aboutsummaryrefslogtreecommitdiffstats
path: root/passes/opt/opt_dff.cc
blob: a47071a30f8bba84db8a90b46e1332e8a3b0d4d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *  Copyright (C) 2020  Marcelina Kościelnicka <mwk@0x04.net>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/rtlil.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h"
#include "kernel/ffinit.h"
#include "kernel/ff.h"
#include "passes/techmap/simplemap.h"
#include <stdio.h>
#include <stdlib.h>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct OptDffOptions
{
	bool nosdff;
	bool nodffe;
	bool simple_dffe;
	bool sat;
	bool keepdc;
};

struct OptDffWorker
{
	const OptDffOptions &opt;

	Module *module;
	typedef std::pair<RTLIL::Cell*, int> cell_int_t;
	SigMap sigmap;
	FfInitVals initvals;
	dict<SigBit, int> bitusers;
	dict<SigBit, cell_int_t> bit2mux;
	dict<SigBit, RTLIL::Cell*> bit2driver;

	typedef std::map<RTLIL::SigBit, bool> pattern_t;
	typedef std::set<pattern_t> patterns_t;
	typedef std::pair<RTLIL::SigBit, bool> ctrl_t;
	typedef std::set<ctrl_t> ctrls_t;

	ezSatPtr ez;
	SatGen satgen;
	pool<Cell*> sat_cells;

	// Used as a queue.
	std::vector<Cell *> dff_cells;

	OptDffWorker(const OptDffOptions &opt, Module *mod) : opt(opt), module(mod), sigmap(mod), initvals(&sigmap, mod), ez(), satgen(ez.get(), &sigmap) {
		// Gathering three kinds of information here for every sigmapped SigBit:
		//
		// - bitusers: how many users it has (muxes will only be merged into FFs if this is 1, making the FF the only user)
		// - bit2mux: the mux cell and bit index that drives it, if any
		// - bit2driver: the cell driving it, if any

		for (auto wire : module->wires())
		{
			if (wire->port_output)
				for (auto bit : sigmap(wire))
					bitusers[bit]++;
		}

		for (auto cell : module->cells()) {
			if (cell->type.in(ID($mux), ID($pmux), ID($_MUX_))) {
				RTLIL::SigSpec sig_y = sigmap(cell->getPort(ID::Y));
				for (int i = 0; i < GetSize(sig_y); i++)
					bit2mux[sig_y[i]] = cell_int_t(cell, i);
			}

			for (auto conn : cell->connections()) {
				bool is_output = cell->output(conn.first);
				if (is_output) {
					for (auto bit : sigmap(conn.second))
						bit2driver[bit] = cell;
				}
				if (!is_output || !cell->known()) {
					for (auto bit : sigmap(conn.second))
						bitusers[bit]++;
				}
			}

			if (module->design->selected(module, cell) && RTLIL::builtin_ff_cell_types().count(cell->type))
				dff_cells.push_back(cell);
		}

	}

	std::function<void(Cell*)> sat_import_cell = [&](Cell *c) {
		if (!sat_cells.insert(c).second)
			return;
		if (!satgen.importCell(c))
			return;
		for (auto &conn : c->connections()) {
			if (!c->input(conn.first))
				continue;
			for (auto bit : sigmap(conn.second))
				if (bit2driver.count(bit))
					sat_import_cell(bit2driver.at(bit));
		}
	};

