aboutsummaryrefslogtreecommitdiffstats
path: root/passes/techmap/abc9_ops.cc
blob: 750f36ceb43908f76cfe9a3fe4d1a20d15615f02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *                2019  Eddie Hung <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

int map_autoidx;

inline std::string remap_name(RTLIL::IdString abc9_name)
{
	return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}

void mark_scc(RTLIL::Module *module)
{
	// For every unique SCC found, (arbitrarily) find the first
	//   cell in the component, and convert all wires driven by
	//   its output ports into a new PO, and drive its previous
	//   sinks with a new PI
	pool<RTLIL::Const> ids_seen;
	for (auto cell : module->cells()) {
		auto it = cell->attributes.find(ID(abc9_scc_id));
		if (it == cell->attributes.end())
			continue;
		auto id = it->second;
		auto r = ids_seen.insert(id);
		cell->attributes.erase(it);
		if (!r.second)
			continue;
		for (auto &c : cell->connections_) {
			if (c.second.is_fully_const()) continue;
			if (cell->output(c.first)) {
				SigBit b = c.second.as_bit();
				Wire *w = b.wire;
				w->set_bool_attribute(ID::keep);
				w->attributes[ID(abc9_scc_id)] = id.as_int();
			}
		}
	}

	module->fixup_ports();
}

void prep_dff(RTLIL::Module *module)
{
	auto design = module->design;
	log_assert(design);

	SigMap assign_map(module);

	typedef SigSpec clkdomain_t;
	dict<clkdomain_t, int> clk_to_mergeability;

	for (auto cell : module->cells()) {
		if (cell->type != "$__ABC9_FF_")
			continue;

		Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
		if (abc9_clock_wire == NULL)
			log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
		SigSpec abc9_clock = assign_map(abc9_clock_wire);

		clkdomain_t key(abc9_clock);

		auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
		auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
		log_assert(r2.second);

		Wire *abc9_init_wire = module->wire(stringf("%s.init", cell->name.c_str()));
		if (abc9_init_wire == NULL)
			log_error("'%s.init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
		log_assert(GetSize(abc9_init_wire) == 1);
		SigSpec abc9_init = assign_map(abc9_init_wire);
		if (!abc9_init.is_fully_const())
			log_error("'%s.init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
		if (abc9_init == State::S1)
			log_error("'%s.init' in module '%s' has value 1'b1 which is not supported by 'abc9 -dff'.\n", cell->name.c_str(), log_id(module));
		r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
		log_assert(r2.second);
	}

	RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
	if (holes_module) {
		SigMap sigmap(holes_module);

		dict<SigSpec, SigSpec> replace;
		for (auto cell : holes_module->cells().to_vector()) {
			if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
						"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_"))
				continue;
			SigBit D = cell->getPort("\\D");
			SigBit Q = cell->getPort("\\Q");
			// Emulate async control embedded inside $_DFF_* cell with mux in front of D
			if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_"))
				D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R"));
			else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_"))
				D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R"));
			else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_"))
				D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R"));
			else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_"))
				D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R"));
			// Remove the $_DFF_* cell from what needs to be a combinatorial box
			holes_module->remove(cell);
			Wire *port;
			if (GetSize(Q.wire) == 1)
				port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
			else
				port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
			log_assert(port);
			// Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
			//   in order to extract just the combinatorial control logic that feeds the box
			//   (i.e. clock enable, synchronous reset, etc.)
			replace.insert(std::make_pair(Q,D));
			// Since `flatten` above would have created wires named "<cell>.Q",
			//   extract the pre-techmap cell name
			auto pos = Q.wire->name.str().rfind(".");
			log_assert(pos != std::string::npos);
			IdString driver = Q.wire->name.substr(0, pos);
			// And drive the signal that was previously driven by "DFF.Q" (typically
			//   used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
			//   wire (which itself is driven an by input port) we inserted above
			Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
			log_assert(currQ);
			holes_module->connect(Q, currQ);
		}

		for (auto &conn : holes_module->connections_)
			conn.second = replace.at(sigmap(conn.second), conn.second);
	}
}

void prep_xaiger(RTLIL::Module *module, bool dff)
{
	auto design = module->design;
	log_assert(design);

