1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/log.h"
#include "kernel/mem.h"
#include <sstream>
#include <set>
#include <stdlib.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct MemoryMapWorker
{
bool attr_icase = false;
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
RTLIL::Design *design;
RTLIL::Module *module;
SigMap sigmap;
FfInitVals initvals;
std::map<std::pair<RTLIL::SigSpec, RTLIL::SigSpec>, RTLIL::SigBit> decoder_cache;
MemoryMapWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module), initvals(&sigmap, module) {}
std::string map_case(std::string value) const
{
if (attr_icase) {
for (char &c : value)
c = tolower(c);
}
return value;
}
RTLIL::Const map_case(RTLIL::Const value) const
{
if (value.flags & RTLIL::CONST_FLAG_STRING)
return map_case(value.decode_string());
return value;
}
std::string genid(RTLIL::IdString name, std::string token1 = "", int i = -1, std::string token2 = "", int j = -1, std::string token3 = "", int k = -1, std::string token4 = "")
{
std::stringstream sstr;
sstr << "$memory" << name.str() << token1;
if (i >= 0)
sstr << "[" << i << "]";
sstr << token2;
if (j >= 0)
sstr << "[" << j << "]";
sstr << token3;
if (k >= 0)
sstr << "[" << k << "]";
sstr << token4 << "$" << (autoidx++);
return sstr.str();
}
RTLIL::Wire *addr_decode(RTLIL::SigSpec addr_sig, RTLIL::SigSpec addr_val)
{
std::pair<RTLIL::SigSpec, RTLIL::SigSpec> key(addr_sig, addr_val);
log_assert(GetSize(addr_sig) == GetSize(addr_val));
if (decoder_cache.count(key) == 0) {
if (GetSize(addr_sig) < 2) {
decoder_cache[key] = module->Eq(NEW_ID, addr_sig, addr_val);
} else {
int split_at = GetSize(addr_sig) / 2;
RTLIL::SigBit left_eq = addr_decode(addr_sig.extract(0, split_at), addr_val.extract(0, split_at));
RTLIL::SigBit right_eq = addr_decode(addr_sig.extract(split_at, GetSize(addr_sig) - split_at), addr_val.extract(split_at, GetSize(addr_val) - split_at));
decoder_cache[key] = module->And(NEW_ID, left_eq, right_eq);
}
}
RTLIL::SigBit bit = decoder_cache.at(key);
log_assert(bit.wire != nullptr && GetSize(bit.wire) == 1);
return bit.wire;
}
void handle_memory(Mem &mem)
{
std::set<int> static_ports;
std::map<int, RTLIL::SigSpec> static_cells_map;
SigSpec init_data = mem.get_init_data();
// delete unused memory cell
if (mem.rd_ports.empty()) {
mem.remove();
return;
}
// check if attributes allow us to infer FFRAM for this memory
for (const auto &attr : attributes) {
if (mem.attributes.count(attr.first)) {
const auto &cell_attr = mem.attributes[attr.first];
if (attr.second.empty()) {
log("Not mapping memory %s in module %s (attribute %s is set).\n",
mem.memid.c_str(), module->name.c_str(), attr.first.c_str());
return;
}
bool found = false;
for (auto &value : attr.second) {
if (map_case(cell_attr) == map_case(value)) {
found = true;
break;
}
}
if (!found) {
if (cell_attr.flags & RTLIL::CONST_FLAG_STRING) {
log("Not mapping memory %s in module %s (attribute %s is set to \"%s\").\n",
mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.decode_string().c_str());
} else {
log("Not mapping memory %s in module %s (attribute %s is set to %d).\n",
mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.as_int());
}
return;
}
}
}
// all write ports must share the same clock
RTLIL::SigSpec refclock;
bool refclock_pol = false;
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
auto &port = mem.wr_ports[i];
if (port.en.is_fully_const() && !port.en.as_bool()) {
static_ports.insert(i);
continue;
}
if (!port.clk_enable) {
if (port.addr.is_fully_const() && port.en.is_fully_ones()) {
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
static_cells_map[port.addr.as_int() + sub] = port.data.extract(sub * mem.width, mem.width);
