aboutsummaryrefslogtreecommitdiffstats
path: root/passes/techmap/clkbufmap.cc
blob: 3f4b6aa66b9598d5990ed27e94139f353fee29d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *  Copyright (C) 2019  Marcin Kościelnicki <mwk@0x04.net>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/sigtools.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

void split_portname_pair(std::string &port1, std::string &port2)
{
	size_t pos = port1.find_first_of(':');
	if (pos != std::string::npos) {
		port2 = port1.substr(pos+1);
		port1 = port1.substr(0, pos);
	}
}

struct ClkbufmapPass : public Pass {
	ClkbufmapPass() : Pass("clkbufmap", "insert global buffers on clock networks") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    clkbufmap [options] [selection]\n");
		log("\n");
		log("Inserts global buffers between nets connected to clock inputs and their drivers.\n");
		log("\n");
		log("In the absence of any selection, all wires without the 'clkbuf_inhibit'\n");
		log("attribute will be considered for global buffer insertion.\n");
		log("Alternatively, to consider all wires without the 'buffer_type' attribute set to\n");
		log("'none' or 'bufr' one would specify:\n");
		log("  'w:* a:buffer_type=none a:buffer_type=bufr %%u %%d'\n");
		log("as the selection.\n");
		log("\n");
		log("    -buf <celltype> <portname_out>:<portname_in>\n");
		log("        Specifies the cell type to use for the global buffers\n");
		log("        and its port names.  The first port will be connected to\n");
		log("        the clock network sinks, and the second will be connected\n");
		log("        to the actual clock source.  This option is required.\n");
		log("\n");
		log("    -inpad <celltype> <portname_out>:<portname_in>\n");
		log("        If specified, a PAD cell of the given type is inserted on\n");
		log("        clock nets that are also top module's inputs (in addition\n");
		log("        to the global buffer).\n");
		log("\n");
	}

	void module_queue(Design *design, Module *module, std::vector<Module *> &modules_sorted, pool<Module *> &modules_processed) {
		if (modules_processed.count(module))
			return;
		for (auto cell : module->cells()) {
			Module *submodule = design->module(cell->type);
			if (!submodule)
				continue;
			module_queue(design, submodule, modules_sorted, modules_processed);
		}
		modules_sorted.push_back(module);
		modules_processed.insert(module);
	}

	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		log_header(design, "Executing CLKBUFMAP pass (inserting global clock buffers).\n");

		std::string buf_celltype, buf_portname, buf_portname2;
		std::string inpad_celltype, inpad_portname, inpad_portname2;

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			std::string arg = args[argidx];
			if (arg == "-buf" && argidx+2 < args.size()) {
				buf_celltype = args[++argidx];
				buf_portname = args[++argidx];
				split_portname_pair(buf_portname, buf_portname2);
				continue;
			}
			if (arg == "-inpad" && argidx+2 < args.size()) {
				inpad_celltype = args[++argidx];
				inpad_portname = args[++argidx];
				split_portname_pair(inpad_portname, inpad_portname2);
				continue;
			}
			break;
		}

		bool select = false;
		if (argidx < args.size()) {
			if (args[argidx].compare(0, 1, "-") != 0)
				select = true;
			extra_args(args, argidx, design);
		}

		if (buf_celltype.empty())
			log_error("The -buf option is required.\n");

		// Cell type, port name, bit index.
		pool<pair<IdString, pair<IdString, int>>> sink_ports;
		pool<pair<IdString, pair<IdString, int>>> buf_ports;
		dict<pair<IdString, pair<IdString, int>>, pair<IdString, int>> inv_ports_out;
		dict<pair<IdString, pair<IdString, int>>, pair<IdString, int>> inv_ports_in;