	SigMap sigmap(module);

	dict<SigBit, pool<IdString>> bit_drivers, bit_users;
	TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
	dict<IdString, std::vector<IdString>> box_ports;

	for (auto cell : module->cells()) {
		if (cell->type == "$__ABC9_FF_")
			continue;

		auto inst_module = module->design->module(cell->type);
		bool abc9_box = inst_module && inst_module->attributes.count("\\abc9_box_id");
		bool abc9_flop = false;
		if (abc9_box) {
			abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
			if (abc9_flop && !dff)
				continue;

			auto r = box_ports.insert(cell->type);
			if (r.second) {
				// Make carry in the last PI, and carry out the last PO
				//   since ABC requires it this way
				IdString carry_in, carry_out;
				for (const auto &port_name : inst_module->ports) {
					auto w = inst_module->wire(port_name);
					log_assert(w);
					if (w->get_bool_attribute("\\abc9_carry")) {
						if (w->port_input) {
							if (carry_in != IdString())
								log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(inst_module));
							carry_in = port_name;
						}
						if (w->port_output) {
							if (carry_out != IdString())
								log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(inst_module));
							carry_out = port_name;
						}
					}
					else
						r.first->second.push_back(port_name);
				}

				if (carry_in != IdString() && carry_out == IdString())
					log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(inst_module));
				if (carry_in == IdString() && carry_out != IdString())
					log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(inst_module));
				if (carry_in != IdString()) {
					r.first->second.push_back(carry_in);
					r.first->second.push_back(carry_out);
				}
			}
		}
		else if (!yosys_celltypes.cell_known(cell->type))
			continue;

		for (auto conn : cell->connections()) {
			if (cell->input(conn.first))
				for (auto bit : sigmap(conn.second))
					bit_users[bit].insert(cell->name);

			if (cell->output(conn.first) && !abc9_flop)
				for (auto bit : sigmap(conn.second))
					bit_drivers[bit].insert(cell->name);
		}

		toposort.node(cell->name);
	}

	if (box_ports.empty())
		return;

	for (auto &it : bit_users)
		if (bit_drivers.count(it.first))
			for (auto driver_cell : bit_drivers.at(it.first))
			for (auto user_cell : it.second)
				toposort.edge(driver_cell, user_cell);

	if (ys_debug(1))
		toposort.analyze_loops = true;

	bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();

	if (ys_debug(1)) {
		unsigned i = 0;
		for (auto &it : toposort.loops) {
			log("  loop %d\n", i++);
			for (auto cell_name : it) {
				auto cell = module->cell(cell_name);
				log_assert(cell);
				log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
			}
		}
	}

	log_assert(no_loops);

	RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
	log_assert(holes_module);
	holes_module->set_bool_attribute("\\abc9_holes");

	dict<IdString, Cell*> cell_cache;

	int port_id = 1, box_count = 0;
	for (auto cell_name : toposort.sorted) {
		RTLIL::Cell *cell = module->cell(cell_name);
		log_assert(cell);

		RTLIL::Module* box_module = design->module(cell->type);
		if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
			continue;

		cell->attributes["\\abc9_box_seq"] = box_count++;

		IdString derived_name = box_module->derive(design, cell->parameters);
		box_module = design->module(derived_name);

		auto r = cell_cache.insert(derived_name);
		auto &holes_cell = r.first->second;
		if (r.second) {
			if (box_module->has_processes())
				Pass::call_on_module(design, box_module, "proc");

			if (box_module->get_bool_attribute("\\whitebox")) {
				holes_cell = holes_module->addCell(cell->name, derived_name);

				int box_inputs = 0;
				for (auto port_name : box_ports.at(cell->type)) {
					RTLIL::Wire *w = box_module->wire(port_name);
					log_assert(w);
					log_assert(!w->port_input || !w->port_output);
					auto &conn = holes_cell->connections_[port_name];
					if (w->port_input) {
						for (int i = 0; i < GetSize(w); i++) {
							box_inputs++;
							RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
							if (!holes_wire) {
								holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
								holes_wire->port_input = true;
								holes_wire->port_id = port_id++;
								holes_module->ports.push_back(holes_wire->name);
							}
							conn.append(holes_wire);
						}
					}
					else if (w->port_output)
						conn = holes_module->addWire(stringf("%s.%s", derived_name.c_str(), log_id(port_name)), GetSize(w));
				}