static_ports.insert(i);
continue;
}
log("Not mapping memory %s in module %s (write port %d has no clock).\n",
mem.memid.c_str(), module->name.c_str(), i);
return;
}
if (refclock.size() == 0) {
refclock = port.clk;
refclock_pol = port.clk_polarity;
}
if (port.clk != refclock || port.clk_polarity != refclock_pol) {
log("Not mapping memory %s in module %s (write clock %d is incompatible with other clocks).\n",
mem.memid.c_str(), module->name.c_str(), i);
return;
}
}
log("Mapping memory %s in module %s:\n", mem.memid.c_str(), module->name.c_str());
int abits = ceil_log2(mem.size);
std::vector<RTLIL::SigSpec> data_reg_in(1 << abits);
std::vector<RTLIL::SigSpec> data_reg_out(1 << abits);
int count_static = 0;
for (int i = 0; i < mem.size; i++)
{
int addr = i + mem.start_offset;
int idx = addr & ((1 << abits) - 1);
if (static_cells_map.count(addr) > 0)
{
data_reg_out[idx] = static_cells_map[addr];
count_static++;
}
else
{
RTLIL::Cell *c = module->addCell(genid(mem.memid, "", addr), ID($dff));
c->parameters[ID::WIDTH] = mem.width;
if (GetSize(refclock) != 0) {
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(refclock_pol);
c->setPort(ID::CLK, refclock);
} else {
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(RTLIL::State::S1);
c->setPort(ID::CLK, RTLIL::SigSpec(RTLIL::State::S0));
}
RTLIL::Wire *w_in = module->addWire(genid(mem.memid, "", addr, "$d"), mem.width);
data_reg_in[idx] = w_in;
c->setPort(ID::D, w_in);
std::string w_out_name = stringf("%s[%d]", mem.memid.c_str(), addr);
if (module->wires_.count(w_out_name) > 0)
w_out_name = genid(mem.memid, "", addr, "$q");
RTLIL::Wire *w_out = module->addWire(w_out_name, mem.width);
SigSpec w_init = init_data.extract(i*mem.width, mem.width);
if (!w_init.is_fully_undef())
w_out->attributes[ID::init] = w_init.as_const();
data_reg_out[idx] = w_out;
c->setPort(ID::Q, w_out);
}
}
log(" created %d $dff cells and %d static cells of width %d.\n", mem.size-count_static, count_static, mem.width);
int count_dff = 0, count_mux = 0, count_wrmux = 0;
for (int i = 0; i < GetSize(mem.rd_ports); i++)
{
auto &port = mem.rd_ports[i];
if (mem.extract_rdff(i, &initvals))
count_dff++;
RTLIL::SigSpec rd_addr = port.addr;
rd_addr.extend_u0(abits, false);
std::vector<RTLIL::SigSpec> rd_signals;
rd_signals.push_back(port.data);
for (int j = 0; j < abits - port.wide_log2; j++)
{
std::vector<RTLIL::SigSpec> next_rd_signals;
for (size_t k = 0; k < rd_signals.size(); k++)
{
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$rdmux", i, "", j, "", k), ID($mux));
c->parameters[ID::WIDTH] = GetSize(port.data);
c->setPort(ID::Y, rd_signals[k]);
c->setPort(ID::S, rd_addr.extract(abits-j-1, 1));
count_mux++;
c->setPort(ID::A, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$a"), GetSize(port.data)));
c->setPort(ID::B, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$b"), GetSize(port.data)));
next_rd_signals.push_back(c->getPort(ID::A));
next_rd_signals.push_back(c->getPort(ID::B));
}
next_rd_signals.swap(rd_signals);
}
for (int j = 0; j < (1 << abits); j++)
if (data_reg_out[j] != SigSpec())
module->connect(RTLIL::SigSig(rd_signals[j >> port.wide_log2].extract((j & ((1 << port.wide_log2) - 1)) * mem.width, mem.width), data_reg_out[j]));
}
log(" read interface: %d $dff and %d $mux cells.\n", count_dff, count_mux);
for (int i = 0; i < mem.size; i++)
{
int addr = i + mem.start_offset;
int idx = addr & ((1 << abits) - 1);
if (static_cells_map.count(addr) > 0)
continue;
RTLIL::SigSpec sig = data_reg_out[idx];
for (int j = 0; j < GetSize(mem.wr_ports); j++)
{
auto &port = mem.wr_ports[j];
RTLIL::SigSpec wr_addr = port.addr.extract_end(port.wide_log2);
