aboutsummaryrefslogtreecommitdiffstats
path: root/manual/command-reference-manual.tex
blob: fea2354e68364c7e1a0560438978bf80611d1fd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
% Generated using the yosys 'help -write-tex-command-reference-manual' command.

\section{abc -- use ABC for technology mapping}
\label{cmd:abc}
\begin{lstlisting}[numbers=left,frame=single]
    abc [options] [selection]

This pass uses the ABC tool [1] for technology mapping of yosys's internal gate
library to a target architecture.

    -exe <command>
        use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
        This can e.g. be used to call a specific version of ABC or a wrapper.

    -script <file>
        use the specified ABC script file instead of the default script.

        if <file> starts with a plus sign (+), then the rest of the filename
        string is interpreted as the command string to be passed to ABC. The
        leading plus sign is removed and all commas (,) in the string are
        replaced with blanks before the string is passed to ABC.

        if no -script parameter is given, the following scripts are used:

        for -liberty without -constr:
          strash; dc2; scorr; ifraig; retime -o {D}; strash; dch -f;
               map {D}

        for -liberty with -constr:
          strash; dc2; scorr; ifraig; retime -o {D}; strash; dch -f;
               map {D}; buffer; upsize {D}; dnsize {D}; stime -p

        for -lut/-luts (only one LUT size):
          strash; dc2; scorr; ifraig; retime -o; strash; dch -f; if; mfs;
               lutpack

        for -lut/-luts (different LUT sizes):
          strash; dc2; scorr; ifraig; retime -o; strash; dch -f; if; mfs

        for -sop:
          strash; dc2; scorr; ifraig; retime -o; strash; dch -f;
               cover {I} {P}

        otherwise:
          strash; dc2; scorr; ifraig; retime -o; strash; dch -f; map

    -fast
        use different default scripts that are slightly faster (at the cost
        of output quality):

        for -liberty without -constr:
          retime -o {D}; map {D}

        for -liberty with -constr:
          retime -o {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p

        for -lut/-luts:
          retime -o; if

        for -sop:
          retime -o; cover -I {I} -P {P}

        otherwise:
          retime -o; map

    -liberty <file>
        generate netlists for the specified cell library (using the liberty
        file format).

    -constr <file>
        pass this file with timing constraints to ABC. use with -liberty.

        a constr file contains two lines:
            set_driving_cell <cell_name>
            set_load <floating_point_number>

        the set_driving_cell statement defines which cell type is assumed to
        drive the primary inputs and the set_load statement sets the load in
        femtofarads for each primary output.

    -D <picoseconds>
        set delay target. the string {D} in the default scripts above is
        replaced by this option when used, and an empty string otherwise.

    -I <num>
        maximum number of SOP inputs.
        (replaces {I} in the default scripts above)

    -P <num>
        maximum number of SOP products.
        (replaces {P} in the default scripts above)

    -lut <width>
        generate netlist using luts of (max) the specified width.

    -lut <w1>:<w2>
        generate netlist using luts of (max) the specified width <w2>. All
        luts with width <= <w1> have constant cost. for luts larger than <w1>
        the area cost doubles with each additional input bit. the delay cost
        is still constant for all lut widths.

    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
        generate netlist using luts. Use the specified costs for luts with 1,
        2, 3, .. inputs.

    -sop
        map to sum-of-product cells and inverters

    -g type1,type2,...
        Map the the specified list of gate types. Supported gates types are:
        AND, NAND, OR, NOR, XOR, XNOR, MUX, AOI3, OAI3, AOI4, OAI4.
        (The NOT gate is always added to this list automatically.)

    -dff
        also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
        clock domains are automatically partitioned in clock domains and each
        domain is passed through ABC independently.

    -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
        use only the specified clock domain. this is like -dff, but only FF
        cells that belong to the specified clock domain are used.

    -keepff
        set the "keep" attribute on flip-flop output wires. (and thus preserve
        them, for example for equivalence checking.)

    -nocleanup
        when this option is used, the temporary files created by this pass
        are not removed. this is useful for debugging.

    -showtmp
        print the temp dir name in log. usually this is suppressed so that the
        command output is identical across runs.

    -markgroups
        set a 'abcgroup' attribute on all objects created by ABC. The value of
        this attribute is a unique integer for each ABC process started. This
        is useful for debugging the partitioning of clock domains.

