1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* (C) 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/timinginfo.h"
#include <deque>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct StaWorker
{
Design *design;
Module *module;
SigMap sigmap;
struct t_data {
Cell* driver;
IdString dst_port, src_port;
vector<tuple<SigBit,int,IdString>> fanouts;
SigBit backtrack;
t_data() : driver(nullptr) {}
};
dict<SigBit, t_data> data;
std::deque<SigBit> queue;
struct t_endpoint {
Cell *sink;
IdString port;
int required;
t_endpoint() : sink(nullptr), required(0) {}
};
dict<SigBit, t_endpoint> endpoints;
int maxarrival;
SigBit maxbit;
pool<SigBit> driven;
StaWorker(RTLIL::Module *module) : design(module->design), module(module), sigmap(module), maxarrival(0)
{
TimingInfo timing;
pool<IdString> unrecognised_cells;
for (auto cell : module->cells())
{
Module *inst_module = design->module(cell->type);
if (!inst_module) {
if (unrecognised_cells.insert(cell->type).second)
log_warning("Cell type '%s' not recognised! Ignoring.\n", log_id(cell->type));
continue;
}
if (!inst_module->get_blackbox_attribute()) {
log_warning("Cell type '%s' is not a black- nor white-box! Ignoring.\n", log_id(cell->type));
continue;
}
IdString derived_type = inst_module->derive(design, cell->parameters);
inst_module = design->module(derived_type);
log_assert(inst_module);
if (!timing.count(derived_type)) {
auto &t = timing.setup_module(inst_module);
if (t.has_inputs && t.comb.empty() && t.arrival.empty() && t.required.empty())
log_warning("Module '%s' has no timing arcs!\n", log_id(cell->type));
}
auto &t = timing.at(derived_type);
if (t.comb.empty() && t.arrival.empty() && t.required.empty())
continue;
pool<std::pair<SigBit,TimingInfo::NameBit>> src_bits, dst_bits;
for (auto &conn : cell->connections()) {
auto rhs = sigmap(conn.second);
for (auto i = 0; i < GetSize(rhs); i++) {
const auto &bit = rhs[i];
if (!bit.wire)
continue;
TimingInfo::NameBit namebit(conn.first,i);
if (cell->input(conn.first)) {
src_bits.insert(std::make_pair(bit,namebit));
auto it = t.required.find(namebit);
if (it == t.required.end())
continue;
auto r = endpoints.insert(bit);
if (r.second || r.first->second.required < it->second.first) {
r.first->second.sink = cell;
r.first->second.port = conn.first;
r.first->second.required = it->second.first;
}
}
if (cell->output(conn.first)) {
dst_bits.insert(std::make_pair(bit,namebit));
auto &d = data[bit];
d.driver = cell;
d.dst_port = conn.first;
driven.insert(bit);
auto it = t.arrival.find(namebit);
if (it == t.arrival.end())
continue;
const auto &s = it->second.second;
if (cell->hasPort(s.name)) {
auto s_bit = sigmap(cell->getPort(s.name)[s.offset]);
if (s_bit.wire)
data[s_bit].fanouts.emplace_back(bit,it->second.first,s.name);
}
}
}
}
for (const auto &s : src_bits)
for (const auto &d : dst_bits) {
auto it = t.comb.find(TimingInfo::BitBit(s.second,d.second));
if (it == t.comb.end())
continue;
data[s.first].fanouts.emplace_back(d.first,it->second,s.second.name);
}
}
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
if (wire->port_input) {
for (const auto &b : sigmap(wire)) {
queue.emplace_back(b);
driven.insert(b);
}
// All primary inputs to arrive at time zero
wire->set_intvec_attribute(ID::sta_arrival, std::vector<int>(GetSize(wire), 0));
}
if (wire->port_output)
for (const auto &b : sigmap(wire))
if (b.wire)
endpoints.insert(b);
}
}
void run()
{
while (!queue.empty()) {
auto b = queue.front();
queue.pop_front();
auto it = data.find(b);
if (it == data.end())
continue;
const auto& src_arrivals = b.wire->get_intvec_attribute(ID::sta_arrival);
log_assert(GetSize(src_arrivals) == GetSize(b.wire));
auto src_arrival = src_arrivals[b.offset];
for (const auto &d : it->second.fanouts) {
const auto &dst_bit = std::get<0>(d);
auto dst_arrivals = dst_bit.wire->get_intvec_attribute(ID::sta_arrival);
if (dst_arrivals.empty())
