1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct rules_t
{
struct portinfo_t {
int group, index, dupidx;
int wrmode, enable, transp, clocks, clkpol;
SigBit sig_clock;
SigSpec sig_addr, sig_data, sig_en;
bool effective_clkpol;
bool make_transp;
bool make_outreg;
int mapped_port;
};
struct bram_t {
IdString name;
int variant;
int groups, abits, dbits, init;
vector<int> ports, wrmode, enable, transp, clocks, clkpol;
void dump_config() const
{
log(" bram %s # variant %d\n", log_id(name), variant);
log(" init %d\n", init);
log(" abits %d\n", abits);
log(" dbits %d\n", dbits);
log(" groups %d\n", groups);
log(" ports "); for (int v : ports) log("%4d", v); log("\n");
log(" wrmode"); for (int v : wrmode) log("%4d", v); log("\n");
log(" enable"); for (int v : enable) log("%4d", v); log("\n");
log(" transp"); for (int v : transp) log("%4d", v); log("\n");
log(" clocks"); for (int v : clocks) log("%4d", v); log("\n");
log(" clkpol"); for (int v : clkpol) log("%4d", v); log("\n");
log(" endbram\n");
}
void check_vectors() const
{
if (groups != GetSize(ports)) log_error("Bram %s variant %d has %d groups but only %d entries in 'ports'.\n", log_id(name), variant, groups, GetSize(ports));
if (groups != GetSize(wrmode)) log_error("Bram %s variant %d has %d groups but only %d entries in 'wrmode'.\n", log_id(name), variant, groups, GetSize(wrmode));
if (groups != GetSize(enable)) log_error("Bram %s variant %d has %d groups but only %d entries in 'enable'.\n", log_id(name), variant, groups, GetSize(enable));
if (groups != GetSize(transp)) log_error("Bram %s variant %d has %d groups but only %d entries in 'transp'.\n", log_id(name), variant, groups, GetSize(transp));
if (groups != GetSize(clocks)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clocks'.\n", log_id(name), variant, groups, GetSize(clocks));
if (groups != GetSize(clkpol)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clkpol'.\n", log_id(name), variant, groups, GetSize(clkpol));
}
vector<portinfo_t> make_portinfos() const
{
vector<portinfo_t> portinfos;
for (int i = 0; i < groups; i++)
for (int j = 0; j < ports[i]; j++) {
portinfo_t pi;
pi.group = i;
pi.index = j;
pi.dupidx = 0;
pi.wrmode = wrmode[i];
pi.enable = enable[i];
pi.transp = transp[i];
pi.clocks = clocks[i];
pi.clkpol = clkpol[i];
pi.mapped_port = -1;
pi.make_transp = false;
pi.make_outreg = false;
pi.effective_clkpol = false;
portinfos.push_back(pi);
}
return portinfos;
}
void find_variant_params(dict<IdString, Const> &variant_params, const bram_t &other) const
{
log_assert(name == other.name);
if (groups != other.groups)
log_error("Bram %s variants %d and %d have different values for 'groups'.\n", log_id(name), variant, other.variant);
if (abits != other.abits)
variant_params["\\CFG_ABITS"] = abits;
if (dbits != other.dbits)
variant_params["\\CFG_DBITS"] = dbits;
if (init != other.init)
variant_params["\\CFG_INIT"] = init;
for (int i = 0; i < groups; i++)
{
if (ports[i] != other.ports[i])
log_error("Bram %s variants %d and %d have different number of %c-ports.\n", log_id(name), variant, other.variant, 'A'+i);
if (wrmode[i] != other.wrmode[i])
variant_params[stringf("\\CFG_WRMODE_%c", 'A' + i)] = wrmode[i];
if (enable[i] != other.enable[i])
variant_params[stringf("\\CFG_ENABLE_%c", 'A' + i)] = enable[i];
if (transp[i] != other.transp[i])
variant_params[stringf("\\CFG_TRANSP_%c", 'A' + i)] = transp[i];
if (clocks[i] != other.clocks[i])
variant_params[stringf("\\CFG_CLOCKS_%c", 'A' + i)] = clocks[i];
if (clkpol[i] != other.clkpol[i])
variant_params[stringf("\\CFG_CLKPOL_%c", 'A' + i)] = clkpol[i];
}
}
};
struct match_t {
IdString name;
dict<string, int> min_limits, max_limits;
bool or_next_if_better, make_transp, make_outreg;
char shuffle_enable;
};
dict<IdString, vector<bram_t>> brams;
vector<match_t> matches;
std::ifstream infile;
vector<string> tokens;
vector<string> labels;
int linecount;
void syntax_error()
{
if (tokens.empty())
log_error("Unexpected end of rules file in line %d.\n", linecount);
log_error("Syntax error in rules file line %d.\n", linecount);
}
bool next_line()
{
string line;
while (std::getline(infile, line)) {
tokens.clear();