When neither -liberty nor -lut is used, the Yosys standard cell library is
loaded into ABC before the ABC script is executed.

This pass does not operate on modules with unprocessed processes in it.
(I.e. the 'proc' pass should be used first to convert processes to netlists.)

[1] http://www.eecs.berkeley.edu/~alanmi/abc/
\end{lstlisting}

\section{add -- add objects to the design}
\label{cmd:add}
\begin{lstlisting}[numbers=left,frame=single]
    add <command> [selection]

This command adds objects to the design. It operates on all fully selected
modules. So e.g. 'add -wire foo' will add a wire foo to all selected modules.


    add {-wire|-input|-inout|-output} <name> <width> [selection]

Add a wire (input, inout, output port) with the given name and width. The
command will fail if the object exists already and has different properties
than the object to be created.


    add -global_input <name> <width> [selection]

Like 'add -input', but also connect the signal between instances of the
selected modules.
\end{lstlisting}

\section{aigmap -- map logic to and-inverter-graph circuit}
\label{cmd:aigmap}
\begin{lstlisting}[numbers=left,frame=single]
    aigmap [options] [selection]

Replace all logic cells with circuits made of only $_AND_ and
$_NOT_ cells.

    -nand
        Enable creation of $_NAND_ cells
\end{lstlisting}

\section{alumacc -- extract ALU and MACC cells}
\label{cmd:alumacc}
\begin{lstlisting}[numbers=left,frame=single]
    alumacc [selection]

This pass translates arithmetic operations like $add, $mul, $lt, etc. to $alu
and $macc cells.
\end{lstlisting}

\section{assertpmux -- convert internal signals to module ports}
\label{cmd:assertpmux}
\begin{lstlisting}[numbers=left,frame=single]
    assertpmux [options] [selection]

This command adds asserts to the design that assert that all parallel muxes
($pmux cells) have a maximum of one of their inputs enable at any time.

    -noinit
        do not enforce the pmux condition during the init state

    -always
        usually the $pmux condition is only checked when the $pmux output
        is used be the mux tree it drives. this option will deactivate this
        additional constrained and check the $pmux condition always.
\end{lstlisting}

\section{attrmap -- renaming attributes}
\label{cmd:attrmap}
\begin{lstlisting}[numbers=left,frame=single]
    attrmap [options] [selection]

This command renames attributes and/or mapps key/value pairs to
other key/value pairs.

    -tocase <name>
        Match attribute names case-insensitively and set it to the specified
        name.

    -rename <old_name> <new_name>
        Rename attributes as specified

    -map <old_name>=<old_value> <new_name>=<new_value>
        Map key/value pairs as indicated.

    -imap <old_name>=<old_value> <new_name>=<new_value>
        Like -map, but use case-insensitive match for <old_value> when
        it is a string value.

    -remove <name>=<value>
        Remove attributes matching this pattern.

    -modattr
        Operate on module attributes instead of attributes on wires and cells.

For example, mapping Xilinx-style "keep" attributes to Yosys-style:

    attrmap -tocase keep -imap keep="true" keep=1 \
            -imap keep="false" keep=0 -remove keep=0
\end{lstlisting}

\section{attrmvcp -- move or copy attributes from wires to driving cells}
\label{cmd:attrmvcp}
\begin{lstlisting}[numbers=left,frame=single]
    attrmvcp [options] [selection]

Move or copy attributes on wires to the cells driving them.

    -copy
        By default, attributes are moved. This will only add
        the attribute to the cell, without removing it from
        the wire.

    -purge
        If no selected cell consumes the attribute, then it is
        left on the wire by default. This option will cause the
        attribute to be removed from the wire, even if no selected
        cell takes it.

    -driven
        By default, attriburtes are moved to the cell driving the
        wire. With this option set it will be moved to the cell
        driven by the wire instead.

    -attr <attrname>
        Move or copy this attribute. This option can be used
        multiple times.
\end{lstlisting}

\section{cd -- a shortcut for 'select -module <name>'}
\label{cmd:cd}
\begin{lstlisting}[numbers=left,frame=single]
    cd <modname>

This is just a shortcut for 'select -module <modname>'.


    cd <cellname>

When no module with the specified name is found, but there is a cell
with the specified name in the current module, then this is equivalent
to 'cd <celltype>'.

    cd ..

