aboutsummaryrefslogtreecommitdiffstats
path: root/passes/equiv/equiv_struct.cc
blob: c4ced6a7150ad808ef6736507aa3f1791776bc4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/sigtools.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct EquivStructWorker
{
	Module *module;
	SigMap sigmap;
	SigMap equiv_bits;
	bool mode_fwd;
	bool mode_icells;
	int merge_count;

	const pool<IdString> &fwonly_cells;

	struct merge_key_t
	{
		IdString type;
		vector<pair<IdString, Const>> parameters;
		vector<pair<IdString, int>> port_sizes;
		vector<tuple<IdString, int, SigBit>> connections;

		bool operator==(const merge_key_t &other) const {
			return type == other.type && connections == other.connections &&
					parameters == other.parameters && port_sizes == other.port_sizes;
		}

		unsigned int hash() const {
			unsigned int h = mkhash_init;
			h = mkhash(h, mkhash(type));
			h = mkhash(h, mkhash(parameters));
			h = mkhash(h, mkhash(connections));
			return h;
		}
	};

	dict<merge_key_t, pool<IdString>> merge_cache;
	pool<merge_key_t> fwd_merge_cache, bwd_merge_cache;

	void merge_cell_pair(Cell *cell_a, Cell *cell_b)
	{
		SigMap merged_map;
		merge_count++;

		SigSpec inputs_a, inputs_b;
		vector<string> input_names;

		for (auto &port_a : cell_a->connections())
		{
			SigSpec bits_a = sigmap(port_a.second);
			SigSpec bits_b = sigmap(cell_b->getPort(port_a.first));

			log_assert(GetSize(bits_a) == GetSize(bits_b));

			if (!cell_a->output(port_a.first))
				for (int i = 0; i < GetSize(bits_a); i++)
					if (bits_a[i] != bits_b[i]) {
						inputs_a.append(bits_a[i]);
						inputs_b.append(bits_b[i]);
						input_names.push_back(GetSize(bits_a) == 1 ? port_a.first.str() :
								stringf("%s[%d]", log_id(port_a.first), i));
					}
		}

		for (int i = 0; i < GetSize(inputs_a); i++) {
			SigBit bit_a = inputs_a[i], bit_b = inputs_b[i];
			SigBit bit_y = module->addWire(NEW_ID);
			log("        New $equiv for input %s: A: %s, B: %s, Y: %s\n",
					input_names[i].c_str(), log_signal(bit_a), log_signal(bit_b), log_signal(bit_y));
			module->addEquiv(NEW_ID, bit_a, bit_b, bit_y);
			merged_map.add(bit_a, bit_y);
			merged_map.add(bit_b, bit_y);
		}

		std::vector<IdString> outport_names, inport_names;

		for (auto &port_a : cell_a->connections())
			if (cell_a->output(port_a.first))
				outport_names.push_back(port_a.first);
			else
				inport_names.push_back(port_a.first);

		for (auto &pn : inport_names)
			cell_a->setPort(pn, merged_map(sigmap(cell_a->getPort(pn))));

		for (auto &pn : outport_names) {
			SigSpec sig_a = cell_a->getPort(pn);
			SigSpec sig_b = cell_b->getPort(pn);
			module->connect(sig_b, sig_a);
		}

		auto merged_attr = cell_b->get_strpool_attribute("\\equiv_merged");
		merged_attr.insert(log_id(cell_b));
		cell_a->add_strpool_attribute("\\equiv_merged", merged_attr);
		module->remove(cell_b);
	}

	EquivStructWorker(Module *module, bool mode_fwd, bool mode_icells, const pool<IdString> &fwonly_cells, int iter_num) :
			module(module), sigmap(module), equiv_bits(module),
			mode_fwd(mode_fwd), mode_icells(mode_icells), merge_count(0), fwonly_cells(fwonly_cells)
	{
		log("  Starting iteration %d.\n", iter_num);

		pool<SigBit> equiv_inputs;
		pool<IdString> cells;