labels.clear();
linecount++;
for (string tok = next_token(line); !tok.empty(); tok = next_token(line)) {
if (tok[0] == '@') {
labels.push_back(tok.substr(1));
continue;
}
if (tok[0] == '#')
break;
tokens.push_back(tok);
}
if (!tokens.empty())
return true;
}
return false;
}
bool parse_single_int(const char *stmt, int &value)
{
if (GetSize(tokens) == 2 && tokens[0] == stmt) {
value = atoi(tokens[1].c_str());
return true;
}
return false;
}
bool parse_int_vect(const char *stmt, vector<int> &value)
{
if (GetSize(tokens) >= 2 && tokens[0] == stmt) {
value.resize(GetSize(tokens)-1);
for (int i = 1; i < GetSize(tokens); i++)
value[i-1] = atoi(tokens[i].c_str());
return true;
}
return false;
}
void parse_bram()
{
IdString bram_name = RTLIL::escape_id(tokens[1]);
if (GetSize(tokens) != 2)
syntax_error();
vector<vector<string>> lines_nolabels;
std::map<string, vector<vector<string>>> lines_labels;
while (next_line())
{
if (GetSize(tokens) == 1 && tokens[0] == "endbram")
break;
if (labels.empty())
lines_nolabels.push_back(tokens);
for (auto lab : labels)
lines_labels[lab].push_back(tokens);
}
std::map<string, vector<vector<string>>> variant_lines;
if (lines_labels.empty())
variant_lines[""] = lines_nolabels;
for (auto &it : lines_labels) {
variant_lines[it.first] = lines_nolabels;
variant_lines[it.first].insert(variant_lines[it.first].end(), it.second.begin(), it.second.end());
}
for (auto &it : variant_lines)
{
bram_t data;
data.name = bram_name;
data.variant = GetSize(brams[data.name]) + 1;
data.groups = 0;
data.abits = 0;
data.dbits = 0;
data.init = 0;
for (auto &line_tokens : it.second)
{
tokens = line_tokens;
if (parse_single_int("groups", data.groups))
continue;
if (parse_single_int("abits", data.abits))
continue;
if (parse_single_int("dbits", data.dbits))
continue;
if (parse_single_int("init", data.init))
continue;
if (parse_int_vect("ports", data.ports))
continue;
if (parse_int_vect("wrmode", data.wrmode))
continue;
if (parse_int_vect("enable", data.enable))
continue;
if (parse_int_vect("transp", data.transp))
continue;
if (parse_int_vect("clocks", data.clocks))
continue;
if (parse_int_vect("clkpol", data.clkpol))
continue;
syntax_error();
}
data.check_vectors();
brams[data.name].push_back(data);
}
}
void parse_match()
{
if (GetSize(tokens) != 2)
syntax_error();
match_t data;
data.name = RTLIL::escape_id(tokens[1]);
data.or_next_if_better = false;
data.make_transp = false;
data.make_outreg = false;
data.shuffle_enable = 0;
while (next_line())
{
if (!labels.empty())
syntax_error();
if (GetSize(tokens) == 1 && tokens[0] == "endmatch") {
matches.push_back(data);
break;
}
if (GetSize(tokens) == 3 && tokens[0] == "min") {
data.min_limits[tokens[1]] = atoi(tokens[2].c_str());
continue;
}
if (GetSize(tokens) == 3 && tokens[0] == "max") {
data.max_limits[tokens[1]] = atoi(tokens[2].c_str());
continue;
}
if (GetSize(tokens) == 2 && tokens[0] == "shuffle_enable" && GetSize(tokens[1]) == 1 && 'A' <= tokens[1][0] && tokens[1][0] <= 'Z') {
data.shuffle_enable = tokens[1][0];
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "make_transp") {
data.make_transp = true;
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "make_outreg") {
data.make_transp = true;
data.make_outreg = true;
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "or_next_if_better") {
data.or_next_if_better = true;
continue;
}
syntax_error();
}
}
void parse(string filename)
{
rewrite_filename(filename);
infile.open(filename);
linecount = 0;
if (infile.fail())
log_error("Can't open rules file `%s'.\n", filename.c_str());
while (next_line())
{
if (!labels.empty())
syntax_error();
if (tokens[0] == "bram") {
parse_bram();
continue;
}
if (tokens[0] == "match") {
parse_match();
continue;
}
syntax_error();
}
infile.close();
}
};
bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
{
Module *module = cell->module;
auto portinfos = bram.make_portinfos();
int dup_count = 1;
pair<SigBit, bool> make_transp_clk;
bool enable_make_transp = false;
int make_transp_enbits = 0;
dict<int, pair<SigBit, bool>> clock_domains;
dict<int, bool> clock_polarities;
dict<int, bool> read_transp;
pool<int> clocks_wr_ports;