This is just a shortcut for 'select -clear'.
\end{lstlisting}

\section{check -- check for obvious problems in the design}
\label{cmd:check}
\begin{lstlisting}[numbers=left,frame=single]
    check [options] [selection]

This pass identifies the following problems in the current design:

 - combinatorial loops

 - two or more conflicting drivers for one wire

 - used wires that do not have a driver

When called with -noinit then this command also checks for wires which have
the 'init' attribute set.

When called with -assert then the command will produce an error if any
problems are found in the current design.
\end{lstlisting}

\section{chparam -- re-evaluate modules with new parameters}
\label{cmd:chparam}
\begin{lstlisting}[numbers=left,frame=single]
    chparam [ -set name value ]... [selection]

Re-evaluate the selected modules with new parameters. String values must be
passed in double quotes (").


    chparam -list [selection]

List the available parameters of the selected modules.
\end{lstlisting}

\section{clean -- remove unused cells and wires}
\label{cmd:clean}
\begin{lstlisting}[numbers=left,frame=single]
    clean [options] [selection]

This is identical to 'opt_clean', but less verbose.

When commands are separated using the ';;' token, this command will be executed
between the commands.

When commands are separated using the ';;;' token, this command will be executed
in -purge mode between the commands.
\end{lstlisting}

\section{clk2fflogic -- convert clocked FFs to generic \$ff cells}
\label{cmd:clk2fflogic}
\begin{lstlisting}[numbers=left,frame=single]
    clk2fflogic [options] [selection]

This command replaces clocked flip-flops with generic $ff cells that use the
implicit global clock. This is useful for formal verification of designs with
multiple clocks.
\end{lstlisting}

\section{connect -- create or remove connections}
\label{cmd:connect}
\begin{lstlisting}[numbers=left,frame=single]
    connect [-nomap] [-nounset] -set <lhs-expr> <rhs-expr>

Create a connection. This is equivalent to adding the statement 'assign
<lhs-expr> = <rhs-expr>;' to the Verilog input. Per default, all existing
drivers for <lhs-expr> are unconnected. This can be overwritten by using
the -nounset option.


    connect [-nomap] -unset <expr>

Unconnect all existing drivers for the specified expression.


    connect [-nomap] -port <cell> <port> <expr>

Connect the specified cell port to the specified cell port.


Per default signal alias names are resolved and all signal names are mapped
the the signal name of the primary driver. Using the -nomap option deactivates
this behavior.

The connect command operates in one module only. Either only one module must
be selected or an active module must be set using the 'cd' command.

This command does not operate on module with processes.
\end{lstlisting}

\section{connwrappers -- replace undef values with defined constants}
\label{cmd:connwrappers}
\begin{lstlisting}[numbers=left,frame=single]
    connwrappers [options] [selection]

Wrappers are used in coarse-grain synthesis to wrap cells with smaller ports
in wrapper cells with a (larger) constant port size. I.e. the upper bits
of the wrapper output are signed/unsigned bit extended. This command uses this
knowledge to rewire the inputs of the driven cells to match the output of
the driving cell.

    -signed <cell_type> <port_name> <width_param>
    -unsigned <cell_type> <port_name> <width_param>
        consider the specified signed/unsigned wrapper output

    -port <cell_type> <port_name> <width_param> <sign_param>
        use the specified parameter to decide if signed or unsigned

The options -signed, -unsigned, and -port can be specified multiple times.
\end{lstlisting}

\section{copy -- copy modules in the design}
\label{cmd:copy}
\begin{lstlisting}[numbers=left,frame=single]
    copy old_name new_name

Copy the specified module. Note that selection patterns are not supported
by this command.
\end{lstlisting}

\section{cover -- print code coverage counters}
\label{cmd:cover}
\begin{lstlisting}[numbers=left,frame=single]
    cover [options] [pattern]

Print the code coverage counters collected using the cover() macro in the Yosys
C++ code. This is useful to figure out what parts of Yosys are utilized by a
test bench.

    -q
        Do not print output to the normal destination (console and/or log file)

    -o file
        Write output to this file, truncate if exists.

    -a file
        Write output to this file, append if exists.

    -d dir
        Write output to a newly created file in the specified directory.