RTLIL::Wire *w_seladdr = addr_decode(wr_addr, RTLIL::SigSpec(addr >> port.wide_log2, GetSize(wr_addr)));
int sub = addr & ((1 << port.wide_log2) - 1);
int wr_offset = 0;
while (wr_offset < mem.width)
{
int wr_width = 1;
RTLIL::SigSpec wr_bit = port.en.extract(wr_offset + sub * mem.width, 1);
while (wr_offset + wr_width < mem.width) {
RTLIL::SigSpec next_wr_bit = port.en.extract(wr_offset + wr_width + sub * mem.width, 1);
if (next_wr_bit != wr_bit)
break;
wr_width++;
}
RTLIL::Wire *w = w_seladdr;
if (wr_bit != State::S1)
{
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wren", addr, "", j, "", wr_offset), ID($and));
c->parameters[ID::A_SIGNED] = RTLIL::Const(0);
c->parameters[ID::B_SIGNED] = RTLIL::Const(0);
c->parameters[ID::A_WIDTH] = RTLIL::Const(1);
c->parameters[ID::B_WIDTH] = RTLIL::Const(1);
c->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
c->setPort(ID::A, w);
c->setPort(ID::B, wr_bit);
w = module->addWire(genid(mem.memid, "$wren", addr, "", j, "", wr_offset, "$y"));
c->setPort(ID::Y, RTLIL::SigSpec(w));
}
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset), ID($mux));
c->parameters[ID::WIDTH] = wr_width;
c->setPort(ID::A, sig.extract(wr_offset, wr_width));
c->setPort(ID::B, port.data.extract(wr_offset + sub * mem.width, wr_width));
c->setPort(ID::S, RTLIL::SigSpec(w));
w = module->addWire(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset, "$y"), wr_width);
c->setPort(ID::Y, w);
sig.replace(wr_offset, w);
wr_offset += wr_width;
count_wrmux++;
}
}
module->connect(RTLIL::SigSig(data_reg_in[idx], sig));
}
log(" write interface: %d write mux blocks.\n", count_wrmux);
mem.remove();
}
void run()
{
for (auto &mem : Mem::get_selected_memories(module))
handle_memory(mem);
}
};
struct MemoryMapPass : public Pass {
MemoryMapPass() : Pass("memory_map", "translate multiport memories to basic cells") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_map [options] [selection]\n");
log("\n");
log("This pass converts multiport memory cells as generated by the memory_collect\n");
log("pass to word-wide DFFs and address decoders.\n");
log("\n");
log(" -attr !<name>\n");
log(" do not map memories that have attribute <name> set.\n");
log("\n");
log(" -attr <name>[=<value>]\n");
log(" for memories that have attribute <name> set, only map them if its value\n");
log(" is a string <value> (if specified), or an integer 1 (otherwise). if this\n");
log(" option is specified multiple times, map the memory if the attribute is\n");
log(" to any of the values.\n");
log("\n");
log(" -iattr\n");
log(" for -attr, ignore case of <value>.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool attr_icase = false;
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
log_header(design, "Executing MEMORY_MAP pass (converting memories to logic and flip-flops).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-attr" && argidx + 1 < args.size())
{
std::string attr_arg = args[++argidx];
std::string name;
RTLIL::Const value;
size_t eq_at = attr_arg.find('=');
if (eq_at != std::string::npos) {
name = attr_arg.substr(0, eq_at);
value = attr_arg.substr(eq_at + 1);
} else {
name = attr_arg;
value = RTLIL::Const(1);
}
if (attr_arg.size() > 1 && attr_arg[0] == '!') {
if (value != RTLIL::Const(1)) {
--argidx;
break; // we don't support -attr !<name>=<value>
}
attributes[RTLIL::escape_id(name.substr(1))].clear();
} else {
attributes[RTLIL::escape_id(name)].push_back(value);
}
continue;
}
if (args[argidx] == "-iattr")
{
attr_icase = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto mod : design->selected_modules()) {
MemoryMapWorker worker(design, mod);
worker.attr_icase = attr_icase;
worker.attributes = attributes;
worker.run();
}
}
} MemoryMapPass;
PRIVATE_NAMESPACE_END
|