aboutsummaryrefslogtreecommitdiffstats
path: root/passes/techmap/abc9_ops.cc
blob: e1baf4e3de837f31c8fd694ba313142b6799b96f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *                2019  Eddie Hung <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
#include "kernel/timinginfo.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

int map_autoidx;

inline std::string remap_name(RTLIL::IdString abc9_name)
{
	return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}

void check(RTLIL::Design *design)
{
	dict<IdString,IdString> box_lookup;
	for (auto m : design->modules()) {
		if (m->name.begins_with("$paramod"))
			continue;

		auto flop = m->get_bool_attribute(ID(abc9_flop));
		auto it = m->attributes.find(ID(abc9_box_id));
		if (!flop) {
			if (it == m->attributes.end())
				continue;
			auto id = it->second.as_int();
			auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
			if (!r.second)
				log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
						log_id(m), id, log_id(r.first->second));
		}

		// Make carry in the last PI, and carry out the last PO
		//   since ABC requires it this way
		IdString carry_in, carry_out;
		for (const auto &port_name : m->ports) {
			auto w = m->wire(port_name);
			log_assert(w);
			if (w->get_bool_attribute("\\abc9_carry")) {
				if (w->port_input) {
					if (carry_in != IdString())
						log_error("Module '%s' contains more than one (* abc9_carry *) input port.\n", log_id(m));
					carry_in = port_name;
				}
				if (w->port_output) {
					if (carry_out != IdString())
						log_error("Module '%s' contains more than one (* abc9_carry *) output port.\n", log_id(m));
					carry_out = port_name;
				}
			}
		}

		if (carry_in != IdString() && carry_out == IdString())
			log_error("Module '%s' contains an (* abc9_carry *) input port but no output port.\n", log_id(m));
		if (carry_in == IdString() && carry_out != IdString())
			log_error("Module '%s' contains an (* abc9_carry *) output port but no input port.\n", log_id(m));

		if (flop) {
			int num_outputs = 0;
			for (auto port_name : m->ports) {
				auto wire = m->wire(port_name);
				if (wire->port_output) num_outputs++;
			}
			if (num_outputs != 1)
				log_error("Module '%s' with (* abc9_flop *) has %d outputs (expect 1).\n", log_id(m), num_outputs);
		}
	}
}

void mark_scc(RTLIL::Module *module)
{
	// For every unique SCC found, (arbitrarily) find the first
	//   cell in the component, and replace its output connections
	//   with a new wire driven by the old connection but with a
	//   special (* abc9_scc *) attribute set (which is used by
	//   write_xaiger to break this wire into PI and POs)
	pool<RTLIL::Const> ids_seen;
	for (auto cell : module->cells()) {
		auto it = cell->attributes.find(ID(abc9_scc_id));
		if (it == cell->attributes.end())
			continue;
		auto id = it->second;
		auto r = ids_seen.insert(id);
		cell->attributes.erase(it);
		if (!r.second)
			continue;
		for (auto &c : cell->connections_) {
			if (c.second.is_fully_const()) continue;
			if (cell->output(c.first)) {
				Wire *w = module->addWire(NEW_ID, GetSize(c.second));
				w->set_bool_attribute(ID(abc9_scc));
				module->connect(w, c.second);
				c.second = w;
			}
		}
	}
}

void prep_dff(RTLIL::Module *module)
{
	auto design = module->design;
	log_assert(design);

	SigMap assign_map(module);

	typedef SigSpec clkdomain_t;
	dict<clkdomain_t, int> clk_to_mergeability;

	for (auto cell : module->cells()) {
		if (cell->type != "$__ABC9_FF_")
			continue;

		Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
		if (abc9_clock_wire == NULL)
			log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
		SigSpec abc9_clock = assign_map(abc9_clock_wire);

		clkdomain_t key(abc9_clock);

		auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
		auto r2  = cell->attributes.insert(ID(abc9_mergeability));;
		log_assert(r2.second);
		r2.first->second = r.first->second;
	}

	RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
	if (holes_module) {
		SigMap sigmap(holes_module);

		dict<SigSpec, SigSpec> replace;
		for (auto cell : holes_module->cells().to_vector()) {
			if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
						"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_"))
				continue;
			SigBit D = cell->getPort("\\D");
			SigBit Q = cell->getPort("\\Q");
			// Emulate async control embedded inside $_DFF_* cell with mux in front of D
			if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_"))
				D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R"));
			else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_"))
				D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R"));
			else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_"))
				D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R"));
			else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_"))
				D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R"));
			// Remove the $_DFF_* cell from what needs to be a combinatorial box
			holes_module->remove(cell);
			Wire *port;
			if (GetSize(Q.wire) == 1)
				port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
			else
				port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
			log_assert(port);
			// Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
			//   in order to extract just the combinatorial control logic that feeds the box
			//   (i.e. clock enable, synchronous reset, etc.)
			replace.insert(std::make_pair(Q,D));
			// Since `flatten` above would have created wires named "<cell>.Q",
			//   extract the pre-techmap cell name
			auto pos = Q.wire->name.str().rfind(".");
			log_assert(pos != std::string::npos);
			IdString driver = Q.wire->name.substr(0, pos);
			// And drive the signal that was previously driven by "DFF.Q" (typically
			//   used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
			//   wire (which itself is driven an by input port) we inserted above
			Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
			log_assert(currQ);
			holes_module->connect(Q, currQ);
		}

		for (auto &conn : holes_module->connections_)
			conn.second = replace.at(sigmap(conn.second), conn.second);
	}
}

void prep_xaiger(RTLIL::Module *module, bool dff)
{
	auto design = module->design;
	log_assert(design);