		// Process submodules before module using them.
		std::vector<Module *> modules_sorted;
		pool<Module *> modules_processed;
		for (auto module : design->selected_modules())
			module_queue(design, module, modules_sorted, modules_processed);

		for (auto module : modules_sorted)
		{
			if (module->get_blackbox_attribute()) {
				for (auto port : module->ports) {
					auto wire = module->wire(port);
					if (wire->get_bool_attribute(ID::clkbuf_driver))
						for (int i = 0; i < GetSize(wire); i++)
							buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
					if (wire->get_bool_attribute(ID::clkbuf_sink))
						for (int i = 0; i < GetSize(wire); i++)
							sink_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
					auto it = wire->attributes.find(ID::clkbuf_inv);
					if (it != wire->attributes.end()) {
						IdString in_name = RTLIL::escape_id(it->second.decode_string());
						for (int i = 0; i < GetSize(wire); i++) {
							inv_ports_out[make_pair(module->name, make_pair(wire->name, i))] = make_pair(in_name, i);
							inv_ports_in[make_pair(module->name, make_pair(in_name, i))] = make_pair(wire->name, i);
						}
					}
				}
				continue;
			}
			pool<SigBit> sink_wire_bits;
			pool<SigBit> buf_wire_bits;
			pool<SigBit> driven_wire_bits;
			SigMap sigmap(module);
			// bit -> (buffer, buffer's input)
			dict<SigBit, pair<Cell *, Wire *>> buffered_bits;

			// First, collect nets that could use a clock buffer.
			for (auto cell : module->cells())
			for (auto port : cell->connections())
			for (int i = 0; i < port.second.size(); i++)
				if (sink_ports.count(make_pair(cell->type, make_pair(port.first, i))))
					sink_wire_bits.insert(sigmap(port.second[i]));

			// Second, collect ones that already have a clock buffer.
			for (auto cell : module->cells())
			for (auto port : cell->connections())
			for (int i = 0; i < port.second.size(); i++)
				if (buf_ports.count(make_pair(cell->type, make_pair(port.first, i))))
					buf_wire_bits.insert(sigmap(port.second[i]));

			// Third, propagate tags through inverters.
			bool retry = true;
			while (retry) {
				retry = false;
				for (auto cell : module->cells())
				for (auto port : cell->connections())
				for (int i = 0; i < port.second.size(); i++) {
					auto it = inv_ports_out.find(make_pair(cell->type, make_pair(port.first, i)));
					auto bit = sigmap(port.second[i]);
					// If output of an inverter is connected to a sink, mark it as buffered,
					// and request a buffer on the inverter's input instead.
					if (it != inv_ports_out.end() && !buf_wire_bits.count(bit) && sink_wire_bits.count(bit)) {
						buf_wire_bits.insert(bit);
						auto other_bit = sigmap(cell->getPort(it->second.first)[it->second.second]);
						sink_wire_bits.insert(other_bit);
						retry = true;
					}
					// If input of an inverter is marked as already-buffered,
					// mark its output already-buffered as well.
					auto it2 = inv_ports_in.find(make_pair(cell->type, make_pair(port.first, i)));
					if (it2 != inv_ports_in.end() && buf_wire_bits.count(bit)) {
						auto other_bit = sigmap(cell->getPort(it2->second.first)[it2->second.second]);
						if (!buf_wire_bits.count(other_bit)) {
							buf_wire_bits.insert(other_bit);
							retry = true;
						}
					}

				}
			};

			// Collect all driven bits.
			for (auto cell : module->cells())
			for (auto port : cell->connections())
				if (cell->output(port.first))
					for (int i = 0; i < port.second.size(); i++)
						driven_wire_bits.insert(port.second[i]);

			// Insert buffers.
			std::vector<pair<Wire *, Wire *>> input_queue;
			// Copy current wire list, as we will be adding new ones during iteration.
			std::vector<Wire *> wires(module->wires());
			for (auto wire : wires)
			{
				// Should not happen.
				if (wire->port_input && wire->port_output)
					continue;
				bool process_wire = module->selected(wire);
				if (!select && wire->get_bool_attribute(ID::clkbuf_inhibit))
					process_wire = false;
				if (!process_wire) {
					// This wire is supposed to be bypassed, so make sure we don't buffer it in
					// some buffer higher up in the hierarchy.
					if (wire->port_output)
						for (int i = 0; i < GetSize(wire); i++)
							buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
					continue;
				}

				pool<int> input_bits;