dst_arrivals = std::vector<int>(GetSize(dst_bit.wire), -1);
else
log_assert(GetSize(dst_arrivals) == GetSize(dst_bit.wire));
auto &dst_arrival = dst_arrivals[dst_bit.offset];
auto new_arrival = src_arrival + std::get<1>(d);
if (dst_arrival < new_arrival) {
auto dst_wire = dst_bit.wire;
dst_arrival = std::max(dst_arrival, new_arrival);
dst_wire->set_intvec_attribute(ID::sta_arrival, dst_arrivals);
queue.emplace_back(dst_bit);
data[dst_bit].backtrack = b;
data[dst_bit].src_port = std::get<2>(d);
auto it = endpoints.find(dst_bit);
if (it != endpoints.end())
new_arrival += it->second.required;
if (new_arrival > maxarrival && driven.count(b)) {
maxarrival = new_arrival;
maxbit = dst_bit;
}
}
}
}
auto b = maxbit;
if (b == SigBit()) {
log("No timing paths found.\n");
return;
}
log("Latest arrival time in '%s' is %d:\n", log_id(module), maxarrival);
auto it = endpoints.find(maxbit);
if (it != endpoints.end() && it->second.sink)
log(" %6d %s (%s.%s)\n", maxarrival, log_id(it->second.sink), log_id(it->second.sink->type), log_id(it->second.port));
else {
log(" %6d (%s)\n", maxarrival, b.wire->port_output ? "<primary output>" : "<unknown>");
if (!b.wire->port_output)
log_warning("Critical-path does not terminate in a recognised endpoint.\n");
}
auto jt = data.find(b);
while (jt != data.end()) {
int arrival = b.wire->get_intvec_attribute(ID::sta_arrival)[b.offset];
if (jt->second.driver) {
log(" %s\n", log_signal(b));
log(" %6d %s (%s.%s->%s)\n", arrival, log_id(jt->second.driver), log_id(jt->second.driver->type), log_id(jt->second.src_port), log_id(jt->second.dst_port));
}
else if (b.wire->port_input)
log(" %6d %s (%s)\n", arrival, log_signal(b), "<primary input>");
else
log_abort();
b = jt->second.backtrack;
jt = data.find(b);
}
std::map<int, unsigned> arrival_histogram;
for (const auto &i : endpoints) {
const auto &b = i.first;
if (!driven.count(b))
continue;
if (!b.wire->attributes.count(ID::sta_arrival)) {
log_warning("Endpoint %s.%s has no (* sta_arrival *) value.\n", log_id(module), log_signal(b));
continue;
}
auto arrival = b.wire->get_intvec_attribute(ID::sta_arrival)[b.offset];
if (arrival < 0) {
log_warning("Endpoint %s.%s has no (* sta_arrival *) value.\n", log_id(module), log_signal(b));
continue;
}
arrival += i.second.required;
arrival_histogram[arrival]++;
}
// Adapted from https://github.com/YosysHQ/nextpnr/blob/affb12cc27ebf409eade062c4c59bb98569d8147/common/timing.cc#L946-L969
if (arrival_histogram.size() > 0) {
unsigned num_bins = 20;
unsigned bar_width = 60;
auto min_arrival = arrival_histogram.begin()->first;
auto max_arrival = arrival_histogram.rbegin()->first;
auto bin_size = std::max<unsigned>(1, ceil((max_arrival - min_arrival + 1) / float(num_bins)));
std::vector<unsigned> bins(num_bins);
unsigned max_freq = 0;
for (const auto &i : arrival_histogram) {
auto &bin = bins[(i.first - min_arrival) / bin_size];
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log("\n");
log("Arrival histogram:\n");
log(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (int i = num_bins-1; i >= 0; --i)
log("(%6d, %6d] |%s%c\n", min_arrival + bin_size * (i + 1), min_arrival + bin_size * i,
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
}
};
struct StaPass : public Pass {
StaPass() : Pass("sta", "perform static timing analysis") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" sta [options] [selection]\n");
log("\n");
log("This command performs static timing analysis on the design. (Only considers\n");
log("paths within a single module, so the design must be flattened.)\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing STA pass (static timing analysis).\n");
/*
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-TODO") {
continue;
}
break;
}
*/
extra_args(args, 1, design);
for (Module *module : design->selected_modules())
{
if (module->has_processes_warn())
continue;
StaWorker worker(module);
worker.run();
}
}
} StaPass;
PRIVATE_NAMESPACE_END
|