	State combine_const(State a, State b) {
		if (a == State::Sx && !opt.keepdc)
			return b;
		if (b == State::Sx && !opt.keepdc)
			return a;
		if (a == b)
			return a;
		return State::Sm;
	}

	patterns_t find_muxtree_feedback_patterns(RTLIL::SigBit d, RTLIL::SigBit q, pattern_t path)
	{
		patterns_t ret;

		if (d == q) {
			ret.insert(path);
			return ret;
		}

		if (bit2mux.count(d) == 0 || bitusers[d] > 1)
			return ret;

		cell_int_t mbit = bit2mux.at(d);
		RTLIL::SigSpec sig_a = sigmap(mbit.first->getPort(ID::A));
		RTLIL::SigSpec sig_b = sigmap(mbit.first->getPort(ID::B));
		RTLIL::SigSpec sig_s = sigmap(mbit.first->getPort(ID::S));
		int width = GetSize(sig_a), index = mbit.second;

		for (int i = 0; i < GetSize(sig_s); i++)
			if (path.count(sig_s[i]) && path.at(sig_s[i]))
			{
				ret = find_muxtree_feedback_patterns(sig_b[i*width + index], q, path);

				if (sig_b[i*width + index] == q) {
					RTLIL::SigSpec s = mbit.first->getPort(ID::B);
					s[i*width + index] = RTLIL::Sx;
					mbit.first->setPort(ID::B, s);
				}

				return ret;
			}

		pattern_t path_else = path;

		for (int i = 0; i < GetSize(sig_s); i++)
		{
			if (path.count(sig_s[i]))
				continue;

			pattern_t path_this = path;
			path_else[sig_s[i]] = false;
			path_this[sig_s[i]] = true;

			for (auto &pat : find_muxtree_feedback_patterns(sig_b[i*width + index], q, path_this))
				ret.insert(pat);

			if (sig_b[i*width + index] == q) {
				RTLIL::SigSpec s = mbit.first->getPort(ID::B);
				s[i*width + index] = RTLIL::Sx;
				mbit.first->setPort(ID::B, s);
			}
		}

		for (auto &pat : find_muxtree_feedback_patterns(sig_a[index], q, path_else))
			ret.insert(pat);

		if (sig_a[index] == q) {
			RTLIL::SigSpec s = mbit.first->getPort(ID::A);
			s[index] = RTLIL::Sx;
			mbit.first->setPort(ID::A, s);
		}

		return ret;
	}

	void simplify_patterns(patterns_t&)
	{
		// TBD
	}

	ctrl_t make_patterns_logic(const patterns_t &patterns, const ctrls_t &ctrls, bool make_gates)
	{
		if (patterns.empty() && GetSize(ctrls) == 1) {
			return *ctrls.begin();
		}

		RTLIL::SigSpec or_input;

		for (auto pat : patterns)
		{
			RTLIL::SigSpec s1, s2;
			for (auto it : pat) {
				s1.append(it.first);
				s2.append(it.second);
			}

			RTLIL::SigSpec y = module->addWire(NEW_ID);
			RTLIL::Cell *c = module->addNe(NEW_ID, s1, s2, y);

			if (make_gates) {
				simplemap(module, c);
				module->remove(c);
			}

			or_input.append(y);
		}
		for (auto item : ctrls) {
			if (item.second)
				or_input.append(item.first);
			else if (make_gates)
				or_input.append(module->NotGate(NEW_ID, item.first));
			else
				or_input.append(module->Not(NEW_ID, item.first));
		}

		if (GetSize(or_input) == 0)
			return ctrl_t(State::S1, true);

		if (GetSize(or_input) == 1)
			return ctrl_t(or_input, true);

		RTLIL::SigSpec y = module->addWire(NEW_ID);
		RTLIL::Cell *c = module->addReduceAnd(NEW_ID, or_input, y);

		if (make_gates) {
			simplemap(module, c);
			module->remove(c);
		}

		return ctrl_t(y, true);
	}

	ctrl_t combine_resets(const ctrls_t &ctrls, bool make_gates)
	{
		if (GetSize(ctrls) == 1) {
			return *ctrls.begin();
		}

		RTLIL::SigSpec or_input;

		bool final_pol = false;
		for (auto item : ctrls) {
			if (item.second)
				final_pol = true;
		}

		for (auto item : ctrls) {
			if (item.second == final_pol)
				or_input.append(item.first);
			else if (make_gates)
				or_input.append(module->NotGate(NEW_ID, item.first));
			else
				or_input.append(module->Not(NEW_ID, item.first));
		}

