap_celltype = "$fa" *)
module _90_fa (A, B, C, X, Y);
parameter WIDTH = 1;
(* force_downto *)
input [WIDTH-1:0] A, B, C;
(* force_downto *)
output [WIDTH-1:0] X, Y;
(* force_downto *)
wire [WIDTH-1:0] t1, t2, t3;
assign t1 = A ^ B, t2 = A & B, t3 = C & t1;
assign Y = t1 ^ C, X = t2 | t3;
endmodule
(* techmap_celltype = "$lcu" *)
module _90_lcu (P, G, CI, CO);
parameter WIDTH = 2;
(* force_downto *)
input [WIDTH-1:0] P, G;
input CI;
(* force_downto *)
output [WIDTH-1:0] CO;
integer i, j;
(* force_downto *)
reg [WIDTH-1:0] p, g;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
always @* begin
p = P;
g = G;
// in almost all cases CI will be constant zero
g[0] = g[0] | (p[0] & CI);
// [[CITE]] Brent Kung Adder
// R. P. Brent and H. T. Kung, "A Regular Layout for Parallel Adders",
// IEEE Transaction on Computers, Vol. C-31, No. 3, p. 260-264, March, 1982
// Main tree
for (i = 1; i <= $clog2(WIDTH); i = i+1) begin
for (j = 2**i - 1; j < WIDTH; j = j + 2**i) begin
g[j] = g[j] | p[j] & g[j - 2**(i-1)];
p[j] = p[j] & p[j - 2**(i-1)];
end
end
// Inverse tree
for (i = $clog2(WIDTH); i > 0; i = i-1) begin
for (j = 2**i + 2**(i-1) - 1; j < WIDTH; j = j + 2**i) begin
g[j] = g[j] | p[j] & g[j - 2**(i-1)];
p[j] = p[j] & p[j - 2**(i-1)];
end
end
end
assign CO = g;
endmodule
(* techmap_celltype = "$alu" *)
module _90_alu (A, B, CI, BI, X, Y, CO);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] X, Y;
input CI, BI;
(* force_downto *)
output [Y_WIDTH-1:0] CO;
(* force_downto *)
wire [Y_WIDTH-1:0] AA = A_buf;
(* force_downto *)
wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf;
(* force_downto *)
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
\$lcu #(.WIDTH(Y_WIDTH)) lcu (.P(X), .G(AA & BB), .CI(CI), .CO(CO));
assign X = AA ^ BB;
assign Y = X ^ {CO, CI};
endmodule
(* techmap_maccmap *)
(* techmap_celltype = "$macc" *)
module _90_macc;
endmodule
(* techmap_wrap = "alumacc" *)
(* techmap_celltype = "$lt $le $ge $gt $add $sub $neg $mul" *)
module _90_alumacc;
endmodule
// --------------------------------------------------------
// Divide and Modulo
// --------------------------------------------------------
module \$__div_mod_u (A, B, Y, R);
parameter WIDTH = 1;
(* force_downto *)
input [WIDTH-1:0] A, B;
(* force_downto *)
output [WIDTH-1:0] Y, R;
(* force_downto *)
wire [WIDTH*WIDTH-1:0] chaindata;
assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
genvar i;
generate begin
for (i = 0; i < WIDTH; i=i+1) begin:stage
(* force_downto *)
wire [WIDTH-1:0] stage_in;
if (i == 0) begin:cp
assign stage_in = A;
end else begin:cp
assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
end
assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
end
end endgenerate
endmodule
// truncating signed division/modulo
module \$__div_mod_trunc (A, B, Y, R);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
localparam WIDTH =
A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y, R;
(* force_downto *)
wire [WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
(* force_downto *)
wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
\$__div_mod_u #(
.WIDTH(WIDTH)
) div_mod_u (
.A(A_buf_u),
.B(B_buf_u),
.Y(Y_u),
.R(R_u)
);
assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
endmodule
(* techmap_celltype = "$div" *)
module _90_div (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
\$__div_mod_trunc #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) div_mod (
.A(A),
.B(B),
.Y(Y)
);
endmodule
(* techmap_celltype = "$mod" *)
module _90_mod (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
\$__div_mod_trunc #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) div_mod (
.A(A),
.B(B),
.R(Y)
);
endmodule
// flooring signed division/modulo
module \$__div_mod_floor (A, B, Y, R);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
localparam WIDTH =
A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y, R;
wire [WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u, R_s;
assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
\$__div_mod_u #(
.WIDTH(WIDTH)
) div_mod_u (
.A(A_buf_u),
.B(B_buf_u),
.Y(Y_u),
.R(R_u)
);
// For negative results, if there was a remainder, subtract one to turn
// the round towards 0 into a round towards -inf
assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? (R_u == 0 ? -Y_u : -Y_u-1) : Y_u;
// truncating modulo
assign R_s = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
// Flooring modulo differs from truncating modulo only if it is nonzero and
// A and B have different signs - then `floor - trunc = B`
assign R = (R_s != 0) && A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? $signed(B_buf) + $signed(R_s) : R_s;
endmodule
(* techmap_celltype = "$divfloor" *)
module _90_divfloor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
\$__div_mod_floor #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) div_mod (
.A(A),
.B(B),
.Y(Y)
);
endmodule
(* techmap_celltype = "$modfloor" *)
module _90_modfloor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
\$__div_mod_floor #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)
) div_mod (
.A(A),
.B(B),
.R(Y)
);
endmodule
// --------------------------------------------------------
// Power
// --------------------------------------------------------
(* techmap_celltype = "$pow" *)
module _90_pow (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
(* force_downto *)
output [Y_WIDTH-1:0] Y;
wire _TECHMAP_FAIL_ = 1;
endmodule
// --------------------------------------------------------
// Parallel Multiplexers
// --------------------------------------------------------
(* techmap_celltype = "$pmux" *)
module _90_pmux (A, B, S, Y);
parameter WIDTH = 1;
parameter S_WIDTH = 1;
(* force_downto *)
input [WIDTH-1:0] A;
(* force_downto *)
input [WIDTH*S_WIDTH-1:0] B;
(* force_downto *)
input [S_WIDTH-1:0] S;
(* force_downto *)
output [WIDTH-1:0] Y;
(* force_downto *)
wire [WIDTH-1:0] Y_B;
genvar i, j;
generate
(* force_downto *)
wire [WIDTH*S_WIDTH-1:0] B_AND_S;
for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
end:B_AND
for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
(* force_downto *)
wire [S_WIDTH-1:0] B_AND_BITS;
for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
end:B_AND_BITS_COLLECT
assign Y_B[i] = |B_AND_BITS;
end:B_OR
endgenerate
assign Y = |S ? Y_B : A;
endmodule
// --------------------------------------------------------
// LUTs
// --------------------------------------------------------
`ifndef NOLUT
(* techmap_simplemap *)
(* techmap_celltype = "$lut $sop" *)
module _90_lut;
endmodule
`endif
|