	SigMap sigmap(module);

	dict<SigBit, pool<IdString>> bit_drivers, bit_users;
	TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
	dict<IdString, std::vector<IdString>> box_ports;

	for (auto cell : module->cells()) {
		if (cell->type == "$__ABC9_FF_")
			continue;
		if (cell->has_keep_attr())
			continue;

		auto inst_module = module->design->module(cell->type);
		bool abc9_flop = inst_module && inst_module->get_bool_attribute("\\abc9_flop");
		if (abc9_flop && !dff)
			continue;

		if ((inst_module && inst_module->get_bool_attribute("\\abc9_box")) || abc9_flop) {
			auto r = box_ports.insert(cell->type);
			if (r.second) {
				// Make carry in the last PI, and carry out the last PO
				//   since ABC requires it this way
				IdString carry_in, carry_out;
				for (const auto &port_name : inst_module->ports) {
					auto w = inst_module->wire(port_name);
					log_assert(w);
					if (w->get_bool_attribute("\\abc9_carry")) {
						log_assert(w->port_input != w->port_output);
						if (w->port_input)
							carry_in = port_name;
						else if (w->port_output)
							carry_out = port_name;
					}
					else
						r.first->second.push_back(port_name);
				}
				if (carry_in != IdString()) {
					r.first->second.push_back(carry_in);
					r.first->second.push_back(carry_out);
				}
			}
		}
		else if (!yosys_celltypes.cell_known(cell->type))
			continue;

		// TODO: Speed up toposort -- we care about box ordering only
		for (auto conn : cell->connections()) {
			if (cell->input(conn.first))
				for (auto bit : sigmap(conn.second))
					bit_users[bit].insert(cell->name);

			if (cell->output(conn.first) && !abc9_flop)
				for (auto bit : sigmap(conn.second))
					bit_drivers[bit].insert(cell->name);
		}
		toposort.node(cell->name);
	}

	if (box_ports.empty())
		return;

	for (auto &it : bit_users)
		if (bit_drivers.count(it.first))
			for (auto driver_cell : bit_drivers.at(it.first))
				for (auto user_cell : it.second)
					toposort.edge(driver_cell, user_cell);

	if (ys_debug(1))
		toposort.analyze_loops = true;

	bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();

	if (ys_debug(1)) {
		unsigned i = 0;
		for (auto &it : toposort.loops) {
			log("  loop %d\n", i++);
			for (auto cell_name : it) {
				auto cell = module->cell(cell_name);
				log_assert(cell);
				log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
			}
		}
	}

	log_assert(no_loops);

	RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
	log_assert(holes_module);
	holes_module->set_bool_attribute("\\abc9_holes");

	dict<IdString, Cell*> cell_cache;
	TimingInfo timing;

	int port_id = 1, box_count = 0;
	for (auto cell_name : toposort.sorted) {
		RTLIL::Cell *cell = module->cell(cell_name);
		log_assert(cell);

		RTLIL::Module* box_module = design->module(cell->type);
		if (!box_module || (!box_module->get_bool_attribute("\\abc9_box") && !box_module->get_bool_attribute("\\abc9_flop")))
			continue;

		cell->attributes["\\abc9_box_seq"] = box_count++;

		IdString derived_type = box_module->derive(design, cell->parameters);
		box_module = design->module(derived_type);

		auto r = cell_cache.insert(derived_type);
		auto &holes_cell = r.first->second;
		if (r.second) {
			if (box_module->has_processes())
				Pass::call_on_module(design, box_module, "proc");

			if (box_module->get_bool_attribute("\\whitebox")) {
				holes_cell = holes_module->addCell(cell->name, derived_type);

				if (box_module->has_processes())
					Pass::call_on_module(design, box_module, "proc");

				int box_inputs = 0;
				for (auto port_name : box_ports.at(cell->type)) {
					RTLIL::Wire *w = box_module->wire(port_name);
					log_assert(w);
					log_assert(!w->port_input || !w->port_output);
					auto &conn = holes_cell->connections_[port_name];
					if (w->port_input) {
						for (int i = 0; i < GetSize(w); i++) {
							box_inputs++;
							RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
							if (!holes_wire) {
								holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
								holes_wire->port_input = true;
								holes_wire->port_id = port_id++;
								holes_module->ports.push_back(holes_wire->name);
							}
							conn.append(holes_wire);
						}
					}
					else if (w->port_output)
						conn = holes_module->addWire(stringf("%s.%s", derived_type.c_str(), log_id(port_name)), GetSize(w));
				}