		RTLIL::SigSpec y = module->addWire(NEW_ID);
		RTLIL::Cell *c = final_pol ? module->addReduceOr(NEW_ID, or_input, y) : module->addReduceAnd(NEW_ID, or_input, y);

		if (make_gates) {
			simplemap(module, c);
			module->remove(c);
		}

		return ctrl_t(y, final_pol);
	}

	bool run() {
		// We have all the information we need, and the list of FFs to process as well.  Do it.
		bool did_something = false;
		while (!dff_cells.empty()) {
			Cell *cell = dff_cells.back();
			dff_cells.pop_back();
			// Break down the FF into pieces.
			FfData ff(&initvals, cell);
			bool changed = false;

			if (!ff.width) {
				module->remove(cell);
				did_something = true;
				continue;
			}

			if (ff.has_sr) {
				bool sr_removed = false;
				std::vector<int> keep_bits;
				// Check for always-active S/R bits.
				for (int i = 0; i < ff.width; i++) {
					if (ff.sig_clr[i] == (ff.pol_clr ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_clr[i] == State::Sx)) {
						// Always-active clear — connect Q bit to 0.
						initvals.remove_init(ff.sig_q[i]);
						module->connect(ff.sig_q[i], State::S0);
						log("Handling always-active CLR at position %d on %s (%s) from module %s (changing to const driver).\n",
								i, log_id(cell), log_id(cell->type), log_id(module));
						sr_removed = true;
					} else if (ff.sig_set[i] == (ff.pol_set ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_set[i] == State::Sx)) {
						// Always-active set — connect Q bit to 1 if clear inactive, 0 if reset active.
						initvals.remove_init(ff.sig_q[i]);
						if (!ff.pol_clr) {
							module->connect(ff.sig_q[i], ff.sig_clr[i]);
						} else if (ff.is_fine) {
							module->addNotGate(NEW_ID, ff.sig_q[i], ff.sig_clr[i]);
						} else {
							module->addNot(NEW_ID, ff.sig_q[i], ff.sig_clr[i]);
						}
						log("Handling always-active SET at position %d on %s (%s) from module %s (changing to combinatorial circuit).\n",
								i, log_id(cell), log_id(cell->type), log_id(module));
						sr_removed = true;
					} else {
						keep_bits.push_back(i);
					}
				}
				if (sr_removed) {
					if (keep_bits.empty()) {
						module->remove(cell);
						did_something = true;
						continue;
					}
					ff = ff.slice(keep_bits);
					changed = true;
				}

