1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]]
// Yiqiong Shi; Chan Wai Ting; Bah-Hwee Gwee; Ye Ren, "A highly efficient method for extracting FSMs from flattened gate-level netlist,"
// Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2610,2613, May 30 2010-June 2 2010
// doi: 10.1109/ISCAS.2010.5537093
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "fsmdata.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
static RTLIL::Module *module;
static SigMap assign_map;
typedef std::pair<RTLIL::IdString, RTLIL::IdString> sig2driver_entry_t;
static SigSet<sig2driver_entry_t> sig2driver, sig2trigger;
static std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> exclusive_ctrls;
static bool find_states(RTLIL::SigSpec sig, const RTLIL::SigSpec &dff_out, RTLIL::SigSpec &ctrl, std::map<RTLIL::Const, int> &states, RTLIL::Const *reset_state = NULL)
{
sig.extend_u0(dff_out.size(), false);
if (sig == dff_out)
return true;
assign_map.apply(sig);
if (sig.is_fully_const()) {
if (sig.is_fully_def() && states.count(sig.as_const()) == 0) {
log(" found state code: %s\n", log_signal(sig));
states[sig.as_const()] = -1;
}
return true;
}
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(sig, cellport_list);
if (GetSize(cellport_list) > 1) {
log(" found %d combined drivers for state signal %s.\n", GetSize(cellport_list), log_signal(sig));
return false;
}
if (GetSize(cellport_list) < 1) {
log(" found no driver for state signal %s.\n", log_signal(sig));
return false;
}
for (auto &cellport : cellport_list)
{
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$mux" && cell->type != "$pmux") || cellport.second != "\\Y") {
log(" unexpected cell type %s (%s) found in state selection tree.\n", cell->type.c_str(), cell->name.c_str());
return false;
}
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_s = assign_map(cell->getPort("\\S"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
RTLIL::SigSpec sig_aa = sig;
sig_aa.replace(sig_y, sig_a);
RTLIL::SigSpec sig_bb;
for (int i = 0; i < GetSize(sig_b)/GetSize(sig_a); i++) {
RTLIL::SigSpec s = sig;
s.replace(sig_y, sig_b.extract(i*GetSize(sig_a), GetSize(sig_a)));
sig_bb.append(s);
}
if (reset_state && RTLIL::SigSpec(*reset_state).is_fully_undef())
do {
SigSpec new_reset_state;
if (sig_aa.is_fully_def())
new_reset_state = sig_aa.as_const();
else if (sig_bb.is_fully_def())
new_reset_state = sig_bb.as_const();
else
break;
new_reset_state.extend_u0(GetSize(*reset_state));
*reset_state = new_reset_state.as_const();
log(" found reset state: %s (guessed from mux tree)\n", log_signal(*reset_state));
} while (0);
for (auto sig_s_bit : sig_s) {
if (ctrl.extract(sig_s_bit).empty()) {
log(" found ctrl input: %s\n", log_signal(sig_s_bit));
ctrl.append(sig_s_bit);
}
}
if (!find_states(sig_aa, dff_out, ctrl, states))
return false;
for (int i = 0; i < GetSize(sig_bb)/GetSize(sig_aa); i++) {
if (!find_states(sig_bb.extract(i*GetSize(sig_aa), GetSize(sig_aa)), dff_out, ctrl, states))
return false;
}
}
return true;
}
static RTLIL::Const sig2const(ConstEval &ce, RTLIL::SigSpec sig, RTLIL::State noconst_state, RTLIL::SigSpec dont_care = RTLIL::SigSpec())
{
if (dont_care.size() > 0) {
for (int i = 0; i < GetSize(sig); i++)
if (dont_care.extract(sig[i]).size() > 0)
sig[i] = noconst_state;
}
ce.assign_map.apply(sig);
ce.values_map.apply(sig);
for (int i = 0; i < GetSize(sig); i++)
if (sig[i].wire != NULL)
sig[i] = noconst_state;
return sig.as_const();
}