				// For flops only, create an extra 1-bit input that drives a new wire
				//   called "<cell>.abc9_ff.Q" that is used below
				if (box_module->get_bool_attribute("\\abc9_flop")) {
					box_inputs++;
					Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
					if (!holes_wire) {
						holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
						holes_wire->port_input = true;
						holes_wire->port_id = port_id++;
						holes_module->ports.push_back(holes_wire->name);
					}
					Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
					holes_module->connect(Q, holes_wire);
				}
			}
			else // box_module is a blackbox
				log_assert(holes_cell == nullptr);
		}

		for (auto port_name : box_ports.at(cell->type)) {
			RTLIL::Wire *w = box_module->wire(port_name);
			log_assert(w);
			if (!w->port_output)
				continue;
			Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
			holes_wire->port_output = true;
			holes_wire->port_id = port_id++;
			holes_module->ports.push_back(holes_wire->name);
			if (holes_cell) // whitebox
				holes_module->connect(holes_wire, holes_cell->getPort(port_name));
			else // blackbox
				holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
		}
	}
}

void prep_delays(RTLIL::Design *design, bool dff_mode)
{
	TimingInfo timing;

	// Derive all Yosys blackbox modules that are not combinatorial abc9 boxes
	//   (e.g. DSPs, RAMs, etc.) nor abc9 flops and collect all such instantiations
	pool<Module*> flops;
	std::vector<Cell*> cells;
	for (auto module : design->selected_modules()) {
		if (module->processes.size() > 0) {
			log("Skipping module %s as it contains processes.\n", log_id(module));
			continue;
		}

		for (auto cell : module->cells()) {
			if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_), ID($__ABC9_DELAY)))
				continue;

			RTLIL::Module* inst_module = module->design->module(cell->type);
			if (!inst_module)
				continue;
			if (!inst_module->get_blackbox_attribute())
				continue;
			if (inst_module->attributes.count(ID(abc9_box)))
				continue;
			IdString derived_type = inst_module->derive(design, cell->parameters);
			inst_module = design->module(derived_type);
			log_assert(inst_module);

			if (dff_mode && inst_module->get_bool_attribute(ID(abc9_flop))) {
				flops.insert(inst_module);
				continue; // do not add $__ABC9_DELAY boxes to flops
				//   as delays will be captured in the flop box
			}

			if (!timing.count(derived_type))
				timing.setup_module(inst_module);

			cells.emplace_back(cell);
		}
	}

	// Insert $__ABC9_DELAY cells on all cells that instantiate blackboxes
	//   with required times
	for (auto cell : cells) {
		auto module = cell->module;
		RTLIL::Module* inst_module = module->design->module(cell->type);
		log_assert(inst_module);
		IdString derived_type = inst_module->derive(design, cell->parameters);
		inst_module = design->module(derived_type);
		log_assert(inst_module);

		auto &t = timing.at(derived_type).required;
		for (auto &conn : cell->connections_) {
			auto port_wire = inst_module->wire(conn.first);
			if (!port_wire->port_input)
				continue;

			SigSpec O = module->addWire(NEW_ID, GetSize(conn.second));
			for (int i = 0; i < GetSize(conn.second); i++) {
				auto d = t.at(TimingInfo::NameBit(conn.first,i), 0);
				if (d == 0)
					continue;

#ifndef NDEBUG
				if (ys_debug(1)) {
					static std::set<std::tuple<IdString,IdString,int>> seen;
					if (seen.emplace(derived_type, conn.first, i).second) log("%s.%s[%d] abc9_required = %d\n",
							log_id(cell->type), log_id(conn.first), i, d);
				}
#endif
				auto box = module->addCell(NEW_ID, ID($__ABC9_DELAY));
				box->setPort(ID(I), conn.second[i]);
				box->setPort(ID(O), O[i]);
				box->setParam(ID(DELAY), d);
				conn.second[i] = O[i];
			}
		}
	}
}

void prep_lut(RTLIL::Design *design, int maxlut)
{
	TimingInfo timing;

	std::vector<std::tuple<int, IdString, int, std::vector<int>>> table;
	for (auto module : design->modules()) {
		auto it = module->attributes.find(ID(abc9_lut));
		if (it == module->attributes.end())
			continue;

		auto &t = timing.setup_module(module);