pool<int> clkpol_wr_ports;
int clocks_max = 0;
int clkpol_max = 0;
int transp_max = 0;
clock_polarities[0] = false;
clock_polarities[1] = true;
for (auto &pi : portinfos) {
if (pi.wrmode) {
clocks_wr_ports.insert(pi.clocks);
if (pi.clkpol > 1)
clkpol_wr_ports.insert(pi.clkpol);
}
clocks_max = max(clocks_max, pi.clocks);
clkpol_max = max(clkpol_max, pi.clkpol);
transp_max = max(transp_max, pi.transp);
}
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
// bram.dump_config();
int mem_size = cell->getParam("\\SIZE").as_int();
int mem_abits = cell->getParam("\\ABITS").as_int();
int mem_width = cell->getParam("\\WIDTH").as_int();
// int mem_offset = cell->getParam("\\OFFSET").as_int();
bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef();
vector<Const> initdata;
if (cell_init) {
Const initparam = cell->getParam("\\INIT");
initdata.reserve(mem_size);
for (int i=0; i < mem_size; i++)
initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx));
}
int wr_ports = cell->getParam("\\WR_PORTS").as_int();
auto wr_clken = SigSpec(cell->getParam("\\WR_CLK_ENABLE"));
auto wr_clkpol = SigSpec(cell->getParam("\\WR_CLK_POLARITY"));
wr_clken.extend_u0(wr_ports);
wr_clkpol.extend_u0(wr_ports);
SigSpec wr_en = cell->getPort("\\WR_EN");
SigSpec wr_clk = cell->getPort("\\WR_CLK");
SigSpec wr_data = cell->getPort("\\WR_DATA");
SigSpec wr_addr = cell->getPort("\\WR_ADDR");
int rd_ports = cell->getParam("\\RD_PORTS").as_int();
auto rd_clken = SigSpec(cell->getParam("\\RD_CLK_ENABLE"));
auto rd_clkpol = SigSpec(cell->getParam("\\RD_CLK_POLARITY"));
auto rd_transp = SigSpec(cell->getParam("\\RD_TRANSPARENT"));
rd_clken.extend_u0(rd_ports);
rd_clkpol.extend_u0(rd_ports);
rd_transp.extend_u0(rd_ports);
SigSpec rd_en = cell->getPort("\\RD_EN");
SigSpec rd_clk = cell->getPort("\\RD_CLK");
SigSpec rd_data = cell->getPort("\\RD_DATA");
SigSpec rd_addr = cell->getPort("\\RD_ADDR");
if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0)
{
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
// extract unshuffled data/enable bits
std::vector<SigSpec> old_wr_en;
std::vector<SigSpec> old_wr_data;
std::vector<SigSpec> old_rd_data;
for (int i = 0; i < wr_ports; i++) {
old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width));
old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width));
}
for (int i = 0; i < rd_ports; i++)
old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width));
// analyze enable structure
std::vector<SigSpec> en_order;
dict<SigSpec, vector<int>> bits_wr_en;
for (int i = 0; i < mem_width; i++) {
SigSpec sig;
for (int j = 0; j < wr_ports; j++)
sig.append(old_wr_en[j][i]);
if (bits_wr_en.count(sig) == 0)
en_order.push_back(sig);
bits_wr_en[sig].push_back(i);
}
// re-create memory ports
std::vector<SigSpec> new_wr_en(GetSize(old_wr_en));
std::vector<SigSpec> new_wr_data(GetSize(old_wr_data));
std::vector<SigSpec> new_rd_data(GetSize(old_rd_data));
std::vector<int> shuffle_map;
for (auto &it : en_order)
{
auto &bits = bits_wr_en.at(it);
int buckets = (GetSize(bits) + bucket_size - 1) / bucket_size;
int fillbits = buckets*bucket_size - GetSize(bits);
SigBit fillbit;
for (int i = 0; i < GetSize(bits); i++) {
for (int j = 0; j < wr_ports; j++) {
new_wr_en[j].append(old_wr_en[j][bits[i]]);
new_wr_data[j].append(old_wr_data[j][bits[i]]);
fillbit = old_wr_en[j][bits[i]];
}
for (int j = 0; j < rd_ports; j++)
new_rd_data[j].append(old_rd_data[j][bits[i]]);
shuffle_map.push_back(bits[i]);
}
for (int i = 0; i < fillbits; i++) {
for (int j = 0; j < wr_ports; j++) {
new_wr_en[j].append(fillbit);
new_wr_data[j].append(State::S0);
}
for (int j = 0; j < rd_ports; j++)
new_rd_data[j].append(State::Sx);
shuffle_map.push_back(-1);
}
}
log(" Results of bit order shuffling:");
for (int v : shuffle_map)
log(" %d", v);
log("\n");
// update mem_*, wr_*, and rd_* variables
mem_width = GetSize(new_wr_en.front());
wr_en = SigSpec(0, wr_ports * mem_width);
wr_data = SigSpec(0, wr_ports * mem_width);
rd_data = SigSpec(0, rd_ports * mem_width);
for (int i = 0; i < wr_ports; i++) {
wr_en.replace(i*mem_width, new_wr_en[i]);
wr_data.replace(i*mem_width, new_wr_data[i]);
}
for (int i = 0; i < rd_ports; i++)