static void find_transitions(ConstEval &ce, ConstEval &ce_nostop, FsmData &fsm_data, std::map<RTLIL::Const, int> &states, int state_in, RTLIL::SigSpec ctrl_in, RTLIL::SigSpec ctrl_out, RTLIL::SigSpec dff_in, RTLIL::SigSpec dont_care)
{
bool undef_bit_in_next_state_mode = false;
RTLIL::SigSpec undef, constval;
if (ce.eval(ctrl_out, undef) && ce.eval(dff_in, undef))
{
if (0) {
undef_bit_in_next_state:
for (auto &bit : dff_in)
if (bit.wire != nullptr) bit = RTLIL::Sm;
for (auto &bit : ctrl_out)
if (bit.wire != nullptr) bit = RTLIL::Sm;
undef_bit_in_next_state_mode = true;
}
log_assert(ctrl_out.is_fully_const() && dff_in.is_fully_const());
FsmData::transition_t tr;
tr.ctrl_in = sig2const(ce, ctrl_in, RTLIL::State::Sa, dont_care);
tr.ctrl_out = sig2const(ce, ctrl_out, RTLIL::State::Sx);
std::map<RTLIL::SigBit, int> ctrl_in_bit_indices;
for (int i = 0; i < GetSize(ctrl_in); i++)
ctrl_in_bit_indices[ctrl_in[i]] = i;
for (auto &it : ctrl_in_bit_indices)
if (tr.ctrl_in.bits.at(it.second) == RTLIL::S1 && exclusive_ctrls.count(it.first) != 0)
for (auto &dc_bit : exclusive_ctrls.at(it.first))
if (ctrl_in_bit_indices.count(dc_bit))
tr.ctrl_in.bits.at(ctrl_in_bit_indices.at(dc_bit)) = RTLIL::State::Sa;
RTLIL::Const log_state_in = RTLIL::Const(RTLIL::State::Sx, fsm_data.state_bits);
if (state_in >= 0)
log_state_in = fsm_data.state_table.at(state_in);
if (states.count(ce.values_map(ce.assign_map(dff_in)).as_const()) == 0) {
log(" transition: %10s %s -> INVALID_STATE(%s) %s <ignored invalid transistion!>%s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(ce.values_map(ce.assign_map(dff_in))), log_signal(tr.ctrl_out),
undef_bit_in_next_state_mode ? " SHORTENED" : "");
return;
}
tr.state_in = state_in;
tr.state_out = states.at(ce.values_map(ce.assign_map(dff_in)).as_const());
if (dff_in.is_fully_def()) {
fsm_data.transition_table.push_back(tr);
log(" transition: %10s %s -> %10s %s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
} else {
log(" transition: %10s %s -> %10s %s <ignored undef transistion!>\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
}
return;
}
for (auto &bit : dff_in)
if (bit == RTLIL::Sx)
goto undef_bit_in_next_state;
log_assert(undef.size() > 0);
log_assert(ce.stop_signals.check_all(undef));
undef = undef.extract(0, 1);
constval = undef;
if (ce_nostop.eval(constval))
{
ce.push();
dont_care.append(undef);
ce.set(undef, constval.as_const());
if (exclusive_ctrls.count(undef) && constval == RTLIL::S1)
for (auto &bit : exclusive_ctrls.at(undef)) {
RTLIL::SigSpec bitval = bit;
if (ce.eval(bitval) && bitval != RTLIL::S0)
goto found_contradiction_1;
else
ce.set(bit, RTLIL::S0);
}
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
found_contradiction_1:
ce.pop();
}
else
{
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::S0);
ce_nostop.set(undef, RTLIL::S0);
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
ce.pop(), ce_nostop.pop();
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::S1);
ce_nostop.set(undef, RTLIL::S1);
if (exclusive_ctrls.count(undef))
for (auto &bit : exclusive_ctrls.at(undef)) {
RTLIL::SigSpec bitval = bit;
if ((ce.eval(bitval) || ce_nostop.eval(bitval)) && bitval != RTLIL::S0)
goto found_contradiction_2;
else
ce.set(bit, RTLIL::S0), ce_nostop.set(bit, RTLIL::S0);
}
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
found_contradiction_2:
ce.pop(), ce_nostop.pop();
}
}
static void extract_fsm(RTLIL::Wire *wire)
{
log("Extracting FSM `%s' from module `%s'.\n", wire->name.c_str(), module->name.c_str());