		TimingInfo::NameBit o;
		std::vector<int> specify;
		for (const auto &i : t.comb) {
			auto &d = i.first.second;
			if (o == TimingInfo::NameBit())
				o = d;
			else if (o != d)
				log_error("(* abc9_lut *) module '%s' with has more than one output.\n", log_id(module));
			specify.push_back(i.second);
		}

		if (maxlut && GetSize(specify) > maxlut)
			continue;
		// ABC requires non-decreasing LUT input delays
		std::sort(specify.begin(), specify.end());
		table.emplace_back(GetSize(specify), module->name, it->second.as_int(), std::move(specify));
	}
	// ABC requires ascending size
	std::sort(table.begin(), table.end());

	std::stringstream ss;
	const auto &first = table.front();
	// If the first entry does not start from a 1-input LUT,
	//   (as ABC requires) crop the first entry to do so
	for (int i = 1; i < std::get<0>(first); i++) {
		ss << "# $__ABC9_LUT" << i << std::endl;
		ss << i << " " << std::get<2>(first);
		for (int j = 0; j < i; j++)
			ss << " " << std::get<3>(first)[j];
		ss << std::endl;
	}
	for (const auto &i : table) {
		ss << "# " << log_id(std::get<1>(i)) << std::endl;
		ss << std::get<0>(i) << " " << std::get<2>(i);
		for (const auto &j : std::get<3>(i))
			ss << " " << j;
		ss << std::endl;
	}
	design->scratchpad_set_string("abc9_ops.lut_library", ss.str());
}

void write_lut(RTLIL::Module *module, const std::string &dst) {
	std::ofstream ofs(dst);
	log_assert(ofs.is_open());
	ofs << module->design->scratchpad_get_string("abc9_ops.lut_library");
	ofs.close();
}

void prep_box(RTLIL::Design *design, bool dff_mode)
{
	TimingInfo timing;

	std::stringstream ss;
	int abc9_box_id = 1;
	for (auto module : design->modules()) {
		auto it = module->attributes.find(ID(abc9_box_id));
		if (it == module->attributes.end())
			continue;
		abc9_box_id = std::max(abc9_box_id, it->second.as_int());
	}

	dict<IdString,std::vector<IdString>> box_ports;
	for (auto module : design->modules()) {
		auto abc9_flop = module->get_bool_attribute(ID(abc9_flop));
		if (abc9_flop) {
			auto r = module->attributes.insert(ID(abc9_box_id));
			if (!r.second)
				continue;
			r.first->second = abc9_box_id++;

			if (dff_mode) {
				int num_inputs = 0, num_outputs = 0;
				for (auto port_name : module->ports) {
					auto wire = module->wire(port_name);
					log_assert(GetSize(wire) == 1);
					if (wire->port_input) num_inputs++;
					if (wire->port_output) num_outputs++;
				}
				log_assert(num_outputs == 1);

				ss << log_id(module) << " " << r.first->second.as_int();
				ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0");
				ss << " " << num_inputs+1 << " " << num_outputs << std::endl;

				ss << "#";
				bool first = true;
				for (auto port_name : module->ports) {
					auto wire = module->wire(port_name);
					if (!wire->port_input)
						continue;
					if (first)
						first = false;
					else
						ss << " ";
					ss << log_id(wire);
				}
				ss << " abc9_ff.Q" << std::endl;

				auto &t = timing.setup_module(module).required;
				first = true;
				for (auto port_name : module->ports) {
					auto wire = module->wire(port_name);
					if (!wire->port_input)
						continue;
					if (first)
						first = false;
					else
						ss << " ";
					log_assert(GetSize(wire) == 1);
					auto it = t.find(TimingInfo::NameBit(port_name,0));
					if (it == t.end())
						// Assume that no setup time means zero
						ss << 0;
					else {
						ss << it->second;

#ifndef NDEBUG
						if (ys_debug(1)) {
							static std::set<std::pair<IdString,IdString>> seen;
							if (seen.emplace(module->name, port_name).second) log("%s.%s abc9_required = %d\n", log_id(module),
									log_id(port_name), it->second);
						}
#endif
					}

				}
				// Last input is 'abc9_ff.Q'
				ss << " 0" << std::endl << std::endl;
				continue;
			}
		}
		else {
			if (!module->attributes.erase(ID(abc9_box)))
				continue;

			auto r = module->attributes.insert(ID(abc9_box_id));
			if (!r.second)
				continue;
			r.first->second = abc9_box_id++;
		}

		auto r = box_ports.insert(module->name);
		if (r.second) {
			// Make carry in the last PI, and carry out the last PO
			//   since ABC requires it this way
			IdString carry_in, carry_out;
			for (const auto &port_name : module->ports) {
				auto w = module->wire(port_name);
				log_assert(w);
				if (w->get_bool_attribute("\\abc9_carry")) {
					log_assert(w->port_input != w->port_output);
					if (w->port_input)
						carry_in = port_name;
					else if (w->port_output)
						carry_out = port_name;
				}
				else
					r.first->second.push_back(port_name);
			}

			if (carry_in != IdString()) {
				r.first->second.push_back(carry_in);
				r.first->second.push_back(carry_out);
			}
		}

		std::vector<SigBit> inputs;
		std::vector<SigBit> outputs;
		for (auto port_name : r.first->second) {
			auto wire = module->wire(port_name);
			if (wire->port_input)
				for (int i = 0; i < GetSize(wire); i++)
					inputs.emplace_back(wire, i);
			if (wire->port_output)
				for (int i = 0; i < GetSize(wire); i++)
					outputs.emplace_back(wire, i);
		}