				if (ff.pol_clr ? ff.sig_clr.is_fully_zero() : ff.sig_clr.is_fully_ones()) {
					// CLR is useless, try to kill it.
					bool failed = false;
					for (int i = 0; i < ff.width; i++)
						if (ff.sig_set[i] != ff.sig_set[0])
							failed = true;
					if (!failed) {
						log("Removing never-active CLR on %s (%s) from module %s.\n",
								log_id(cell), log_id(cell->type), log_id(module));
						ff.has_sr = false;
						ff.has_arst = true;
						ff.pol_arst = ff.pol_set;
						ff.sig_arst = ff.sig_set[0];
						ff.val_arst = Const(State::S1, ff.width);
						changed = true;
					}
				} else if (ff.pol_set ? ff.sig_set.is_fully_zero() : ff.sig_set.is_fully_ones()) {
					// SET is useless, try to kill it.
					bool failed = false;
					for (int i = 0; i < ff.width; i++)
						if (ff.sig_clr[i] != ff.sig_clr[0])
							failed = true;
					if (!failed) {
						log("Removing never-active SET on %s (%s) from module %s.\n",
								log_id(cell), log_id(cell->type), log_id(module));
						ff.has_sr = false;
						ff.has_arst = true;
						ff.pol_arst = ff.pol_clr;
						ff.sig_arst = ff.sig_clr[0];
						ff.val_arst = Const(State::S0, ff.width);
						changed = true;
					}
				} else if (ff.pol_clr == ff.pol_set) {
					// Try a more complex conversion to plain async reset.
					State val_neutral = ff.pol_set ? State::S0 : State::S1;
					Const val_arst;
					SigSpec sig_arst;
					if (ff.sig_clr[0] == val_neutral)
						sig_arst = ff.sig_set[0];
					else
						sig_arst = ff.sig_clr[0];
					bool failed = false;
					for (int i = 0; i < ff.width; i++) {
						if (ff.sig_clr[i] == sig_arst && ff.sig_set[i] == val_neutral)
							val_arst.bits.push_back(State::S0);
						else if (ff.sig_set[i] == sig_arst && ff.sig_clr[i] == val_neutral)
							val_arst.bits.push_back(State::S1);
						else
							failed = true;
					}
					if (!failed) {
						log("Converting CLR/SET to ARST on %s (%s) from module %s.\n",
								log_id(cell), log_id(cell->type), log_id(module));
						ff.has_sr = false;
						ff.has_arst = true;
						ff.val_arst = val_arst;
						ff.sig_arst = sig_arst;
						ff.pol_arst = ff.pol_clr;
						changed = true;
					}
				}
			}

			if (ff.has_arst) {
				if (ff.sig_arst == (ff.pol_arst ? State::S0 : State::S1)) {
					// Always-inactive reset — remove.
					log("Removing never-active ARST on %s (%s) from module %s.\n",
							log_id(cell), log_id(cell->type), log_id(module));
					ff.has_arst = false;
					changed = true;
				} else if (ff.sig_arst == (ff.pol_arst ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_arst == State::Sx)) {
					// Always-active async reset — change to const driver.
					log("Handling always-active ARST on %s (%s) from module %s (changing to const driver).\n",
							log_id(cell), log_id(cell->type), log_id(module));
					initvals.remove_init(ff.sig_q);
					module->remove(cell);
					module->connect(ff.sig_q, ff.val_arst);
					did_something = true;
					continue;
				}
			}

			if (ff.has_srst) {
				if (ff.sig_srst == (ff.pol_srst ? State::S0 : State::S1)) {
					// Always-inactive reset — remove.
					log("Removing never-active SRST on %s (%s) from module %s.\n",
							log_id(cell), log_id(cell->type), log_id(module));
					ff.has_srst = false;
					changed = true;
				} else if (ff.sig_srst == (ff.pol_srst ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_srst == State::Sx)) {
					// Always-active sync reset — connect to D instead.
					log("Handling always-active SRST on %s (%s) from module %s (changing to const D).\n",
							log_id(cell), log_id(cell->type), log_id(module));
					ff.has_srst = false;
					if (!ff.ce_over_srst)
						ff.has_en = false;
					ff.sig_d = ff.val_d = ff.val_srst;
					ff.d_is_const = true;
					changed = true;
				}
			}