				// For flops only, create an extra 1-bit input that drives a new wire
				//   called "<cell>.abc9_ff.Q" that is used below
				if (box_module->get_bool_attribute("\\abc9_flop")) {
					box_inputs++;
					Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
					if (!holes_wire) {
						holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
						holes_wire->port_input = true;
						holes_wire->port_id = port_id++;
						holes_module->ports.push_back(holes_wire->name);
					}
					Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
					holes_module->connect(Q, holes_wire);
				}
			}
			else // box_module is a blackbox
				log_assert(holes_cell == nullptr);
		}

		for (auto port_name : box_ports.at(cell->type)) {
			RTLIL::Wire *w = box_module->wire(port_name);
			log_assert(w);
			if (!w->port_output)
				continue;
			Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
			holes_wire->port_output = true;
			holes_wire->port_id = port_id++;
			holes_module->ports.push_back(holes_wire->name);
			if (holes_cell) // whitebox
				holes_module->connect(holes_wire, holes_cell->getPort(port_name));
			else // blackbox
				holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
		}
	}
}

void reintegrate(RTLIL::Module *module)
{
	auto design = module->design;
	log_assert(design);

	map_autoidx = autoidx++;

	RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
	if (mapped_mod == NULL)
		log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));

	for (auto w : mapped_mod->wires())
		module->addWire(remap_name(w->name), GetSize(w));

	dict<IdString,IdString> box_lookup;
	dict<IdString,std::vector<IdString>> box_ports;

	for (auto m : design->modules()) {
		auto it = m->attributes.find(ID(abc9_box_id));
		if (it == m->attributes.end())
			continue;
		if (m->name.begins_with("$paramod"))
			continue;
		auto id = it->second.as_int();
		auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
		if (!r.second)
			log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
					log_id(m), id, log_id(r.first->second));
		log_assert(r.second);

		auto r2 = box_ports.insert(m->name);
		if (r2.second) {
			// Make carry in the last PI, and carry out the last PO
			//   since ABC requires it this way
			IdString carry_in, carry_out;
			for (const auto &port_name : m->ports) {
				auto w = m->wire(port_name);
				log_assert(w);
				if (w->get_bool_attribute("\\abc9_carry")) {
					if (w->port_input) {
						if (carry_in != IdString())
							log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
						carry_in = port_name;
					}
					if (w->port_output) {
						if (carry_out != IdString())
							log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(m));
						carry_out = port_name;
					}
				}
				else
					r2.first->second.push_back(port_name);
			}

			if (carry_in != IdString() && carry_out == IdString())
				log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m));
			if (carry_in == IdString() && carry_out != IdString())
				log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m));
			if (carry_in != IdString()) {
				r2.first->second.push_back(carry_in);
				r2.first->second.push_back(carry_out);
			}
		}
	}

	std::vector<Cell*> boxes;
	for (auto cell : module->cells().to_vector()) {
		if (cell->has_keep_attr())
			continue;
		if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
			module->remove(cell);
		else if (cell->attributes.erase("\\abc9_box_seq"))
			boxes.emplace_back(cell);
	}

	dict<SigBit, pool<IdString>> bit_drivers, bit_users;
	TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
	dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
	dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;

	std::map<IdString, int> cell_stats;
	for (auto mapped_cell : mapped_mod->cells())
	{
		toposort.node(mapped_cell->name);

		if (mapped_cell->type == ID($_NOT_)) {
			RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
			RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
			bit_users[a_bit].insert(mapped_cell->name);
			// Ignore inouts for topo ordering
			if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
				bit_drivers[y_bit].insert(mapped_cell->name);