rd_data.replace(i*mem_width, new_rd_data[i]);
}
// assign write ports
for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++)
{
bool clken = wr_clken[cell_port_i] == State::S1;
bool clkpol = wr_clkpol[cell_port_i] == State::S1;
SigBit clksig = wr_clk[cell_port_i];
pair<SigBit, bool> clkdom(clksig, clkpol);
if (!clken)
clkdom = pair<SigBit, bool>(State::S1, false);
log(" Write port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
clken ? log_signal(clkdom.first) : "~async~");
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
{
auto &pi = portinfos[bram_port_i];
make_transp_enbits = pi.enable;
make_transp_clk = clkdom;
if (pi.wrmode != 1)
skip_bram_wport:
continue;
if (clken) {
if (pi.clocks == 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) {
log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
} else {
if (pi.clocks != 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
}
SigSpec sig_en;
SigBit last_en_bit = State::S1;
for (int i = 0; i < mem_width; i++) {
if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
last_en_bit = wr_en[i + cell_port_i*mem_width];
sig_en.append(last_en_bit);
}
if (last_en_bit != wr_en[i + cell_port_i*mem_width]) {
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
}
log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1);
pi.mapped_port = cell_port_i;
if (clken) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
pi.sig_clock = clkdom.first;
pi.effective_clkpol = clkdom.second;
}
pi.sig_en = sig_en;
pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits);
pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width);
bram_port_i++;
goto mapped_wr_port;
}
log(" Failed to map write port #%d.\n", cell_port_i);
return false;
mapped_wr_port:;
}
// housekeeping stuff for growing more read ports and restarting read port assignments
int grow_read_ports_cursor = -1;
bool try_growing_more_read_ports = false;
auto backup_clock_domains = clock_domains;
auto backup_clock_polarities = clock_polarities;
if (0) {
grow_read_ports:;
vector<rules_t::portinfo_t> new_portinfos;
for (auto &pi : portinfos) {
if (pi.wrmode == 0) {
pi.mapped_port = -1;
pi.sig_clock = SigBit();
pi.sig_addr = SigSpec();
pi.sig_data = SigSpec();
pi.sig_en = SigSpec();
}
new_portinfos.push_back(pi);
if (pi.dupidx == dup_count-1) {
if (pi.clocks && !clocks_wr_ports[pi.clocks])
pi.clocks += clocks_max;
if (pi.clkpol > 1 && !clkpol_wr_ports[pi.clkpol])
pi.clkpol += clkpol_max;
if (pi.transp > 1)
pi.transp += transp_max;
pi.dupidx++;
new_portinfos.push_back(pi);
}
}
try_growing_more_read_ports = false;
portinfos.swap(new_portinfos);
clock_domains = backup_clock_domains;
clock_polarities = backup_clock_polarities;
dup_count++;
}
read_transp.clear();
read_transp[0] = false;
read_transp[1] = true;
// assign read ports
for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++)
{
bool clken = rd_clken[cell_port_i] == State::S1;
bool clkpol = rd_clkpol[cell_port_i] == State::S1;
bool transp = rd_transp[cell_port_i] == State::S1;
SigBit clksig = rd_clk[cell_port_i];
if (wr_ports == 0)
transp = false;
pair<SigBit, bool> clkdom(clksig, clkpol);
if (!clken)
clkdom = pair<SigBit, bool>(State::S1, false);
log(" Read port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
clken ? log_signal(clkdom.first) : "~async~");
for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++)
{
auto &pi = portinfos[bram_port_i];
if (pi.wrmode != 0 || pi.mapped_port >= 0)
skip_bram_rport:
continue;
if (clken) {
if (pi.clocks == 0) {
if (match.make_outreg) {
pi.make_outreg = true;
goto skip_bram_rport_clkcheck;
}
log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) {
log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) {
log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
skip_bram_rport_clkcheck:
if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
if (match.make_transp && wr_ports <= 1) {
pi.make_transp = true;
enable_make_transp = true;
} else {
log(" Bram port %c%d.%d has incompatible read transparency.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
}
} else {
if (pi.clocks != 0) {
log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