			if (ff.has_en) {
				if (ff.sig_en == (ff.pol_en ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_en == State::Sx)) {
					// Always-inactive enable — remove.
					if (ff.has_clk && ff.has_srst && !ff.ce_over_srst) {
						log("Handling never-active EN on %s (%s) from module %s (connecting SRST instead).\n",
								log_id(cell), log_id(cell->type), log_id(module));
						// FF with sync reset — connect the sync reset to D instead.
						ff.pol_en = ff.pol_srst;
						ff.sig_en = ff.sig_srst;
						ff.has_srst = false;
						ff.sig_d = ff.val_d = ff.val_srst;
						ff.d_is_const = true;
						changed = true;
					} else {
						log("Handling never-active EN on %s (%s) from module %s (removing D path).\n",
								log_id(cell), log_id(cell->type), log_id(module));
						// The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
						ff.has_d = ff.has_en = ff.has_clk = false;
						changed = true;
					}
				} else if (ff.sig_en == (ff.pol_en ? State::S1 : State::S0)) {
					// Always-active enable.
					if (ff.has_clk) {
						// For FF, just remove the useless enable.
						log("Removing always-active EN on %s (%s) from module %s.\n",
								log_id(cell), log_id(cell->type), log_id(module));
						ff.has_en = false;
						changed = true;
					} else {
						// For latches, make a comb circuit, nuke the latch.
						log("Handling always-active EN on %s (%s) from module %s (changing to combinatorial circuit).\n",
								log_id(cell), log_id(cell->type), log_id(module));
						initvals.remove_init(ff.sig_q);
						module->remove(cell);
						if (ff.has_sr) {
							SigSpec tmp;
							if (ff.is_fine) {
								if (ff.pol_set)
									tmp = module->MuxGate(NEW_ID, ff.sig_d, State::S1, ff.sig_set);
								else
									tmp = module->MuxGate(NEW_ID, State::S1, ff.sig_d, ff.sig_set);
								if (ff.pol_clr)
									module->addMuxGate(NEW_ID, tmp, State::S0, ff.sig_clr, ff.sig_q);
								else
									module->addMuxGate(NEW_ID, State::S0, tmp, ff.sig_clr, ff.sig_q);
							} else {
								if (ff.pol_set)
									tmp = module->Or(NEW_ID, ff.sig_d, ff.sig_set);
								else
									tmp = module->Or(NEW_ID, ff.sig_d, module->Not(NEW_ID, ff.sig_set));
								if (ff.pol_clr)
									module->addAnd(NEW_ID, tmp, module->Not(NEW_ID, ff.sig_clr), ff.sig_q);
								else
									module->addAnd(NEW_ID, tmp, ff.sig_clr, ff.sig_q);
							}
						} else if (ff.has_arst) {
							if (ff.is_fine) {
								if (ff.pol_arst)
									module->addMuxGate(NEW_ID, ff.sig_d, ff.val_arst[0], ff.sig_arst, ff.sig_q);
								else
									module->addMuxGate(NEW_ID, ff.val_arst[0], ff.sig_d, ff.sig_arst, ff.sig_q);
							} else {
								if (ff.pol_arst)
									module->addMux(NEW_ID, ff.sig_d, ff.val_arst, ff.sig_arst, ff.sig_q);
								else
									module->addMux(NEW_ID, ff.val_arst, ff.sig_d, ff.sig_arst, ff.sig_q);
							}
						} else {
							module->connect(ff.sig_q, ff.sig_d);
						}
						did_something = true;
						continue;
					}
				}
			}

			if (ff.has_clk) {
				if (ff.sig_clk.is_fully_const()) {
					// Const clock — the D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
					log("Handling const CLK on %s (%s) from module %s (removing D path).\n",
							log_id(cell), log_id(cell->type), log_id(module));
					ff.has_d = ff.has_en = ff.has_clk = ff.has_srst = false;
					changed = true;
				}
			}