			if (!a_bit.wire) {
				mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
				RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
				log_assert(wire);
				module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
			}
			else {
				RTLIL::Cell* driver_lut = nullptr;
				// ABC can return NOT gates that drive POs
				if (!a_bit.wire->port_input) {
					// If it's not a NOT gate that that comes from a PI directly,
					// find the driver LUT and clone that to guarantee that we won't
					// increase the max logic depth
					// (TODO: Optimise by not cloning unless will increase depth)
					RTLIL::IdString driver_name;
					if (GetSize(a_bit.wire) == 1)
						driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
					else
						driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
					driver_lut = mapped_mod->cell(driver_name);
				}

				if (!driver_lut) {
					// If a driver couldn't be found (could be from PI or box CI)
					// then implement using a LUT
					RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
							RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
							RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
							RTLIL::Const::from_string("01"));
					bit2sinks[cell->getPort(ID::A)].push_back(cell);
					cell_stats[ID($lut)]++;
				}
				else
					not2drivers[mapped_cell] = driver_lut;
			}
			continue;
		}

		if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
			// Convert buffer into direct connection
			if (mapped_cell->type == ID($lut) &&
					GetSize(mapped_cell->getPort(ID::A)) == 1 &&
					mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
				SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
				SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
				module->connect(my_y, my_a);
				log_abort();
				continue;
			}
			RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
			cell->parameters = mapped_cell->parameters;
			cell->attributes = mapped_cell->attributes;

			for (auto &mapped_conn : mapped_cell->connections()) {
				RTLIL::SigSpec newsig;
				for (auto c : mapped_conn.second.chunks()) {
					if (c.width == 0)
						continue;
					//log_assert(c.width == 1);
					if (c.wire)
						c.wire = module->wires_.at(remap_name(c.wire->name));
					newsig.append(c);
				}
				cell->setPort(mapped_conn.first, newsig);

				if (cell->input(mapped_conn.first)) {
					for (auto i : newsig)
						bit2sinks[i].push_back(cell);
					for (auto i : mapped_conn.second)
						bit_users[i].insert(mapped_cell->name);
				}
				if (cell->output(mapped_conn.first))
					for (auto i : mapped_conn.second)
						// Ignore inouts for topo ordering
						if (i.wire && !(i.wire->port_input && i.wire->port_output))
							bit_drivers[i].insert(mapped_cell->name);
			}
		}
		else {
			RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
			log_assert(existing_cell);
			log_assert(mapped_cell->type.begins_with("$__boxid"));

			auto type = box_lookup.at(mapped_cell->type, IdString());
			if (type == IdString())
				log_error("No module with abc9_box_id = %s found.\n", mapped_cell->type.c_str() + strlen("$__boxid"));
			mapped_cell->type = type;

			RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
			cell->parameters = existing_cell->parameters;
			cell->attributes = existing_cell->attributes;
			module->swap_names(cell, existing_cell);

			auto it = mapped_cell->connections_.find("\\i");
			log_assert(it != mapped_cell->connections_.end());
			SigSpec inputs = std::move(it->second);
			mapped_cell->connections_.erase(it);
			it = mapped_cell->connections_.find("\\o");
			log_assert(it != mapped_cell->connections_.end());
			SigSpec outputs = std::move(it->second);
			mapped_cell->connections_.erase(it);

			RTLIL::Module* box_module = design->module(mapped_cell->type);
			auto abc9_flop = box_module->attributes.count("\\abc9_flop");
			if (!abc9_flop) {
				for (const auto &i : inputs)
					bit_users[i].insert(mapped_cell->name);
				for (const auto &i : outputs)
					// Ignore inouts for topo ordering
					if (i.wire && !(i.wire->port_input && i.wire->port_output))
						bit_drivers[i].insert(mapped_cell->name);
			}

			int input_count = 0, output_count = 0;
			for (const auto &port_name : box_ports.at(cell->type)) {
				RTLIL::Wire *w = box_module->wire(port_name);
				log_assert(w);

				SigSpec sig;
				if (w->port_input) {
					sig = inputs.extract(input_count, GetSize(w));
					input_count += GetSize(w);
				}
				if (w->port_output) {
					sig = outputs.extract(output_count, GetSize(w));
					output_count += GetSize(w);
				}