}
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
pi.mapped_port = cell_port_i;
if (clken) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
read_transp[pi.transp] = transp;
pi.sig_clock = clkdom.first;
pi.sig_en = rd_en[cell_port_i];
pi.effective_clkpol = clkdom.second;
}
pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits);
pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width);
if (grow_read_ports_cursor < cell_port_i) {
grow_read_ports_cursor = cell_port_i;
try_growing_more_read_ports = true;
}
goto mapped_rd_port;
}
log(" Failed to map read port #%d.\n", cell_port_i);
if (try_growing_more_read_ports) {
log(" Growing more read ports by duplicating bram cells.\n");
goto grow_read_ports;
}
return false;
mapped_rd_port:;
}
// update properties and re-check conditions
if (mode <= 1)
{
match_properties["dups"] = dup_count;
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits);
match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
match_properties["dups"], match_properties["waste"], match_properties["efficiency"]);
for (auto it : match.min_limits) {
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] >= it.second)
continue;
log(" Rule for bram type %s rejected: requirement 'min %s %d' not met.\n",
log_id(match.name), it.first.c_str(), it.second);
return false;
}
for (auto it : match.max_limits) {
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] <= it.second)
continue;
log(" Rule for bram type %s rejected: requirement 'max %s %d' not met.\n",
log_id(match.name), it.first.c_str(), it.second);
return false;
}
if (mode == 1)
return true;
}
// prepare variant parameters
dict<IdString, Const> variant_params;
for (auto &other_bram : rules.brams.at(bram.name))
bram.find_variant_params(variant_params, other_bram);
// actually replace that memory cell
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++)
{
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
vector<SigSpec> mktr_wren;
if (enable_make_transp) {
mktr_wraddr = module->addWire(NEW_ID, bram.abits);
mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
}
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++)
{
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
for (auto &vp : variant_params)
c->setParam(vp.first, vp.second);
if (cell_init) {
int init_offset = grid_a*(1 << bram.abits);
int init_shift = grid_d*bram.dbits;
int init_size = (1 << bram.abits);
Const initparam(State::Sx, init_size*bram.dbits);
for (int i = 0; i < init_size; i++) {
State padding = State::Sx;
for (int j = 0; j < bram.dbits; j++)
if (init_offset+i < GetSize(initdata) && init_shift+j < GetSize(initdata[init_offset+i]))
initparam[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j];
else
initparam[i*bram.dbits+j] = padding;
}
c->setParam("\\INIT", initparam);
}
for (auto &pi : portinfos)
{
if (pi.dupidx != dupidx)
continue;
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
const char *pf = prefix.c_str();
if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
if (pi.clkpol > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
if (pi.transp > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
}
SigSpec addr_ok;
if (GetSize(pi.sig_addr) > bram.abits) {
SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
}
if (pi.enable)
{
SigSpec sig_en = pi.sig_en;
if (pi.wrmode == 1) {
sig_en.extend_u0((grid_d+1) * pi.enable);
sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
}
if (!addr_ok.empty())
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
c->setPort(stringf("\\%sEN", pf), sig_en);
if (pi.wrmode == 1 && enable_make_transp)
module->connect(mktr_wren[grid_a], sig_en);
}
SigSpec sig_addr = pi.sig_addr;
sig_addr.extend_u0(bram.abits);
c->setPort(stringf("\\%sADDR", pf), sig_addr);
if (pi.wrmode == 1 && enable_make_transp && grid_a == 0)
module->connect(mktr_wraddr, sig_addr);
SigSpec sig_data = pi.sig_data;
sig_data.extend_u0((grid_d+1) * bram.dbits);
sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
if (pi.wrmode == 1) {
c->setPort(stringf("\\%sDATA", pf), sig_data);
if (enable_make_transp && grid_a == 0)
module->connect(mktr_wrdata, sig_data);
} else {
SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
c->setPort(stringf("\\%sDATA", pf), bram_dout);
if (pi.make_outreg) {
SigSpec bram_dout_q = module->addWire(NEW_ID, bram.dbits);
if (!pi.sig_en.empty())
bram_dout = module->Mux(NEW_ID, bram_dout_q, bram_dout, pi.sig_en);
module->addDff(NEW_ID, pi.sig_clock, bram_dout, bram_dout_q, pi.effective_clkpol);
bram_dout = bram_dout_q;
}
if (pi.make_transp)
{
log(" Adding extra logic for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
SigSpec transp_en_d = module->Mux(NEW_ID, SigSpec(0, make_transp_enbits),
mktr_wren[grid_a], module->Eq(NEW_ID, mktr_wraddr, sig_addr));
SigSpec transp_en_q = module->addWire(NEW_ID, make_transp_enbits);
module->addDff(NEW_ID, make_transp_clk.first, transp_en_d, transp_en_q, make_transp_clk.second);
for (int i = 0; i < make_transp_enbits; i++) {
int en_width = bram.dbits / make_transp_enbits;
SigSpec orig_bram_dout = bram_dout.extract(i * en_width, en_width);
SigSpec bypass_dout = mktr_wrdata_q.extract(i * en_width, en_width);
bram_dout.replace(i * en_width, module->Mux(NEW_ID, orig_bram_dout, bypass_dout, transp_en_q[i]));
}
}
for (int i = bram.dbits-1; i >= 0; i--)
if (sig_data[i].wire == nullptr) {
sig_data.remove(i);
bram_dout.remove(i);
}
SigSpec addr_ok_q = addr_ok;
if ((pi.clocks || pi.make_outreg) && !addr_ok.empty()) {
addr_ok_q = module->addWire(NEW_ID);
module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
}
dout_cache[sig_data].first.append(addr_ok_q);
dout_cache[sig_data].second.append(bram_dout);
}
}
}
}
for (auto &it : dout_cache)
{
if (it.second.first.empty())
{
log_assert(GetSize(it.first) == GetSize(it.second.second));
module->connect(it.first, it.second.second);
}
else
{
log_assert(GetSize(it.first)*GetSize(it.second.first) == GetSize(it.second.second));
module->addPmux(NEW_ID, SigSpec(State::Sx, GetSize(it.first)), it.second.second, it.second.first, it.first);
}
}
module->remove(cell);
return true;
}
void handle_cell(Cell *cell, const rules_t &rules)
{
log("Processing %s.%s:\n", log_id(cell->module), log_id(cell));
bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef();
dict<string, int> match_properties;
match_properties["words"] = cell->getParam("\\SIZE").as_int();
match_properties["abits"] = cell->getParam("\\ABITS").as_int();
match_properties["dbits"] = cell->getParam("\\WIDTH").as_int();
match_properties["wports"] = cell->getParam("\\WR_PORTS").as_int();
match_properties["rports"] = cell->getParam("\\RD_PORTS").as_int();
match_properties["bits"] = match_properties["words"] * match_properties["dbits"];
match_properties["ports"] = match_properties["wports"] + match_properties["rports"];
log(" Properties:");
for (auto &it : match_properties)
log(" %s=%d", it.first.c_str(), it.second);
log("\n");
pool<pair<IdString, int>> failed_brams;
dict<pair<int, int>, tuple<int, int, int>> best_rule_cache;
for (int i = 0; i < GetSize(rules.matches); i++)
{
auto &match = rules.matches.at(i);
if (!rules.brams.count(rules.matches[i].name))
log_error("No bram description for resource %s found!\n", log_id(rules.matches[i].name));
for (int vi = 0; vi < GetSize(rules.brams.at(match.name)); vi++)
{
auto &bram = rules.brams.at(match.name).at(vi);
bool or_next_if_better = match.or_next_if_better || vi+1 < GetSize(rules.brams.at(match.name));
if (failed_brams.count(pair<IdString, int>(bram.name, bram.variant)))
continue;
int avail_rd_ports = 0;
int avail_wr_ports = 0;
for (int j = 0; j < bram.groups; j++) {
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) == 0)
avail_rd_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) != 0)
avail_wr_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
}
log(" Checking rule #%d for bram type %s (variant %d):\n", i+1, log_id(bram.name), bram.variant);
log(" Bram geometry: abits=%d dbits=%d wports=%d rports=%d\n", bram.abits, bram.dbits, avail_wr_ports, avail_rd_ports);
int dups = avail_rd_ports ? (match_properties["rports"] + avail_rd_ports - 1) / avail_rd_ports : 1;
match_properties["dups"] = dups;
log(" Estimated number of duplicates for more read ports: dups=%d\n", match_properties["dups"]);
int aover = match_properties["words"] % (1 << bram.abits);