			if (ff.has_d && ff.sig_d == ff.sig_q) {
				// Q wrapped back to D, can be removed.
				if (ff.has_clk && ff.has_srst) {
					// FF with sync reset — connect the sync reset to D instead.
					log("Handling D = Q on %s (%s) from module %s (conecting SRST instead).\n",
							log_id(cell), log_id(cell->type), log_id(module));
					if (ff.has_en && ff.ce_over_srst) {
						if (!ff.pol_en) {
							if (ff.is_fine)
								ff.sig_en = module->NotGate(NEW_ID, ff.sig_en);
							else
								ff.sig_en = module->Not(NEW_ID, ff.sig_en);
						}
						if (!ff.pol_srst) {
							if (ff.is_fine)
								ff.sig_srst = module->NotGate(NEW_ID, ff.sig_srst);
							else
								ff.sig_srst = module->Not(NEW_ID, ff.sig_srst);
						}
						if (ff.is_fine)
							ff.sig_en = module->AndGate(NEW_ID, ff.sig_en, ff.sig_srst);
						else
							ff.sig_en = module->And(NEW_ID, ff.sig_en, ff.sig_srst);
						ff.pol_en = true;
					} else {
						ff.pol_en = ff.pol_srst;
						ff.sig_en = ff.sig_srst;
					}
					ff.has_en = true;
					ff.has_srst = false;
					ff.sig_d = ff.val_d = ff.val_srst;
					ff.d_is_const = true;
					changed = true;
				} else {
					// The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
					log("Handling D = Q on %s (%s) from module %s (removing D path).\n",
							log_id(cell), log_id(cell->type), log_id(module));
					ff.has_d = ff.has_en = ff.has_clk = false;
					changed = true;
				}
			}

			// Now check if any bit can be replaced by a constant.
			pool<int> removed_sigbits;
			for (int i = 0; i < ff.width; i++) {
				State val = ff.val_init[i];
				if (ff.has_arst)
					val = combine_const(val, ff.val_arst[i]);
				if (ff.has_srst)
					val = combine_const(val, ff.val_srst[i]);
				if (ff.has_sr) {
					if (ff.sig_clr[i] != (ff.pol_clr ? State::S0 : State::S1))
						val = combine_const(val, State::S0);
					if (ff.sig_set[i] != (ff.pol_set ? State::S0 : State::S1))
						val = combine_const(val, State::S1);
				}
				if (val == State::Sm)
					continue;
				if (ff.has_d) {
					if (!ff.sig_d[i].wire) {
						val = combine_const(val, ff.sig_d[i].data);
						if (val == State::Sm)
							continue;
					} else {
						if (!opt.sat)
							continue;
						// For each register bit, try to prove that it cannot change from the initial value. If so, remove it
						if (!bit2driver.count(ff.sig_d[i]))
							continue;
						if (val != State::S0 && val != State::S1)
							continue;

						sat_import_cell(bit2driver.at(ff.sig_d[i]));

						int init_sat_pi = satgen.importSigSpec(val).front();
						int q_sat_pi = satgen.importSigBit(ff.sig_q[i]);
						int d_sat_pi = satgen.importSigBit(ff.sig_d[i]);

						// Try to find out whether the register bit can change under some circumstances
						bool counter_example_found = ez->solve(ez->IFF(q_sat_pi, init_sat_pi), ez->NOT(ez->IFF(d_sat_pi, init_sat_pi)));

						// If the register bit cannot change, we can replace it with a constant
						if (counter_example_found)
							continue;
					}
				}
				log("Setting constant %d-bit at position %d on %s (%s) from module %s.\n", val ? 1 : 0,
						i, log_id(cell), log_id(cell->type), log_id(module));

				initvals.remove_init(ff.sig_q[i]);
				module->connect(ff.sig_q[i], val);
				removed_sigbits.insert(i);
			}
			if (!removed_sigbits.empty()) {
				std::vector<int> keep_bits;
				for (int i = 0; i < ff.width; i++)
					if (!removed_sigbits.count(i))
						keep_bits.push_back(i);
				if (keep_bits.empty()) {
					module->remove(cell);
					did_something = true;
					continue;
				}
				ff = ff.slice(keep_bits);
				changed = true;
			}