When one or more pattern (shell wildcards) are specified, then only counters
matching at least one pattern are printed.


It is also possible to instruct Yosys to print the coverage counters on program
exit to a file using environment variables:

    YOSYS_COVER_DIR="{dir-name}" yosys {args}

        This will create a file (with an auto-generated name) in this
        directory and write the coverage counters to it.

    YOSYS_COVER_FILE="{file-name}" yosys {args}

        This will append the coverage counters to the specified file.


Hint: Use the following AWK command to consolidate Yosys coverage files:

    gawk '{ p[$3] = $1; c[$3] += $2; } END { for (i in p)
      printf "%-60s %10d %s\n", p[i], c[i], i; }' {files} | sort -k3


Coverage counters are only available in Yosys for Linux.
\end{lstlisting}

\section{delete -- delete objects in the design}
\label{cmd:delete}
\begin{lstlisting}[numbers=left,frame=single]
    delete [selection]

Deletes the selected objects. This will also remove entire modules, if the
whole module is selected.


    delete {-input|-output|-port} [selection]

Does not delete any object but removes the input and/or output flag on the
selected wires, thus 'deleting' module ports.
\end{lstlisting}

\section{deminout -- demote inout ports to input or output}
\label{cmd:deminout}
\begin{lstlisting}[numbers=left,frame=single]
    deminout [options] [selection]

"Demote" inout ports to input or output ports, if possible.
\end{lstlisting}

\section{design -- save, restore and reset current design}
\label{cmd:design}
\begin{lstlisting}[numbers=left,frame=single]
    design -reset

Clear the current design.


    design -save <name>

Save the current design under the given name.


    design -stash <name>

Save the current design under the given name and then clear the current design.


    design -push

Push the current design to the stack and then clear the current design.


    design -pop

Reset the current design and pop the last design from the stack.


    design -load <name>

Reset the current design and load the design previously saved under the given
name.


    design -copy-from <name> [-as <new_mod_name>] <selection>

Copy modules from the specified design into the current one. The selection is
evaluated in the other design.


    design -copy-to <name> [-as <new_mod_name>] [selection]

Copy modules from the current design into the specified one.
\end{lstlisting}

\section{dff2dffe -- transform \$dff cells to \$dffe cells}
\label{cmd:dff2dffe}
\begin{lstlisting}[numbers=left,frame=single]
    dff2dffe [options] [selection]

This pass transforms $dff cells driven by a tree of multiplexers with one or
more feedback paths to $dffe cells. It also works on gate-level cells such as
$_DFF_P_, $_DFF_N_ and $_MUX_.

    -unmap
        operate in the opposite direction: replace $dffe cells with combinations
        of $dff and $mux cells. the options below are ignore in unmap mode.

    -direct <internal_gate_type> <external_gate_type>
        map directly to external gate type. <internal_gate_type> can
        be any internal gate-level FF cell (except $_DFFE_??_). the
        <external_gate_type> is the cell type name for a cell with an
        identical interface to the <internal_gate_type>, except it
        also has an high-active enable port 'E'.
          Usually <external_gate_type> is an intermediate cell type
        that is then translated to the final type using 'techmap'.

    -direct-match <pattern>
        like -direct for all DFF cell types matching the expression.
        this will use $__DFFE_* as <external_gate_type> matching the
        internal gate type $_DFF_*_, except for $_DFF_[NP]_, which is
        converted to $_DFFE_[NP]_.
\end{lstlisting}

\section{dffinit -- set INIT param on FF cells}
\label{cmd:dffinit}
\begin{lstlisting}[numbers=left,frame=single]
    dffinit [options] [selection]

This pass sets an FF cell parameter to the the initial value of the net it
drives. (This is primarily used in FPGA flows.)

    -ff <cell_name> <output_port> <init_param>
        operate on the specified cell type. this option can be used
        multiple times.
\end{lstlisting}

\section{dfflibmap -- technology mapping of flip-flops}
\label{cmd:dfflibmap}
\begin{lstlisting}[numbers=left,frame=single]
    dfflibmap [-prepare] -liberty <file> [selection]

Map internal flip-flop cells to the flip-flop cells in the technology
library specified in the given liberty file.

This pass may add inverters as needed. Therefore it is recommended to
first run this pass and then map the logic paths to the target technology.