		for (auto cell : module->selected_cells())
			if (cell->type == "$equiv") {
				SigBit sig_a = sigmap(cell->getPort("\\A").as_bit());
				SigBit sig_b = sigmap(cell->getPort("\\B").as_bit());
				equiv_bits.add(sig_b, sig_a);
				equiv_inputs.insert(sig_a);
				equiv_inputs.insert(sig_b);
				cells.insert(cell->name);
			} else {
				if (mode_icells || module->design->module(cell->type))
					cells.insert(cell->name);
			}

		for (auto cell : module->selected_cells())
			if (cell->type == "$equiv") {
				SigBit sig_a = sigmap(cell->getPort("\\A").as_bit());
				SigBit sig_b = sigmap(cell->getPort("\\B").as_bit());
				SigBit sig_y = sigmap(cell->getPort("\\Y").as_bit());
				if (sig_a == sig_b && equiv_inputs.count(sig_y)) {
					log("    Purging redundant $equiv cell %s.\n", log_id(cell));
					module->connect(sig_y, sig_a);
					module->remove(cell);
					merge_count++;
				}
			}

		if (merge_count > 0)
			return;

		for (auto cell_name : cells)
		{
			merge_key_t key;
			vector<tuple<IdString, int, SigBit>> fwd_connections;

			Cell *cell = module->cell(cell_name);
			key.type = cell->type;

			for (auto &it : cell->parameters)
				key.parameters.push_back(it);
			std::sort(key.parameters.begin(), key.parameters.end());

			for (auto &it : cell->connections())
				key.port_sizes.push_back(make_pair(it.first, GetSize(it.second)));
			std::sort(key.port_sizes.begin(), key.port_sizes.end());

			for (auto &conn : cell->connections())
			{
				if (cell->input(conn.first)) {
					SigSpec sig = sigmap(conn.second);
					for (int i = 0; i < GetSize(sig); i++)
						fwd_connections.push_back(make_tuple(conn.first, i, sig[i]));
				}

				if (cell->output(conn.first)) {
					SigSpec sig = equiv_bits(conn.second);
					for (int i = 0; i < GetSize(sig); i++) {
						key.connections.clear();
						key.connections.push_back(make_tuple(conn.first, i, sig[i]));

						if (merge_cache.count(key))
							bwd_merge_cache.insert(key);
						merge_cache[key].insert(cell_name);
					}
				}
			}

			std::sort(fwd_connections.begin(), fwd_connections.end());
			key.connections.swap(fwd_connections);

			if (merge_cache.count(key))
				fwd_merge_cache.insert(key);
			merge_cache[key].insert(cell_name);
		}

		for (int phase = 0; phase < 2; phase++)
		{
			auto &queue = phase ? bwd_merge_cache : fwd_merge_cache;

			for (auto &key : queue)
			{
				const char *strategy = nullptr;
				vector<Cell*> gold_cells, gate_cells, other_cells;
				vector<pair<Cell*, Cell*>> cell_pairs;
				IdString cells_type;

				for (auto cell_name : merge_cache[key]) {
					Cell *c = module->cell(cell_name);
					if (c != nullptr) {
						string n = cell_name.str();
						cells_type = c->type;
						if (GetSize(n) > 5 && n.substr(GetSize(n)-5) == "_gold")
							gold_cells.push_back(c);
						else if (GetSize(n) > 5 && n.substr(GetSize(n)-5) == "_gate")
							gate_cells.push_back(c);
						else
							other_cells.push_back(c);
					}
				}

				if (phase && fwonly_cells.count(cells_type))
					continue;

				if (GetSize(gold_cells) > 1 || GetSize(gate_cells) > 1 || GetSize(other_cells) > 1)
				{
					strategy = "deduplicate";
					for (int i = 0; i+1 < GetSize(gold_cells); i += 2)
						cell_pairs.push_back(make_pair(gold_cells[i], gold_cells[i+1]));
					for (int i = 0; i+1 < GetSize(gate_cells); i += 2)
						cell_pairs.push_back(make_pair(gate_cells[i], gate_cells[i+1]));
					for (int i = 0; i+1 < GetSize(other_cells); i += 2)
						cell_pairs.push_back(make_pair(other_cells[i], other_cells[i+1]));
					goto run_strategy;
				}

				if (GetSize(gold_cells) == 1 && GetSize(gate_cells) == 1)
				{
					strategy = "gold-gate-pairs";
					cell_pairs.push_back(make_pair(gold_cells[0], gate_cells[0]));
					goto run_strategy;
				}