			// The cell has been simplified as much as possible already.  Now try to spice it up with enables / sync resets.
			if (ff.has_clk) {
				if (!ff.has_arst && !ff.has_sr && (!ff.has_srst || !ff.has_en || ff.ce_over_srst) && !opt.nosdff) {
					// Try to merge sync resets.
					std::map<ctrls_t, std::vector<int>> groups;
					std::vector<int> remaining_indices;
					Const val_srst;

					for (int i = 0 ; i < ff.width; i++) {
						ctrls_t resets;
						State reset_val = State::Sx;
						if (ff.has_srst)
							reset_val = ff.val_srst[i];
						while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
							cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
							if (GetSize(mbit.first->getPort(ID::S)) != 1)
								break;
							SigBit s = mbit.first->getPort(ID::S);
							SigBit a = mbit.first->getPort(ID::A)[mbit.second];
							SigBit b = mbit.first->getPort(ID::B)[mbit.second];
							// Workaround for funny memory WE pattern.
							if ((a == State::S0 || a == State::S1) && (b == State::S0 || b == State::S1))
								break;
							if ((b == State::S0 || b == State::S1) && (b == reset_val || reset_val == State::Sx)) {
								// This is better handled by CE pattern.
								if (a == ff.sig_q[i])
									break;
								reset_val = b.data;
								resets.insert(ctrl_t(s, true));
								ff.sig_d[i] = a;
							} else if ((a == State::S0 || a == State::S1) && (a == reset_val || reset_val == State::Sx)) {
								// This is better handled by CE pattern.
								if (b == ff.sig_q[i])
									break;
								reset_val = a.data;
								resets.insert(ctrl_t(s, false));
								ff.sig_d[i] = b;
							} else {
								break;
							}
						}

						if (!resets.empty()) {
							if (ff.has_srst)
								resets.insert(ctrl_t(ff.sig_srst, ff.pol_srst));
							groups[resets].push_back(i);
						} else
							remaining_indices.push_back(i);
						val_srst.bits.push_back(reset_val);
					}

					for (auto &it : groups) {
						FfData new_ff = ff.slice(it.second);
						new_ff.val_srst = Const();
						for (int i = 0; i < new_ff.width; i++) {
							int j = it.second[i];
							new_ff.val_srst.bits.push_back(val_srst[j]);
						}
						ctrl_t srst = combine_resets(it.first, ff.is_fine);

						new_ff.has_srst = true;
						new_ff.sig_srst = srst.first;
						new_ff.pol_srst = srst.second;
						if (new_ff.has_en)
							new_ff.ce_over_srst = true;
						Cell *new_cell = new_ff.emit(module, NEW_ID);
						if (new_cell)
							dff_cells.push_back(new_cell);
						log("Adding SRST signal on %s (%s) from module %s (D = %s, Q = %s, rval = %s).\n",
								log_id(cell), log_id(cell->type), log_id(module), log_signal(new_ff.sig_d), log_signal(new_ff.sig_q), log_signal(new_ff.val_srst));
					}

					if (remaining_indices.empty()) {
						module->remove(cell);
						did_something = true;
						continue;
					} else if (GetSize(remaining_indices) != ff.width) {
						ff = ff.slice(remaining_indices);
						changed = true;
					}
				}
				if ((!ff.has_srst || !ff.has_en || !ff.ce_over_srst) && !opt.nodffe) {
					// Try to merge enables.
					std::map<std::pair<patterns_t, ctrls_t>, std::vector<int>> groups;
					std::vector<int> remaining_indices;

					for (int i = 0 ; i < ff.width; i++) {
						// First, eat up as many simple muxes as possible.
						ctrls_t enables;
						while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
							cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
							if (GetSize(mbit.first->getPort(ID::S)) != 1)
								break;
							SigBit s = mbit.first->getPort(ID::S);
							SigBit a = mbit.first->getPort(ID::A)[mbit.second];
							SigBit b = mbit.first->getPort(ID::B)[mbit.second];
							if (a == ff.sig_q[i]) {
								enables.insert(ctrl_t(s, true));
								ff.sig_d[i] = b;
							} else if (b == ff.sig_q[i]) {
								enables.insert(ctrl_t(s, false));
								ff.sig_d[i] = a;
							} else {
								break;
							}
						}