// get input and output signals for state ff
RTLIL::SigSpec dff_out = assign_map(RTLIL::SigSpec(wire));
RTLIL::SigSpec dff_in(RTLIL::State::Sm, wire->width);
RTLIL::Const reset_state(RTLIL::State::Sx, wire->width);
RTLIL::SigSpec clk = RTLIL::S0;
RTLIL::SigSpec arst = RTLIL::S0;
bool clk_polarity = true;
bool arst_polarity = true;
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$dff" && cell->type != "$adff") || cellport.second != "\\Q")
continue;
log(" found %s cell for state register: %s\n", cell->type.c_str(), cell->name.c_str());
RTLIL::SigSpec sig_q = assign_map(cell->getPort("\\Q"));
RTLIL::SigSpec sig_d = assign_map(cell->getPort("\\D"));
clk = cell->getPort("\\CLK");
clk_polarity = cell->parameters["\\CLK_POLARITY"].as_bool();
if (cell->type == "$adff") {
arst = cell->getPort("\\ARST");
arst_polarity = cell->parameters["\\ARST_POLARITY"].as_bool();
reset_state = cell->parameters["\\ARST_VALUE"];
}
sig_q.replace(dff_out, sig_d, &dff_in);
break;
}
log(" root of input selection tree: %s\n", log_signal(dff_in));
if (dff_in.has_marked_bits()) {
log(" fsm extraction failed: incomplete input selection tree root.\n");
return;
}
// find states and control inputs
RTLIL::SigSpec ctrl_in;
std::map<RTLIL::Const, int> states;
if (!arst.is_fully_const()) {
log(" found reset state: %s (from async reset)\n", log_signal(reset_state));
states[reset_state] = -1;
}
if (!find_states(dff_in, dff_out, ctrl_in, states, &reset_state)) {
log(" fsm extraction failed: state selection tree is not closed.\n");
return;
}
if (GetSize(states) <= 1) {
log(" fsm extraction failed: at least two states are required.\n");
return;
}
// find control outputs
// (add the state signals to the list of control outputs. if everything goes right, this signals
// become unused and can then be removed from the fsm control output)
RTLIL::SigSpec ctrl_out = dff_in;
cellport_list.clear();
sig2trigger.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b;
if (cell->hasPort("\\B"))
sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
if (cellport.second == "\\A" && !sig_b.is_fully_const())
continue;
if (cellport.second == "\\B" && !sig_a.is_fully_const())
continue;
log(" found ctrl output: %s\n", log_signal(sig_y));
ctrl_out.append(sig_y);
}
ctrl_in.remove(ctrl_out);
ctrl_in.sort_and_unify();
ctrl_out.sort_and_unify();
log(" ctrl inputs: %s\n", log_signal(ctrl_in));
log(" ctrl outputs: %s\n", log_signal(ctrl_out));
// Initialize fsm data struct
FsmData fsm_data;
fsm_data.num_inputs = ctrl_in.size();
fsm_data.num_outputs = ctrl_out.size();
fsm_data.state_bits = wire->width;
fsm_data.reset_state = -1;
for (auto &it : states) {
it.second = fsm_data.state_table.size();
fsm_data.state_table.push_back(it.first);
}
if (!arst.is_fully_const() || RTLIL::SigSpec(reset_state).is_fully_def())
fsm_data.reset_state = states[reset_state];
// Create transition table
ConstEval ce(module), ce_nostop(module);
ce.stop(ctrl_in);
for (int state_idx = 0; state_idx < int(fsm_data.state_table.size()); state_idx++) {
ce.push(), ce_nostop.push();
ce.set(dff_out, fsm_data.state_table[state_idx]);
ce_nostop.set(dff_out, fsm_data.state_table[state_idx]);
find_transitions(ce, ce_nostop, fsm_data, states, state_idx, ctrl_in, ctrl_out, dff_in, RTLIL::SigSpec());
ce.pop(), ce_nostop.pop();
}
// create fsm cell
RTLIL::Cell *fsm_cell = module->addCell(stringf("$fsm$%s$%d", wire->name.c_str(), autoidx++), "$fsm");
fsm_cell->setPort("\\CLK", clk);
fsm_cell->setPort("\\ARST", arst);