				if (GetSize(gold_cells) == 1 && GetSize(other_cells) == 1)
				{
					strategy = "gold-guess";
					cell_pairs.push_back(make_pair(gold_cells[0], other_cells[0]));
					goto run_strategy;
				}

				if (GetSize(other_cells) == 1 && GetSize(gate_cells) == 1)
				{
					strategy = "gate-guess";
					cell_pairs.push_back(make_pair(other_cells[0], gate_cells[0]));
					goto run_strategy;
				}

				log_assert(GetSize(gold_cells) + GetSize(gate_cells) + GetSize(other_cells) < 2);
				continue;

			run_strategy:
				int total_group_size = GetSize(gold_cells) + GetSize(gate_cells) + GetSize(other_cells);
				log("    %s merging %d %s cells (from group of %d) using strategy %s:\n", phase ? "Bwd" : "Fwd",
						2*GetSize(cell_pairs), log_id(cells_type), total_group_size, strategy);
				for (auto it : cell_pairs) {
					log("      Merging cells %s and %s.\n", log_id(it.first),  log_id(it.second));
					merge_cell_pair(it.first, it.second);
				}
			}

			if (merge_count > 0)
				return;
		}

		log("    Nothing to merge.\n");
	}
};

struct EquivStructPass : public Pass {
	EquivStructPass() : Pass("equiv_struct", "structural equivalence checking") { }
	virtual void help()
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    equiv_struct [options] [selection]\n");
		log("\n");
		log("This command adds additional $equiv cells based on the assumption that the\n");
		log("gold and gate circuit are structurally equivalent. Note that this can introduce\n");
		log("bad $equiv cells in cases where the netlists are not structurally equivalent,\n");
		log("for example when analyzing circuits with cells with commutative inputs. This\n");
		log("command will also de-duplicate gates.\n");
		log("\n");
		log("    -fwd\n");
		log("        by default this command performans forward sweeps until nothing can\n");
		log("        be merged by forwards sweeps, then backward sweeps until forward\n");
		log("        sweeps are effective again. with this option set only forward sweeps\n");
		log("        are performed.\n");
		log("\n");
		log("    -fwonly <cell_type>\n");
		log("        add the specified cell type to the list of cell types that are only\n");
		log("        merged in forward sweeps and never in backward sweeps. $equiv is in\n");
		log("        this list automatically.\n");
		log("\n");
		log("    -icells\n");
		log("        by default, the internal RTL and gate cell types are ignored. add\n");
		log("        this option to also process those cell types with this command.\n");
		log("\n");
		log("    -maxiter <N>\n");
		log("        maximum number of iterations to run before aborting\n");
		log("\n");
	}
	virtual void execute(std::vector<std::string> args, Design *design)
	{
		pool<IdString> fwonly_cells({ "$equiv" });
		bool mode_icells = false;
		bool mode_fwd = false;
		int max_iter = -1;

		log_header(design, "Executing EQUIV_STRUCT pass.\n");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			if (args[argidx] == "-fwd") {
				mode_fwd = true;
				continue;
			}
			if (args[argidx] == "-icells") {
				mode_icells = true;
				continue;
			}
			if (args[argidx] == "-fwonly" && argidx+1 < args.size()) {
				fwonly_cells.insert(RTLIL::escape_id(args[++argidx]));
				continue;
			}
			if (args[argidx] == "-maxiter" && argidx+1 < args.size()) {
				max_iter = atoi(args[++argidx].c_str());
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		for (auto module : design->selected_modules()) {
			int module_merge_count = 0;
			log("Running equiv_struct on module %s:\n", log_id(module));
			for (int iter = 0;; iter++) {
				if (iter == max_iter) {
					log("  Reached iteration limit of %d.\n", iter);
					break;
				}
				EquivStructWorker worker(module, mode_fwd, mode_icells, fwonly_cells, iter+1);
				if (worker.merge_count == 0)
					break;
				module_merge_count += worker.merge_count;
			}
			if (module_merge_count)
				log("  Performed a total of %d merges in module %s.\n", module_merge_count, log_id(module));
		}
	}
} EquivStructPass;

PRIVATE_NAMESPACE_END