		ss << log_id(module) << " " << module->attributes.at(ID(abc9_box_id)).as_int();
		ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0");
		ss << " " << GetSize(inputs) << " " << GetSize(outputs) << std::endl;

		bool first = true;
		ss << "#";
		for (const auto &i : inputs) {
			if (first)
				first = false;
			else
				ss << " ";
			if (GetSize(i.wire) == 1)
				ss << log_id(i.wire);
			else
				ss << log_id(i.wire) << "[" << i.offset << "]";
		}
		ss << std::endl;

		auto &t = timing.setup_module(module).comb;
		if (!abc9_flop && t.empty())
			log_warning("(* abc9_box *) module '%s' has no timing (and thus no connectivity) information.\n", log_id(module));

		for (const auto &o : outputs) {
			first = true;
			for (const auto &i : inputs) {
				if (first)
					first = false;
				else
					ss << " ";
				auto jt = t.find(TimingInfo::BitBit(i,o));
				if (jt == t.end())
					ss << "-";
				else
					ss << jt->second;
			}
			ss << " # ";
			if (GetSize(o.wire) == 1)
				ss << log_id(o.wire);
			else
				ss << log_id(o.wire) << "[" << o.offset << "]";
			ss << std::endl;

		}
		ss << std::endl;
	}

	// ABC expects at least one box
	if (ss.tellp() == 0)
		ss << "(dummy) 1 0 0 0";

	design->scratchpad_set_string("abc9_ops.box_library", ss.str());
}

void write_box(RTLIL::Module *module, const std::string &dst) {
	std::ofstream ofs(dst);
	log_assert(ofs.is_open());
	ofs << module->design->scratchpad_get_string("abc9_ops.box_library");
	ofs.close();
}

void reintegrate(RTLIL::Module *module)
{
	auto design = module->design;
	log_assert(design);

	map_autoidx = autoidx++;

	RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
	if (mapped_mod == NULL)
		log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));

	for (auto w : mapped_mod->wires())
		module->addWire(remap_name(w->name), GetSize(w));

	dict<IdString,std::vector<IdString>> box_ports;

	for (auto m : design->modules()) {
		if (!m->attributes.count(ID(abc9_box_id)))
			continue;

		auto r = box_ports.insert(m->name);
		if (!r.second)
			continue;

		// Make carry in the last PI, and carry out the last PO
		//   since ABC requires it this way
		IdString carry_in, carry_out;
		for (const auto &port_name : m->ports) {
			auto w = m->wire(port_name);
			log_assert(w);
			if (w->get_bool_attribute("\\abc9_carry")) {
				log_assert(w->port_input != w->port_output);
				if (w->port_input)
					carry_in = port_name;
				else if (w->port_output)
					carry_out = port_name;
			}
			else
				r.first->second.push_back(port_name);
		}

		if (carry_in != IdString()) {
			r.first->second.push_back(carry_in);
			r.first->second.push_back(carry_out);
		}
	}

	std::vector<Cell*> boxes;
	for (auto cell : module->cells().to_vector()) {
		if (cell->has_keep_attr())
			continue;
		if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
			module->remove(cell);
		else if (cell->attributes.erase("\\abc9_box_seq"))
			boxes.emplace_back(cell);
	}

	dict<SigBit, pool<IdString>> bit_drivers, bit_users;
	TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
	dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
	dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;

	std::map<IdString, int> cell_stats;
	for (auto mapped_cell : mapped_mod->cells())
	{
		// TODO: Speed up toposort -- we care about NOT ordering only
		toposort.node(mapped_cell->name);

		if (mapped_cell->type == ID($_NOT_)) {
			RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
			RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
			bit_users[a_bit].insert(mapped_cell->name);
			// Ignore inouts for topo ordering
			if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
				bit_drivers[y_bit].insert(mapped_cell->name);

			if (!a_bit.wire) {
				mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
				RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
				log_assert(wire);
				module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
			}
			else {
				RTLIL::Cell* driver_lut = nullptr;
				// ABC can return NOT gates that drive POs
				if (!a_bit.wire->port_input) {
					// If it's not a NOT gate that that comes from a PI directly,
					// find the driver LUT and clone that to guarantee that we won't
					// increase the max logic depth
					// (TODO: Optimise by not cloning unless will increase depth)
					RTLIL::IdString driver_name;
					if (GetSize(a_bit.wire) == 1)
						driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
					else
						driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
					driver_lut = mapped_mod->cell(driver_name);
				}

				if (!driver_lut) {
					// If a driver couldn't be found (could be from PI or box CI)
					// then implement using a LUT
					RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
							RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
							RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
							RTLIL::Const::from_string("01"));
					bit2sinks[cell->getPort(ID::A)].push_back(cell);
					cell_stats[ID($lut)]++;
				}
				else
					not2drivers[mapped_cell] = driver_lut;
			}
			continue;
		}