When called with -prepare, this command will convert the internal FF cells
to the internal cell types that best match the cells found in the given
liberty file.
\end{lstlisting}

\section{dffsr2dff -- convert DFFSR cells to simpler FF cell types}
\label{cmd:dffsr2dff}
\begin{lstlisting}[numbers=left,frame=single]
    dffsr2dff [options] [selection]

This pass converts DFFSR cells ($dffsr, $_DFFSR_???_) and ADFF cells ($adff,
$_DFF_???_) to simpler FF cell types when any of the set/reset inputs is unused.
\end{lstlisting}

\section{dump -- print parts of the design in ilang format}
\label{cmd:dump}
\begin{lstlisting}[numbers=left,frame=single]
    dump [options] [selection]

Write the selected parts of the design to the console or specified file in
ilang format.

    -m
        also dump the module headers, even if only parts of a single
        module is selected

    -n
        only dump the module headers if the entire module is selected

    -o <filename>
        write to the specified file.

    -a <filename>
        like -outfile but append instead of overwrite
\end{lstlisting}

\section{echo -- turning echoing back of commands on and off}
\label{cmd:echo}
\begin{lstlisting}[numbers=left,frame=single]
    echo on

Print all commands to log before executing them.


    echo off

Do not print all commands to log before executing them. (default)
\end{lstlisting}

\section{edgetypes -- list all types of edges in selection}
\label{cmd:edgetypes}
\begin{lstlisting}[numbers=left,frame=single]
    edgetypes [options] [selection]

This command lists all unique types of 'edges' found in the selection. An 'edge'
is a 4-tuple of source and sink cell type and port name.
\end{lstlisting}

\section{equiv\_add -- add a \$equiv cell}
\label{cmd:equiv_add}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_add [-try] gold_sig gate_sig

This command adds an $equiv cell for the specified signals.


    equiv_add [-try] -cell gold_cell gate_cell

This command adds $equiv cells for the ports of the specified cells.
\end{lstlisting}

\section{equiv\_induct -- proving \$equiv cells using temporal induction}
\label{cmd:equiv_induct}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_induct [options] [selection]

Uses a version of temporal induction to prove $equiv cells.

Only selected $equiv cells are proven and only selected cells are used to
perform the proof.

    -undef
        enable modelling of undef states

    -seq <N>
        the max. number of time steps to be considered (default = 4)

This command is very effective in proving complex sequential circuits, when
the internal state of the circuit quickly propagates to $equiv cells.

However, this command uses a weak definition of 'equivalence': This command
proves that the two circuits will not diverge after they produce equal
outputs (observable points via $equiv) for at least <N> cycles (the <N>
specified via -seq).

Combined with simulation this is very powerful because simulation can give
you confidence that the circuits start out synced for at least <N> cycles
after reset.
\end{lstlisting}

\section{equiv\_make -- prepare a circuit for equivalence checking}
\label{cmd:equiv_make}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_make [options] gold_module gate_module equiv_module

This creates a module annotated with $equiv cells from two presumably
equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'
to work with the created equivalent checking module.

    -inames
        Also match cells and wires with $... names.

    -blacklist <file>
        Do not match cells or signals that match the names in the file.

    -encfile <file>
        Match FSM encodings using the description from the file.
        See 'help fsm_recode' for details.

Note: The circuit created by this command is not a miter (with something like
a trigger output), but instead uses $equiv cells to encode the equivalence
checking problem. Use 'miter -equiv' if you want to create a miter circuit.
\end{lstlisting}

\section{equiv\_mark -- mark equivalence checking regions}
\label{cmd:equiv_mark}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_mark [options] [selection]

This command marks the regions in an equivalence checking module. Region 0 is
the proven part of the circuit. Regions with higher numbers are connected
unproven subcricuits. The integer attribute 'equiv_region' is set on all
wires and cells.
\end{lstlisting}

\section{equiv\_miter -- extract miter from equiv circuit}
\label{cmd:equiv_miter}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_miter [options] miter_module [selection]

This creates a miter module for further analysis of the selected $equiv cells.