fsm_cell->parameters["\\CLK_POLARITY"] = clk_polarity ? RTLIL::S1 : RTLIL::S0;
fsm_cell->parameters["\\ARST_POLARITY"] = arst_polarity ? RTLIL::S1 : RTLIL::S0;
fsm_cell->setPort("\\CTRL_IN", ctrl_in);
fsm_cell->setPort("\\CTRL_OUT", ctrl_out);
fsm_cell->parameters["\\NAME"] = RTLIL::Const(wire->name.str());
fsm_cell->attributes = wire->attributes;
fsm_data.copy_to_cell(fsm_cell);
// rename original state wire
module->wires_.erase(wire->name);
wire->attributes.erase("\\fsm_encoding");
wire->name = stringf("$fsm$oldstate%s", wire->name.c_str());
module->wires_[wire->name] = wire;
// unconnect control outputs from old drivers
cellport_list.clear();
sig2driver.find(ctrl_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec port_sig = assign_map(cell->getPort(cellport.second));
RTLIL::SigSpec unconn_sig = port_sig.extract(ctrl_out);
RTLIL::Wire *unconn_wire = module->addWire(stringf("$fsm_unconnect$%s$%d", log_signal(unconn_sig), autoidx++), unconn_sig.size());
port_sig.replace(unconn_sig, RTLIL::SigSpec(unconn_wire), &cell->connections_[cellport.second]);
}
}
struct FsmExtractPass : public Pass {
FsmExtractPass() : Pass("fsm_extract", "extracting FSMs in design") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fsm_extract [selection]\n");
log("\n");
log("This pass operates on all signals marked as FSM state signals using the\n");
log("'fsm_encoding' attribute. It consumes the logic that creates the state signal\n");
log("and uses the state signal to generate control signal and replaces it with an\n");
log("FSM cell.\n");
log("\n");
log("The generated FSM cell still generates the original state signal with its\n");
log("original encoding. The 'fsm_opt' pass can be used in combination with the\n");
log("'opt_clean' pass to eliminate this signal.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header(design, "Executing FSM_EXTRACT pass (extracting FSM from design).\n");
extra_args(args, 1, design);
CellTypes ct;
ct.setup_internals();
ct.setup_internals_mem();
ct.setup_stdcells();
ct.setup_stdcells_mem();
for (auto &mod_it : design->modules_)
{
if (!design->selected(mod_it.second))
continue;
module = mod_it.second;
assign_map.set(module);
sig2driver.clear();
sig2trigger.clear();
exclusive_ctrls.clear();
for (auto cell : module->cells()) {
for (auto &conn_it : cell->connections()) {
if (ct.cell_output(cell->type, conn_it.first) || !ct.cell_known(cell->type)) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2driver.insert(sig, sig2driver_entry_t(cell->name, conn_it.first));
}
if (ct.cell_input(cell->type, conn_it.first) && cell->hasPort("\\Y") &&
cell->getPort("\\Y").size() == 1 && (conn_it.first == "\\A" || conn_it.first == "\\B")) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2trigger.insert(sig, sig2driver_entry_t(cell->name, conn_it.first));
}
}
if (cell->type == "$pmux") {
RTLIL::SigSpec sel_sig = assign_map(cell->getPort("\\S"));
for (auto &bit1 : sel_sig)
for (auto &bit2 : sel_sig)
if (bit1 != bit2)
exclusive_ctrls[bit1].insert(bit2);
}
}
std::vector<RTLIL::Wire*> wire_list;
for (auto &wire_it : module->wires_)
if (wire_it.second->attributes.count("\\fsm_encoding") > 0 && wire_it.second->attributes["\\fsm_encoding"].decode_string() != "none")
if (design->selected(module, wire_it.second))
wire_list.push_back(wire_it.second);
for (auto wire : wire_list)
extract_fsm(wire);
}
assign_map.clear();
sig2driver.clear();
sig2trigger.clear();
}
} FsmExtractPass;
PRIVATE_NAMESPACE_END
|