1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "opt_status.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <set>
using RTLIL::id2cstr;
struct OptMuxtreeWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap assign_map;
int removed_count;
typedef std::pair<RTLIL::Wire*,int> bitDef_t;
struct bitinfo_t {
int num;
bitDef_t bit;
bool seen_non_mux;
std::vector<int> mux_users;
std::vector<int> mux_drivers;
};
std::map<bitDef_t, int> bit2num;
std::vector<bitinfo_t> bit2info;
struct portinfo_t {
std::vector<int> ctrl_sigs;
std::vector<int> input_sigs;
std::vector<int> input_muxes;
bool const_activated;
bool enabled;
};
struct muxinfo_t {
RTLIL::Cell *cell;
std::vector<portinfo_t> ports;
};
std::vector<muxinfo_t> mux2info;
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), assign_map(module), removed_count(0)
{
log("Running muxtree optimizier on module %s..\n", module->name.c_str());
log(" Creating internal representation of mux trees.\n");
// Populate bit2info[]:
// .seen_non_mux
// .mux_users
// .mux_drivers
// Populate mux2info[].ports[]:
// .ctrl_sigs
// .input_sigs
// .const_activated
for (auto &cell_it : module->cells)
{
RTLIL::Cell *cell = cell_it.second;
if (cell->type == "$mux" || cell->type == "$pmux" || cell->type == "$safe_pmux")
{
RTLIL::SigSpec sig_a = cell->connections["\\A"];
RTLIL::SigSpec sig_b = cell->connections["\\B"];
RTLIL::SigSpec sig_s = cell->connections["\\S"];
RTLIL::SigSpec sig_y = cell->connections["\\Y"];
muxinfo_t muxinfo;
muxinfo.cell = cell;
for (int i = 0; i < sig_s.width; i++) {
RTLIL::SigSpec sig = sig_b.extract(i*sig_a.width, sig_a.width);
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
portinfo_t portinfo;
for (int idx : sig2bits(sig)) {
add_to_list(bit2info[idx].mux_users, mux2info.size());
add_to_list(portinfo.input_sigs, idx);
}
for (int idx : sig2bits(ctrl_sig))
add_to_list(portinfo.ctrl_sigs, idx);
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
}
portinfo_t portinfo;
for (int idx : sig2bits(sig_a)) {
add_to_list(bit2info[idx].mux_users, mux2info.size());
add_to_list(portinfo.input_sigs, idx);
}
portinfo.const_activated = false;
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
for (int idx : sig2bits(sig_y))
add_to_list(bit2info[idx].mux_drivers, mux2info.size());
for (int idx : sig2bits(sig_s))
bit2info[idx].seen_non_mux = true;
mux2info.push_back(muxinfo);
}
else
{
for (auto &it : cell->connections) {
for (int idx : sig2bits(it.second))
bit2info[idx].seen_non_mux = true;
}
}
}
for (auto &it : module->wires) {
if (it.second->port_output)
for (int idx : sig2bits(RTLIL::SigSpec(it.second)))
bit2info[idx].seen_non_mux = true;
}
if (mux2info.size() == 0) {
log(" No muxes found in this module.\n");
return;
}
// Populate mux2info[].ports[]:
// .input_muxes
for (size_t i = 0; i < bit2info.size(); i++)
for (int j : bit2info[i].mux_users)
for (auto &p : mux2info[j].ports) {
if (is_in_list(p.input_sigs, i))
for (int k : bit2info[i].mux_drivers)
add_to_list(p.input_muxes, k);
}
log(" Evaluating internal representation of mux trees.\n");
std::set<int> root_muxes;
for (auto &bi : bit2info) {
if (!bi.seen_non_mux)
continue;
for (int mux_idx : bi.mux_drivers)
root_muxes.insert(mux_idx);
}
for (int mux_idx : root_muxes)
eval_root_mux(mux_idx);
log(" Analyzing evaluation results.\n");
for (auto &mi : mux2info)
{
std::vector<int> live_ports;
for (size_t port_idx = 0; port_idx < mi.ports.size(); port_idx++) {
portinfo_t &pi = mi.ports[port_idx];
if (pi.enabled) {
live_ports.push_back(port_idx);
} else {
log(" dead port %zd/%zd on %s %s.\n", port_idx+1, mi.ports.size(),
mi.cell->type.c_str(), mi.cell->name.c_str());
OPT_DID_SOMETHING = true;
removed_count++;
}
}
if (live_ports.size() == mi.ports.size())
continue;
if (live_ports.size() == 0) {
module->cells.erase(mi.cell->name);
delete mi.cell;
continue;
}
RTLIL::SigSpec sig_a = mi.cell->connections["\\A"];
RTLIL::SigSpec sig_b = mi.cell->connections["\\B"];
RTLIL::SigSpec sig_s = mi.cell->connections["\\S"];
RTLIL::SigSpec sig_y = mi.cell->connections["\\Y"];
RTLIL::SigSpec sig_ports = sig_b;
sig_ports.append(sig_a);
if (live_ports.size() == 1)
{
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*sig_a.width, sig_a.width);
module->connections.push_back(RTLIL::SigSig(sig_y, sig_in));
module->cells.erase(mi.cell->name);
delete mi.cell;
}
else
{
RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s;
for (size_t i = 0; i < live_ports.size(); i++) {
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*sig_a.width, sig_a.width);
if (i == live_ports.size()-1) {
new_sig_a = sig_in;
} else {
new_sig_b.append(sig_in);
new_sig_s.append(sig_s.extract(live_ports[i], 1));
}
}
mi.cell->connections["\\A"] = new_sig_a;
mi.cell->connections["\\B"] = new_sig_b;
mi.cell->connections["\\S"] = new_sig_s;
if (new_sig_s.width == 1) {
mi.cell->type = "$mux";
mi.cell->parameters.erase("\\S_WIDTH");
} else {
mi.cell->parameters["\\S_WIDTH"] = RTLIL::Const(new_sig_s.width);
}
}
}
}
bool list_is_subset(const std::vector<int> &sub, const std::vector<int> &super)
{