    -trigger
        Create a trigger output

    -cmp
        Create cmp_* outputs for individual unproven $equiv cells

    -assert
        Create a $assert cell for each unproven $equiv cell

    -undef
        Create compare logic that handles undefs correctly
\end{lstlisting}

\section{equiv\_purge -- purge equivalence checking module}
\label{cmd:equiv_purge}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_purge [options] [selection]

This command removes the proven part of an equivalence checking module, leaving
only the unproven segments in the design. This will also remove and add module
ports as needed.
\end{lstlisting}

\section{equiv\_remove -- remove \$equiv cells}
\label{cmd:equiv_remove}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_remove [options] [selection]

This command removes the selected $equiv cells. If neither -gold nor -gate is
used then only proven cells are removed.

    -gold
        keep gold circuit

    -gate
        keep gate circuit
\end{lstlisting}

\section{equiv\_simple -- try proving simple \$equiv instances}
\label{cmd:equiv_simple}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_simple [options] [selection]

This command tries to prove $equiv cells using a simple direct SAT approach.

    -v
        verbose output

    -undef
        enable modelling of undef states

    -nogroup
        disabling grouping of $equiv cells by output wire

    -seq <N>
        the max. number of time steps to be considered (default = 1)
\end{lstlisting}

\section{equiv\_status -- print status of equivalent checking module}
\label{cmd:equiv_status}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_status [options] [selection]

This command prints status information for all selected $equiv cells.

    -assert
        produce an error if any unproven $equiv cell is found
\end{lstlisting}

\section{equiv\_struct -- structural equivalence checking}
\label{cmd:equiv_struct}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_struct [options] [selection]

This command adds additional $equiv cells based on the assumption that the
gold and gate circuit are structurally equivalent. Note that this can introduce
bad $equiv cells in cases where the netlists are not structurally equivalent,
for example when analyzing circuits with cells with commutative inputs. This
command will also de-duplicate gates.

    -fwd
        by default this command performans forward sweeps until nothing can
        be merged by forwards sweeps, then backward sweeps until forward
        sweeps are effective again. with this option set only forward sweeps
        are performed.

    -fwonly <cell_type>
        add the specified cell type to the list of cell types that are only
        merged in forward sweeps and never in backward sweeps. $equiv is in
        this list automatically.

    -icells
        by default, the internal RTL and gate cell types are ignored. add
        this option to also process those cell types with this command.

    -maxiter <N>
        maximum number of iterations to run before aborting
\end{lstlisting}

\section{eval -- evaluate the circuit given an input}
\label{cmd:eval}
\begin{lstlisting}[numbers=left,frame=single]
    eval [options] [selection]

This command evaluates the value of a signal given the value of all required
inputs.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-undef
        set all unspecified source signals to undef (x)

    -table <signal>
        create a truth table using the specified input signals

    -show <signal>
        show the value for the specified signal. if no -show option is passed
        then all output ports of the current module are used.
\end{lstlisting}

\section{expose -- convert internal signals to module ports}
\label{cmd:expose}
\begin{lstlisting}[numbers=left,frame=single]
    expose [options] [selection]

This command exposes all selected internal signals of a module as additional
outputs.

    -dff
        only consider wires that are directly driven by register cell.

    -cut
        when exposing a wire, create an input/output pair and cut the internal
        signal path at that wire.

    -shared
        only expose those signals that are shared among the selected modules.
        this is useful for preparing modules for equivalence checking.

    -evert
        also turn connections to instances of other modules to additional
        inputs and outputs and remove the module instances.

    -evert-dff
        turn flip-flops to sets of inputs and outputs.

    -sep <separator>
        when creating new wire/port names, the original object name is suffixed
        with this separator (default: '.') and the port name or a type
        designator for the exposed signal.
\end{lstlisting}

\section{extract -- find subcircuits and replace them with cells}
\label{cmd:extract}
\begin{lstlisting}[numbers=left,frame=single]
    extract -map <map_file> [options] [selection]
    extract -mine <out_file> [options] [selection]

This pass looks for subcircuits that are isomorphic to any of the modules
in the given map file and replaces them with instances of this modules. The
map file can be a Verilog source file (*.v) or an ilang file (*.il).

    -map <map_file>
        use the modules in this file as reference. This option can be used
        multiple times.

    -map %<design-name>
        use the modules in this in-memory design as reference. This option can
        be used multiple times.

    -verbose
        print debug output while analyzing

    -constports
        also find instances with constant drivers. this may be much
        slower than the normal operation.