				SigSpec newsig;
				for (auto c : sig.chunks()) {
					if (c.width == 0)
						continue;
					//log_assert(c.width == 1);
					if (c.wire)
						c.wire = module->wires_.at(remap_name(c.wire->name));
					newsig.append(c);
				}
				cell->setPort(port_name, newsig);

				if (w->port_input && !abc9_flop)
					for (const auto &i : newsig)
						bit2sinks[i].push_back(cell);
			}
		}

		cell_stats[mapped_cell->type]++;
	}

	for (auto cell : boxes)
		module->remove(cell);

	// Copy connections (and rename) from mapped_mod to module
	for (auto conn : mapped_mod->connections()) {
		if (!conn.first.is_fully_const()) {
			auto chunks = conn.first.chunks();
			for (auto &c : chunks)
				c.wire = module->wires_.at(remap_name(c.wire->name));
			conn.first = std::move(chunks);
		}
		if (!conn.second.is_fully_const()) {
			auto chunks = conn.second.chunks();
			for (auto &c : chunks)
				if (c.wire)
					c.wire = module->wires_.at(remap_name(c.wire->name));
			conn.second = std::move(chunks);
		}
		module->connect(conn);
	}

	for (auto &it : cell_stats)
		log("ABC RESULTS:   %15s cells: %8d\n", it.first.c_str(), it.second);
	int in_wires = 0, out_wires = 0;

	// Stitch in mapped_mod's inputs/outputs into module
	for (auto port : mapped_mod->ports) {
		RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
		RTLIL::Wire *wire = module->wire(port);
		log_assert(wire);
		if (wire->attributes.erase(ID(abc9_scc_id))) {
			auto r YS_ATTRIBUTE(unused) = wire->attributes.erase(ID::keep);
			log_assert(r);
		}
		RTLIL::Wire *remap_wire = module->wire(remap_name(port));
		RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
		log_assert(GetSize(signal) >= GetSize(remap_wire));

		RTLIL::SigSig conn;
		if (mapped_wire->port_output) {
			conn.first = signal;
			conn.second = remap_wire;
			out_wires++;
			module->connect(conn);
		}
		else if (mapped_wire->port_input) {
			conn.first = remap_wire;
			conn.second = signal;
			in_wires++;
			module->connect(conn);
		}
	}

	for (auto &it : bit_users)
		if (bit_drivers.count(it.first))
			for (auto driver_cell : bit_drivers.at(it.first))
			for (auto user_cell : it.second)
				toposort.edge(driver_cell, user_cell);
	bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
	log_assert(no_loops);

	for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
		RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
		log_assert(not_cell);
		if (not_cell->type != ID($_NOT_))
			continue;
		auto it = not2drivers.find(not_cell);
		if (it == not2drivers.end())
			continue;
		RTLIL::Cell *driver_lut = it->second;
		RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
		RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
		RTLIL::Const driver_mask;

		a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
		y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));

		auto jt = bit2sinks.find(a_bit);
		if (jt == bit2sinks.end())
			goto clone_lut;

		for (auto sink_cell : jt->second)
			if (sink_cell->type != ID($lut))
				goto clone_lut;

		// Push downstream LUTs past inverter
		for (auto sink_cell : jt->second) {
			SigSpec A = sink_cell->getPort(ID::A);
			RTLIL::Const mask = sink_cell->getParam(ID(LUT));
			int index = 0;
			for (; index < GetSize(A); index++)
				if (A[index] == a_bit)
					break;
			log_assert(index < GetSize(A));
			int i = 0;
			while (i < GetSize(mask)) {
				for (int j = 0; j < (1 << index); j++)
					std::swap(mask[i+j], mask[i+j+(1 << index)]);
				i += 1 << (index+1);
			}
			A[index] = y_bit;
			sink_cell->setPort(ID::A, A);
			sink_cell->setParam(ID(LUT), mask);
		}