		if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
			RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
			cell->parameters = mapped_cell->parameters;
			cell->attributes = mapped_cell->attributes;

			for (auto &mapped_conn : mapped_cell->connections()) {
				RTLIL::SigSpec newsig;
				for (auto c : mapped_conn.second.chunks()) {
					if (c.width == 0)
						continue;
					//log_assert(c.width == 1);
					if (c.wire)
						c.wire = module->wires_.at(remap_name(c.wire->name));
					newsig.append(c);
				}
				cell->setPort(mapped_conn.first, newsig);

				if (cell->input(mapped_conn.first)) {
					for (auto i : newsig)
						bit2sinks[i].push_back(cell);
					for (auto i : mapped_conn.second)
						bit_users[i].insert(mapped_cell->name);
				}
				if (cell->output(mapped_conn.first))
					for (auto i : mapped_conn.second)
						// Ignore inouts for topo ordering
						if (i.wire && !(i.wire->port_input && i.wire->port_output))
							bit_drivers[i].insert(mapped_cell->name);
			}
		}
		else {
			RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
			if (!existing_cell)
				log_error("Cannot find existing box cell with name '%s' in original design.\n", log_id(mapped_cell));

			if (existing_cell->type == ID($__ABC9_DELAY)) {
				SigBit I = mapped_cell->getPort(ID(i));
				SigBit O = mapped_cell->getPort(ID(o));
				if (I.wire)
					I.wire = module->wires_.at(remap_name(I.wire->name));
				log_assert(O.wire);
				O.wire = module->wires_.at(remap_name(O.wire->name));
				module->connect(O, I);
				continue;
			}

			RTLIL::Module* box_module = design->module(existing_cell->type);
			IdString derived_type = box_module->derive(design, existing_cell->parameters);
			RTLIL::Module* derived_module = design->module(derived_type);
			log_assert(derived_module);
			log_assert(mapped_cell->type == stringf("$__boxid%d", derived_module->attributes.at("\\abc9_box_id").as_int()));
			mapped_cell->type = existing_cell->type;

			RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
			cell->parameters = existing_cell->parameters;
			cell->attributes = existing_cell->attributes;
			module->swap_names(cell, existing_cell);

			auto jt = mapped_cell->connections_.find("\\i");
			log_assert(jt != mapped_cell->connections_.end());
			SigSpec inputs = std::move(jt->second);
			mapped_cell->connections_.erase(jt);
			jt = mapped_cell->connections_.find("\\o");
			log_assert(jt != mapped_cell->connections_.end());
			SigSpec outputs = std::move(jt->second);
			mapped_cell->connections_.erase(jt);

			auto abc9_flop = box_module->attributes.count("\\abc9_flop");
			if (!abc9_flop) {
				for (const auto &i : inputs)
					bit_users[i].insert(mapped_cell->name);
				for (const auto &i : outputs)
					// Ignore inouts for topo ordering
					if (i.wire && !(i.wire->port_input && i.wire->port_output))
						bit_drivers[i].insert(mapped_cell->name);
			}

			int input_count = 0, output_count = 0;
			for (const auto &port_name : box_ports.at(derived_type)) {
				RTLIL::Wire *w = box_module->wire(port_name);
				log_assert(w);

				SigSpec sig;
				if (w->port_input) {
					sig = inputs.extract(input_count, GetSize(w));
					input_count += GetSize(w);
				}
				if (w->port_output) {
					sig = outputs.extract(output_count, GetSize(w));
					output_count += GetSize(w);
				}

				SigSpec newsig;
				for (auto c : sig.chunks()) {
					if (c.width == 0)
						continue;
					//log_assert(c.width == 1);
					if (c.wire)
						c.wire = module->wires_.at(remap_name(c.wire->name));
					newsig.append(c);
				}
				cell->setPort(port_name, newsig);

				if (w->port_input && !abc9_flop)
					for (const auto &i : newsig)
						bit2sinks[i].push_back(cell);
			}
		}

		cell_stats[mapped_cell->type]++;
	}

	for (auto cell : boxes)
		module->remove(cell);

	// Copy connections (and rename) from mapped_mod to module
	for (auto conn : mapped_mod->connections()) {
		if (!conn.first.is_fully_const()) {
			auto chunks = conn.first.chunks();
			for (auto &c : chunks)
				c.wire = module->wires_.at(remap_name(c.wire->name));
			conn.first = std::move(chunks);
		}
		if (!conn.second.is_fully_const()) {
			auto chunks = conn.second.chunks();
			for (auto &c : chunks)
				if (c.wire)
					c.wire = module->wires_.at(remap_name(c.wire->name));
			conn.second = std::move(chunks);
		}
		module->connect(conn);
	}

	for (auto &it : cell_stats)
		log("ABC RESULTS:   %15s cells: %8d\n", it.first.c_str(), it.second);
	int in_wires = 0, out_wires = 0;