				for (int i = 0; i < GetSize(wire); i++)
				{
					SigBit wire_bit(wire, i);
					SigBit mapped_wire_bit = sigmap(wire_bit);
					if (buf_wire_bits.count(mapped_wire_bit)) {
						// Already buffered downstream.  If this is an output, mark it.
						if (wire->port_output)
							buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
					} else if (!sink_wire_bits.count(mapped_wire_bit)) {
						// Nothing to do.
					} else if (driven_wire_bits.count(wire_bit) || (wire->port_input && module->get_bool_attribute(ID::top))) {
						// Clock network not yet buffered, driven by one of
						// our cells or a top-level input -- buffer it.

						log("Inserting %s on %s.%s[%d].\n", buf_celltype.c_str(), log_id(module), log_id(wire), i);
						RTLIL::Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(buf_celltype));
						Wire *iwire = module->addWire(NEW_ID);
						cell->setPort(RTLIL::escape_id(buf_portname), mapped_wire_bit);
						cell->setPort(RTLIL::escape_id(buf_portname2), iwire);
						if (wire->port_input && !inpad_celltype.empty() && module->get_bool_attribute(ID::top)) {
							log("Inserting %s on %s.%s[%d].\n", inpad_celltype.c_str(), log_id(module), log_id(wire), i);
							RTLIL::Cell *cell2 = module->addCell(NEW_ID, RTLIL::escape_id(inpad_celltype));
							cell2->setPort(RTLIL::escape_id(inpad_portname), iwire);
							iwire = module->addWire(NEW_ID);
							cell2->setPort(RTLIL::escape_id(inpad_portname2), iwire);
						}
						buffered_bits[mapped_wire_bit] = make_pair(cell, iwire);

						if (wire->port_input) {
							input_bits.insert(i);
						}
					} else if (wire->port_input) {
						// A clock input in a submodule -- mark it, let higher level
						// worry about it.
						if (wire->port_input)
							sink_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
					}
				}
				if (!input_bits.empty()) {
					// This is an input port and some buffers were inserted -- we need
					// to create a new input wire and transfer attributes.
					Wire *new_wire = module->addWire(NEW_ID, wire);

					for (int i = 0; i < wire->width; i++) {
						SigBit wire_bit(wire, i);
						SigBit mapped_wire_bit = sigmap(wire_bit);
						auto it = buffered_bits.find(mapped_wire_bit);
						if (it != buffered_bits.end()) {

							module->connect(it->second.second, SigSpec(new_wire, i));
						} else {
							module->connect(SigSpec(wire, i), SigSpec(new_wire, i));
						}
					}
					input_queue.push_back(make_pair(wire, new_wire));
				}
			}

			// Mark any newly-buffered output ports as such.
			for (auto wire : module->selected_wires()) {
				if (wire->port_input || !wire->port_output)
					continue;
				for (int i = 0; i < GetSize(wire); i++)
				{
					SigBit wire_bit(wire, i);
					SigBit mapped_wire_bit = sigmap(wire_bit);
					if (buffered_bits.count(mapped_wire_bit))
						buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
				}
			}

			// Reconnect the drivers to buffer inputs.
			for (auto cell : module->cells())
			for (auto port : cell->connections()) {
				if (!cell->output(port.first))
					continue;
				SigSpec sig = port.second;
				bool newsig = false;
				for (auto &bit : sig) {
					const auto it = buffered_bits.find(sigmap(bit));
					if (it == buffered_bits.end())
						continue;
					// Avoid substituting buffer's own output pin.
					if (cell == it->second.first)
						continue;
					bit = it->second.second;
					newsig = true;
				}
				if (newsig)
					cell->setPort(port.first, sig);
			}

			// This has to be done last, to avoid upsetting sigmap before the port reconnections.
			for (auto &it : input_queue) {
				Wire *wire = it.first;
				Wire *new_wire = it.second;
				module->swap_names(new_wire, wire);
				wire->attributes.clear();
				wire->port_id = 0;
				wire->port_input = false;
				wire->port_output = false;
			}

			module->fixup_ports();
		}
	}
} ClkbufmapPass;

PRIVATE_NAMESPACE_END