for (int v : sub)
if (!is_in_list(super, v))
return false;
return true;
}
bool is_in_list(const std::vector<int> &list, int value)
{
for (int v : list)
if (v == value)
return true;
return false;
}
void add_to_list(std::vector<int> &list, int value)
{
if (!is_in_list(list, value))
list.push_back(value);
}
std::vector<int> sig2bits(RTLIL::SigSpec sig)
{
std::vector<int> results;
assign_map.apply(sig);
sig.expand();
for (auto &c : sig.chunks)
if (c.wire != NULL) {
bitDef_t bit(c.wire, c.offset);
if (bit2num.count(bit) == 0) {
bitinfo_t info;
info.num = bit2info.size();
info.bit = bit;
info.seen_non_mux = false;
bit2info.push_back(info);
bit2num[info.bit] = info.num;
}
results.push_back(bit2num[bit]);
}
return results;
}
struct knowledge_t
{
// database of known inactive signals
// the 2nd integer is a reference counter used to manage the
// list. when it is non-zero the signal in known to be inactive
std::map<int, int> known_inactive;
// database of known active signals
// the 2nd dimension is the list of or-ed signals. so we know that
// for each i there is a j so that known_active[i][j] points to an
// inactive control signal.
std::vector<std::vector<int>> known_active;
// this is just used to keep track of visited muxes in order to prohibit
// endless recursion in mux loops
std::set<int> visited_muxes;
};
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx)
{
muxinfo_t &muxinfo = mux2info[mux_idx];
muxinfo.ports[port_idx].enabled = true;
for (size_t i = 0; i < muxinfo.ports.size(); i++) {
if (int(i) == port_idx)
continue;
for (int b : muxinfo.ports[i].ctrl_sigs)
knowledge.known_inactive[b]++;
}
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.push_back(muxinfo.ports[port_idx].ctrl_sigs);
for (int m : muxinfo.ports[port_idx].input_muxes) {
if (knowledge.visited_muxes.count(m) > 0)
continue;
knowledge.visited_muxes.insert(m);
eval_mux(knowledge, m);
knowledge.visited_muxes.erase(m);
}
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.pop_back();
for (size_t i = 0; i < muxinfo.ports.size(); i++) {
if (int(i) == port_idx)
continue;
for (int b : muxinfo.ports[i].ctrl_sigs)
knowledge.known_inactive[b]--;
}
}
void eval_mux(knowledge_t &knowledge, int mux_idx)
{
muxinfo_t &muxinfo = mux2info[mux_idx];
// if there is a constant activated port we just use it
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_activated) {
eval_mux_port(knowledge, mux_idx, port_idx);
return;
}
}
// compare ports with known_active signals. if we find a match, only this
// port can be active. do not include the last port (its the default port
// that has no control signals).
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
if (list_is_subset(knowledge.known_active[i], portinfo.ctrl_sigs)) {
eval_mux_port(knowledge, mux_idx, port_idx);
return;
}
}
}
// compare ports with known_inactive and known_active signals. If all control
// signals of the port are know_inactive or if the control signals of all other
// ports are known_active this port can't be activated. this loop includes the
// default port but no known_inactive match is performed on the default port.
for (size_t port_idx = 0; port_idx < muxinfo.ports.size(); port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (port_idx < muxinfo.ports.size()-1) {
bool found_non_known_inactive = false;
for (int i : portinfo.ctrl_sigs)
if (knowledge.known_inactive[i] == 0)
found_non_known_inactive = true;
if (!found_non_known_inactive)
continue;
}
bool port_active = true;
std::vector<int> other_ctrl_sig;
for (size_t i = 0; i < muxinfo.ports.size()-1; i++) {
if (i == port_idx)
continue;
other_ctrl_sig.insert(other_ctrl_sig.end(),
muxinfo.ports[i].ctrl_sigs.begin(), muxinfo.ports[i].ctrl_sigs.end());
}
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
if (list_is_subset(knowledge.known_active[i], other_ctrl_sig))
port_active = false;
}
if (port_active)
eval_mux_port(knowledge, mux_idx, port_idx);
}
}
void eval_root_mux(int mux_idx)
{
knowledge_t knowledge;
eval_mux(knowledge, mux_idx);
}
};
struct OptMuxtreePass : public Pass {
OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_muxtree [selection]\n");
log("\n");
log("This pass analyzes the control signals for the multiplexer trees in the design\n");
log("and identifies inputs that can never be active. It then removes this dead\n");
log("branches from the multiplexer trees.\n");
log("\n");
log("This pass only operates on completely selected modules without processes.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
extra_args(args, 1, design);
int total_count = 0;
for (auto &mod_it : design->modules) {
if (!design->selected_whole_module(mod_it.first)) {
if (design->selected(mod_it.second))
log("Skipping module %s as it is only partially selected.\n", id2cstr(mod_it.second->name));
continue;
}
if (mod_it.second->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", id2cstr(mod_it.second->name));
} else {
OptMuxtreeWorker worker(design, mod_it.second);
total_count += worker.removed_count;
}
}
log("Removed %d multiplexer ports.\n", total_count);
}
} OptMuxtreePass;
|