int awaste = aover ? (1 << bram.abits) - aover : 0;
match_properties["awaste"] = awaste;
int dover = match_properties["dbits"] % bram.dbits;
int dwaste = dover ? bram.dbits - dover : 0;
match_properties["dwaste"] = dwaste;
int bwaste = awaste * bram.dbits + dwaste * (1 << bram.abits) - awaste * dwaste;
match_properties["bwaste"] = bwaste;
int waste = match_properties["dups"] * bwaste;
match_properties["waste"] = waste;
int cells = ((match_properties["dbits"] + bram.dbits - 1) / bram.dbits) * ((match_properties["words"] + (1 << bram.abits) - 1) / (1 << bram.abits));
int efficiency = (100 * match_properties["bits"]) / (dups * cells * bram.dbits * (1 << bram.abits));
match_properties["efficiency"] = efficiency;
log(" Metrics for %s: awaste=%d dwaste=%d bwaste=%d waste=%d efficiency=%d\n",
log_id(match.name), awaste, dwaste, bwaste, waste, efficiency);
if (cell_init && bram.init == 0) {
log(" Rule #%d for bram type %s (variant %d) rejected: cannot be initialized.\n",
i+1, log_id(bram.name), bram.variant);
goto next_match_rule;
}
for (auto it : match.min_limits) {
if (it.first == "waste" || it.first == "dups" || it.first == "acells" || it.first == "dcells" || it.first == "cells")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] >= it.second)
continue;
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'min %s %d' not met.\n",
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
goto next_match_rule;
}
for (auto it : match.max_limits) {
if (it.first == "acells" || it.first == "dcells" || it.first == "cells")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] <= it.second)
continue;
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'max %s %d' not met.\n",
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
goto next_match_rule;
}
log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant);
if (or_next_if_better || !best_rule_cache.empty())
{
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
log_error("Found 'or_next_if_better' in last match rule.\n");
if (!replace_cell(cell, rules, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
}
log(" Storing for later selection.\n");
best_rule_cache[pair<int, int>(i, vi)] = tuple<int, int, int>(match_properties["efficiency"], -match_properties["cells"], -match_properties["acells"]);
next_match_rule:
if (or_next_if_better || best_rule_cache.empty())
continue;
log(" Selecting best of %d rules:\n", GetSize(best_rule_cache));
pair<int, int> best_rule = best_rule_cache.begin()->first;
for (auto &it : best_rule_cache) {
if (it.second > best_rule_cache[best_rule])
best_rule = it.first;
log(" Efficiency for rule %d.%d: efficiency=%d, cells=%d, acells=%d\n", it.first.first+1, it.first.second+1,
std::get<0>(it.second), -std::get<1>(it.second), -std::get<2>(it.second));
}
log(" Selected rule %d.%d with efficiency %d.\n", best_rule.first+1, best_rule.second+1, std::get<0>(best_rule_cache[best_rule]));
best_rule_cache.clear();
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
return;
}
if (!replace_cell(cell, rules, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
}
return;
}
}
log(" No acceptable bram resources found.\n");
}
struct MemoryBramPass : public Pass {
MemoryBramPass() : Pass("memory_bram", "map memories to block rams") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_bram -rules <rule_file> [selection]\n");
log("\n");
log("This pass converts the multi-port $mem memory cells into block ram instances.\n");
log("The given rules file describes the available resources and how they should be\n");
log("used.\n");
log("\n");
log("The rules file contains a set of block ram description and a sequence of match\n");
log("rules. A block ram description looks like this:\n");
log("\n");
log(" bram RAMB1024X32 # name of BRAM cell\n");
log(" init 1 # set to '1' if BRAM can be initialized\n");
log(" abits 10 # number of address bits\n");
log(" dbits 32 # number of data bits\n");
log(" groups 2 # number of port groups\n");
log(" ports 1 1 # number of ports in each group\n");
log(" wrmode 1 0 # set to '1' if this groups is write ports\n");
log(" enable 4 1 # number of enable bits\n");