	// Stitch in mapped_mod's inputs/outputs into module
	for (auto port : mapped_mod->ports) {
		RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
		RTLIL::Wire *wire = module->wire(port);
		log_assert(wire);
		wire->attributes.erase(ID(abc9_scc));

		RTLIL::Wire *remap_wire = module->wire(remap_name(port));
		RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
		log_assert(GetSize(signal) >= GetSize(remap_wire));

		RTLIL::SigSig conn;
		if (mapped_wire->port_output) {
			conn.first = signal;
			conn.second = remap_wire;
			out_wires++;
			module->connect(conn);
		}
		else if (mapped_wire->port_input) {
			conn.first = remap_wire;
			conn.second = signal;
			in_wires++;
			module->connect(conn);
		}
	}

	// ABC9 will return $_NOT_ gates in its mapping (since they are
	//   treated as being "free"), in particular driving primary
	//   outputs (real primary outputs, or cells treated as blackboxes)
	//   or driving box inputs.
	// Instead of just mapping those $_NOT_ gates into 2-input $lut-s
	//   at an area and delay cost, see if it is possible to push
	//   this $_NOT_ into the driving LUT, or into all sink LUTs.
	// When this is not possible, (i.e. this signal drives two primary
	//   outputs, only one of which is complemented) and when the driver
	//   is a LUT, then clone the LUT so that it can be inverted without
	//   increasing depth/delay.
	for (auto &it : bit_users)
		if (bit_drivers.count(it.first))
			for (auto driver_cell : bit_drivers.at(it.first))
			for (auto user_cell : it.second)
				toposort.edge(driver_cell, user_cell);
	bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
	log_assert(no_loops);

	for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
		RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
		log_assert(not_cell);
		if (not_cell->type != ID($_NOT_))
			continue;
		auto it = not2drivers.find(not_cell);
		if (it == not2drivers.end())
			continue;
		RTLIL::Cell *driver_lut = it->second;
		RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
		RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
		RTLIL::Const driver_mask;

		a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
		y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));

		auto jt = bit2sinks.find(a_bit);
		if (jt == bit2sinks.end())
			goto clone_lut;

		for (auto sink_cell : jt->second)
			if (sink_cell->type != ID($lut))
				goto clone_lut;

		// Push downstream LUTs past inverter
		for (auto sink_cell : jt->second) {
			SigSpec A = sink_cell->getPort(ID::A);
			RTLIL::Const mask = sink_cell->getParam(ID(LUT));
			int index = 0;
			for (; index < GetSize(A); index++)
				if (A[index] == a_bit)
					break;
			log_assert(index < GetSize(A));
			int i = 0;
			while (i < GetSize(mask)) {
				for (int j = 0; j < (1 << index); j++)
					std::swap(mask[i+j], mask[i+j+(1 << index)]);
				i += 1 << (index+1);
			}
			A[index] = y_bit;
			sink_cell->setPort(ID::A, A);
			sink_cell->setParam(ID(LUT), mask);
		}

		// Since we have rewritten all sinks (which we know
		// to be only LUTs) to be after the inverter, we can
		// go ahead and clone the LUT with the expectation
		// that the original driving LUT will become dangling
		// and get cleaned away
clone_lut:
		driver_mask = driver_lut->getParam(ID(LUT));
		for (auto &b : driver_mask.bits) {
			if (b == RTLIL::State::S0) b = RTLIL::State::S1;
			else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
		}
		auto cell = module->addLut(NEW_ID,
				driver_lut->getPort(ID::A),
				y_bit,
				driver_mask);
		for (auto &bit : cell->connections_.at(ID::A)) {
			bit.wire = module->wires_.at(remap_name(bit.wire->name));
			bit2sinks[bit].push_back(cell);
		}
	}

	//log("ABC RESULTS:        internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
	log("ABC RESULTS:           input signals: %8d\n", in_wires);
	log("ABC RESULTS:          output signals: %8d\n", out_wires);