						patterns_t patterns;
						if (!opt.simple_dffe)
							patterns = find_muxtree_feedback_patterns(ff.sig_d[i], ff.sig_q[i], pattern_t());
						if (!patterns.empty() || !enables.empty()) {
							if (ff.has_en)
								enables.insert(ctrl_t(ff.sig_en, ff.pol_en));
							simplify_patterns(patterns);
							groups[std::make_pair(patterns, enables)].push_back(i);
						} else
							remaining_indices.push_back(i);
					}

					for (auto &it : groups) {
						FfData new_ff = ff.slice(it.second);
						ctrl_t en = make_patterns_logic(it.first.first, it.first.second, ff.is_fine);

						new_ff.has_en = true;
						new_ff.sig_en = en.first;
						new_ff.pol_en = en.second;
						new_ff.ce_over_srst = false;
						Cell *new_cell = new_ff.emit(module, NEW_ID);
						if (new_cell)
							dff_cells.push_back(new_cell);
						log("Adding EN signal on %s (%s) from module %s (D = %s, Q = %s).\n",
								log_id(cell), log_id(cell->type), log_id(module), log_signal(new_ff.sig_d), log_signal(new_ff.sig_q));
					}

					if (remaining_indices.empty()) {
						module->remove(cell);
						did_something = true;
						continue;
					} else if (GetSize(remaining_indices) != ff.width) {
						ff = ff.slice(remaining_indices);
						changed = true;
					}
				}
			}

			if (changed) {
				// Rebuild the FF.
				IdString name = cell->name;
				module->remove(cell);
				ff.emit(module, name);
				did_something = true;
			}
		}
		return did_something;
	}
};

struct OptDffPass : public Pass {
	OptDffPass() : Pass("opt_dff", "perform DFF optimizations") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] [selection]\n");
		log("\n");
		log("This pass converts flip-flops to a more suitable type by merging clock enables\n");
		log("and synchronous reset multiplexers, removing unused control inputs, or potentially\n");
		log("removes the flip-flop altogether, converting it to a constant driver.\n");
		log("\n");
		log("    -nodffe\n");
		log("        disables dff -> dffe conversion, and other transforms recognizing clock enable\n");
		log("\n");
		log("    -nosdff\n");
		log("        disables dff -> sdff conversion, and other transforms recognizing sync resets\n");
		log("\n");
		log("    -simple-dffe\n");
		log("        only enables clock enable recognition transform for obvious cases\n");
		log("\n");
		log("    -sat\n");
		log("        additionally invoke SAT solver to detect and remove flip-flops (with\n");
		log("        non-constant inputs) that can also be replaced with a constant driver\n");
		log("\n");
		log("    -keepdc\n");
		log("        some optimizations change the behavior of the circuit with respect to\n");
		log("        don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause\n");
		log("        all result bits to be set to x. this behavior changes when 'a+0' is\n");
		log("        replaced by 'a'. the -keepdc option disables all such optimizations.\n");
		log("\n");
	}

	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		log_header(design, "Executing OPT_DFF pass (perform DFF optimizations).\n");
		OptDffOptions opt;
		opt.nodffe = false;
		opt.nosdff = false;
		opt.simple_dffe = false;
		opt.keepdc = false;
		opt.sat = false;

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			if (args[argidx] == "-nodffe") {
				opt.nodffe = true;
				continue;
			}
			if (args[argidx] == "-nosdff") {
				opt.nosdff = true;
				continue;
			}
			if (args[argidx] == "-simple-dffe") {
				opt.simple_dffe = true;
				continue;
			}
			if (args[argidx] == "-keepdc") {
				opt.keepdc = true;
				continue;
			}
			if (args[argidx] == "-sat") {
				opt.sat = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		bool did_something = false;
		for (auto mod : design->selected_modules()) {
			OptDffWorker worker(opt, mod);
			if (worker.run())
				did_something = true;
		}

		if (did_something)
			design->scratchpad_set_bool("opt.did_something", true);
	}
} OptDffPass;

PRIVATE_NAMESPACE_END