		// Since we have rewritten all sinks (which we know
		// to be only LUTs) to be after the inverter, we can
		// go ahead and clone the LUT with the expectation
		// that the original driving LUT will become dangling
		// and get cleaned away
clone_lut:
		driver_mask = driver_lut->getParam(ID(LUT));
		for (auto &b : driver_mask.bits) {
			if (b == RTLIL::State::S0) b = RTLIL::State::S1;
			else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
		}
		auto cell = module->addLut(NEW_ID,
				driver_lut->getPort(ID::A),
				y_bit,
				driver_mask);
		for (auto &bit : cell->connections_.at(ID::A)) {
			bit.wire = module->wires_.at(remap_name(bit.wire->name));
			bit2sinks[bit].push_back(cell);
		}
	}

	//log("ABC RESULTS:        internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
	log("ABC RESULTS:           input signals: %8d\n", in_wires);
	log("ABC RESULTS:          output signals: %8d\n", out_wires);

	design->remove(mapped_mod);
}

struct Abc9OpsPass : public Pass {
	Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    abc9_ops [options] [selection]\n");
		log("\n");
		log("This pass contains a set of supporting operations for use during ABC technology\n");
		log("mapping, and is expected to be called in conjunction with other operations from\n");
		log("the `abc9' script pass. Only fully-selected modules are supported.\n");
		log("\n");
		log("    -mark_scc\n");
		log("        for an arbitrarily chosen cell in each unique SCC of each selected module\n");
		log("        (tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all\n");
		log("        wires driven by this cell's outputs with a (* keep *) attribute in order\n");
		log("        to break the SCC. this temporary attribute will be removed on -reintegrate.\n");
		log("\n");
		log("    -prep_xaiger\n");
		log("        prepare the design for XAIGER output. this includes computing the\n");
		log("        topological ordering of ABC9 boxes, as well as preparing the\n");
		log("        '<module-name>$holes' module that contains the logic behaviour of ABC9\n");
		log("        whiteboxes.\n");
		log("\n");
		log("    -dff\n");
		log("        consider flop cells (those instantiating modules marked with (* abc9_flop *)\n");
		log("        during -prep_xaiger.\n");
		log("\n");
		log("    -prep_dff\n");
		log("        compute the clock domain and initial value of each flop in the design.\n");
		log("        process the '$holes' module to support clock-enable functionality.\n");
		log("\n");
		log("    -reintegrate\n");
		log("        for each selected module, re-intergrate the module '<module-name>$abc9'\n");
		log("        by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
		log("        inputs and outputs.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");

		bool mark_scc_mode = false;
		bool prep_dff_mode = false;
		bool prep_xaiger_mode = false;
		bool reintegrate_mode = false;
		bool dff_mode = false;

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-mark_scc") {
				mark_scc_mode = true;
				continue;
			}
			if (arg == "-prep_dff") {
				prep_dff_mode = true;
				continue;
			}
			if (arg == "-prep_xaiger") {
				prep_xaiger_mode = true;
				continue;
			}
			if (arg == "-reintegrate") {
				reintegrate_mode = true;
				continue;
			}
			if (arg == "-dff") {
				dff_mode = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		if (!(mark_scc_mode || prep_dff_mode || reintegrate_mode))
			log_cmd_error("At least one of -mark_scc, -prep_{xaiger,dff}, -reintegrate must be specified.\n");

		if (dff_mode && !prep_xaiger_mode)
			log_cmd_error("'-dff' option is only relevant for -prep_xaiger.\n");

		for (auto mod : design->selected_modules()) {
			if (mod->get_bool_attribute("\\abc9_holes"))
				continue;

			if (mod->processes.size() > 0) {
				log("Skipping module %s as it contains processes.\n", log_id(mod));
				continue;
			}

			if (!design->selected_whole_module(mod))
				log_error("Can't handle partially selected module %s!\n", log_id(mod));

			if (mark_scc_mode)
				mark_scc(mod);
			if (prep_dff_mode)
				prep_dff(mod);
			if (prep_xaiger_mode)
				prep_xaiger(mod, dff_mode);
			if (reintegrate_mode)
				reintegrate(mod);
		}
	}
} Abc9OpsPass;

PRIVATE_NAMESPACE_END