	design->remove(mapped_mod);
}

struct Abc9OpsPass : public Pass {
	Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    abc9_ops [options] [selection]\n");
		log("\n");
		log("This pass contains a set of supporting operations for use during ABC technology\n");
		log("mapping, and is expected to be called in conjunction with other operations from\n");
		log("the `abc9' script pass. Only fully-selected modules are supported.\n");
		log("\n");
		log("    -check\n");
		log("        check that the design is valid, e.g. (* abc9_box_id *) values are unique,\n");
		log("        (* abc9_carry *) is only given for one input/output port, etc.\n");
		log("\n");
		log("    -prep_delays\n");
		log("        insert `$__ABC9_DELAY' blackbox cells into the design to account for\n");
		log("        certain required times.\n");
		log("\n");
		log("    -mark_scc\n");
		log("        for an arbitrarily chosen cell in each unique SCC of each selected module\n");
		log("        (tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all\n");
		log("        wires driven by this cell's outputs with a (* keep *) attribute in order\n");
		log("        to break the SCC. this temporary attribute will be removed on -reintegrate.\n");
		log("\n");
		log("    -prep_xaiger\n");
		log("        prepare the design for XAIGER output. this includes computing the\n");
		log("        topological ordering of ABC9 boxes, as well as preparing the\n");
		log("        '<module-name>$holes' module that contains the logic behaviour of ABC9\n");
		log("        whiteboxes.\n");
		log("\n");
		log("    -dff\n");
		log("        consider flop cells (those instantiating modules marked with (* abc9_flop *))\n");
		log("        during -prep_{delays,xaiger,box}.\n");
		log("\n");
		log("    -prep_dff\n");
		log("        compute the clock domain and initial value of each flop in the design.\n");
		log("        process the '$holes' module to support clock-enable functionality.\n");
		log("\n");
		log("    -prep_lut <maxlut>\n");
		log("        pre-compute the lut library by analysing all modules marked with\n");
		log("        (* abc9_lut=<area> *).\n");
		log("\n");
		log("    -write_lut <dst>\n");
		log("        write the pre-computed lut library to <dst>.\n");
		log("\n");
		log("    -prep_box\n");
		log("        pre-compute the box library by analysing all modules marked with\n");
		log("        (* abc9_box *).\n");
		log("\n");
		log("    -write_box <dst>\n");
		log("        write the pre-computed box library to <dst>.\n");
		log("\n");
		log("    -reintegrate\n");
		log("        for each selected module, re-intergrate the module '<module-name>$abc9'\n");
		log("        by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
		log("        inputs and outputs.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");

		bool check_mode = false;
		bool prep_delays_mode = false;
		bool mark_scc_mode = false;
		bool prep_dff_mode = false;
		bool prep_xaiger_mode = false;
		bool prep_lut_mode = false;
		bool prep_box_mode = false;
		bool reintegrate_mode = false;
		bool dff_mode = false;
		std::string write_lut_dst;
		int maxlut = 0;
		std::string write_box_dst;

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-check") {
				check_mode = true;
				continue;
			}
			if (arg == "-mark_scc") {
				mark_scc_mode = true;
				continue;
			}
			if (arg == "-prep_dff") {
				prep_dff_mode = true;
				continue;
			}
			if (arg == "-prep_xaiger") {
				prep_xaiger_mode = true;
				continue;
			}
			if (arg == "-prep_delays") {
				prep_delays_mode = true;
				continue;
			}
			if (arg == "-prep_lut" && argidx+1 < args.size()) {
				prep_lut_mode = true;
				maxlut = atoi(args[++argidx].c_str());
				continue;
			}
			if (arg == "-maxlut" && argidx+1 < args.size()) {
				continue;
			}
			if (arg == "-write_lut" && argidx+1 < args.size()) {
				write_lut_dst = args[++argidx];
				rewrite_filename(write_lut_dst);
				continue;
			}
			if (arg == "-prep_box") {
				prep_box_mode = true;
				continue;
			}
			if (arg == "-write_box" && argidx+1 < args.size()) {
				write_box_dst = args[++argidx];
				rewrite_filename(write_box_dst);
				continue;
			}
			if (arg == "-reintegrate") {
				reintegrate_mode = true;
				continue;
			}
			if (arg == "-dff") {
				dff_mode = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		if (!(check_mode || mark_scc_mode || prep_delays_mode || prep_xaiger_mode || prep_dff_mode || prep_lut_mode || prep_box_mode || !write_lut_dst.empty() || !write_box_dst.empty() || reintegrate_mode))
			log_cmd_error("At least one of -check, -mark_scc, -prep_{delays,xaiger,dff,lut,box}, -write_{lut,box}, -reintegrate must be specified.\n");

		if (dff_mode && !prep_delays_mode && !prep_xaiger_mode && !prep_box_mode)
			log_cmd_error("'-dff' option is only relevant for -prep_{delay,xaiger,box}.\n");

		if (check_mode)
			check(design);
		if (prep_delays_mode)
			prep_delays(design, dff_mode);
		if (prep_lut_mode)
			prep_lut(design, maxlut);
		if (prep_box_mode)
			prep_box(design, dff_mode);

		for (auto mod : design->selected_modules()) {
			if (mod->get_bool_attribute("\\abc9_holes"))
				continue;

			if (mod->processes.size() > 0) {
				log("Skipping module %s as it contains processes.\n", log_id(mod));
				continue;
			}

			if (!design->selected_whole_module(mod))
				log_error("Can't handle partially selected module %s!\n", log_id(mod));

			if (!write_lut_dst.empty())
				write_lut(mod, write_lut_dst);
			if (!write_box_dst.empty())
				write_box(mod, write_box_dst);
			if (mark_scc_mode)
				mark_scc(mod);
			if (prep_dff_mode)
				prep_dff(mod);
			if (prep_xaiger_mode)
				prep_xaiger(mod, dff_mode);
			if (reintegrate_mode)
				reintegrate(mod);
		}
	}
} Abc9OpsPass;

PRIVATE_NAMESPACE_END