log(" transp 0 2 # transparent (for read ports)\n");
log(" clocks 1 2 # clock configuration\n");
log(" clkpol 2 2 # clock polarity configuration\n");
log(" endbram\n");
log("\n");
log("For the option 'transp' the value 0 means non-transparent, 1 means transparent\n");
log("and a value greater than 1 means configurable. All groups with the same\n");
log("value greater than 1 share the same configuration bit.\n");
log("\n");
log("For the option 'clocks' the value 0 means non-clocked, and a value greater\n");
log("than 0 means clocked. All groups with the same value share the same clock\n");
log("signal.\n");
log("\n");
log("For the option 'clkpol' the value 0 means negative edge, 1 means positive edge\n");
log("and a value greater than 1 means configurable. All groups with the same value\n");
log("greater than 1 share the same configuration bit.\n");
log("\n");
log("Using the same bram name in different bram blocks will create different variants\n");
log("of the bram. Verilog configuration parameters for the bram are created as needed.\n");
log("\n");
log("It is also possible to create variants by repeating statements in the bram block\n");
log("and appending '@<label>' to the individual statements.\n");
log("\n");
log("A match rule looks like this:\n");
log("\n");
log(" match RAMB1024X32\n");
log(" max waste 16384 # only use this bram if <= 16k ram bits are unused\n");
log(" min efficiency 80 # only use this bram if efficiency is at least 80%%\n");
log(" endmatch\n");
log("\n");
log("It is possible to match against the following values with min/max rules:\n");
log("\n");
log(" words ........ number of words in memory in design\n");
log(" abits ........ number of address bits on memory in design\n");
log(" dbits ........ number of data bits on memory in design\n");
log(" wports ....... number of write ports on memory in design\n");
log(" rports ....... number of read ports on memory in design\n");
log(" ports ........ number of ports on memory in design\n");
log(" bits ......... number of bits in memory in design\n");
log(" dups .......... number of duplications for more read ports\n");
log("\n");
log(" awaste ....... number of unused address slots for this match\n");
log(" dwaste ....... number of unused data bits for this match\n");
log(" bwaste ....... number of unused bram bits for this match\n");
log(" waste ........ total number of unused bram bits (bwaste*dups)\n");
log(" efficiency ... total percentage of used and non-duplicated bits\n");
log("\n");
log(" acells ....... number of cells in 'address-direction'\n");
log(" dcells ....... number of cells in 'data-direction'\n");
log(" cells ........ total number of cells (acells*dcells*dups)\n");
log("\n");
log("The interface for the created bram instances is derived from the bram\n");
log("description. Use 'techmap' to convert the created bram instances into\n");
log("instances of the actual bram cells of your target architecture.\n");
log("\n");
log("A match containing the command 'or_next_if_better' is only used if it\n");
log("has a higher efficiency than the next match (and the one after that if\n");
log("the next also has 'or_next_if_better' set, and so forth).\n");
log("\n");
log("A match containing the command 'make_transp' will add external circuitry\n");
log("to simulate 'transparent read', if necessary.\n");
log("\n");
log("A match containing the command 'make_outreg' will add external flip-flops\n");
log("to implement synchronous read ports, if necessary.\n");
log("\n");
log("A match containing the command 'shuffle_enable A' will re-organize\n");
log("the data bits to accommodate the enable pattern of port A.\n");
log("\n");
}
virtual void execute(vector<string> args, Design *design)
{
rules_t rules;
log_header(design, "Executing MEMORY_BRAM pass (mapping $mem cells to block memories).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-rules" && argidx+1 < args.size()) {
rules.parse(args[++argidx]);
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto mod : design->selected_modules())
for (auto cell : mod->selected_cells())
if (cell->type == "$mem")
handle_cell(cell, rules);
}
} MemoryBramPass;
PRIVATE_NAMESPACE_END
|