    -nodefaultswaps
        normally builtin port swapping rules for internal cells are used per
        default. This turns that off, so e.g. 'a^b' does not match 'b^a'
        when this option is used.

    -compat <needle_type> <haystack_type>
        Per default, the cells in the map file (needle) must have the
        type as the cells in the active design (haystack). This option
        can be used to register additional pairs of types that should
        match. This option can be used multiple times.

    -swap <needle_type> <port1>,<port2>[,...]
        Register a set of swappable ports for a needle cell type.
        This option can be used multiple times.

    -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]
        Register a valid permutation of swappable ports for a needle
        cell type. This option can be used multiple times.

    -cell_attr <attribute_name>
        Attributes on cells with the given name must match.

    -wire_attr <attribute_name>
        Attributes on wires with the given name must match.

    -ignore_parameters
        Do not use parameters when matching cells.

    -ignore_param <cell_type> <parameter_name>
        Do not use this parameter when matching cells.

This pass does not operate on modules with unprocessed processes in it.
(I.e. the 'proc' pass should be used first to convert processes to netlists.)

This pass can also be used for mining for frequent subcircuits. In this mode
the following options are to be used instead of the -map option.

    -mine <out_file>
        mine for frequent subcircuits and write them to the given ilang file

    -mine_cells_span <min> <max>
        only mine for subcircuits with the specified number of cells
        default value: 3 5

    -mine_min_freq <num>
        only mine for subcircuits with at least the specified number of matches
        default value: 10

    -mine_limit_matches_per_module <num>
        when calculating the number of matches for a subcircuit, don't count
        more than the specified number of matches per module

    -mine_max_fanout <num>
        don't consider internal signals with more than <num> connections

The modules in the map file may have the attribute 'extract_order' set to an
integer value. Then this value is used to determine the order in which the pass
tries to map the modules to the design (ascending, default value is 0).

See 'help techmap' for a pass that does the opposite thing.
\end{lstlisting}

\section{flatten -- flatten design}
\label{cmd:flatten}
\begin{lstlisting}[numbers=left,frame=single]
    flatten [selection]

This pass flattens the design by replacing cells by their implementation. This
pass is very similar to the 'techmap' pass. The only difference is that this
pass is using the current design as mapping library.

Cells and/or modules with the 'keep_hierarchy' attribute set will not be
flattened by this command.
\end{lstlisting}

\section{freduce -- perform functional reduction}
\label{cmd:freduce}
\begin{lstlisting}[numbers=left,frame=single]
    freduce [options] [selection]

This pass performs functional reduction in the circuit. I.e. if two nodes are
equivalent, they are merged to one node and one of the redundant drivers is
disconnected. A subsequent call to 'clean' will remove the redundant drivers.

    -v, -vv
        enable verbose or very verbose output

    -inv
        enable explicit handling of inverted signals

    -stop <n>
        stop after <n> reduction operations. this is mostly used for
        debugging the freduce command itself.

    -dump <prefix>
        dump the design to <prefix>_<module>_<num>.il after each reduction
        operation. this is mostly used for debugging the freduce command.

This pass is undef-aware, i.e. it considers don't-care values for detecting
equivalent nodes.

All selected wires are considered for rewiring. The selected cells cover the
circuit that is analyzed.
\end{lstlisting}

\section{fsm -- extract and optimize finite state machines}
\label{cmd:fsm}
\begin{lstlisting}[numbers=left,frame=single]
    fsm [options] [selection]

This pass calls all the other fsm_* passes in a useful order. This performs
FSM extraction and optimization. It also calls opt_clean as needed:

    fsm_detect          unless got option -nodetect
    fsm_extract

    fsm_opt
    opt_clean
    fsm_opt

    fsm_expand          if got option -expand
    opt_clean           if got option -expand
    fsm_opt             if got option -expand

    fsm_recode          unless got option -norecode

    fsm_info

    fsm_export          if got option -export
    fsm_map             unless got option -nomap

Options:

    -expand, -norecode, -export, -nomap
        enable or disable passes as indicated above

    -fullexpand
        call expand with -full option

    -encoding type
    -fm_set_fsm_file file
    -encfile file
        passed through to fsm_recode pass
\end{lstlisting}

\section{fsm\_detect -- finding FSMs in design}
\label{cmd:fsm_detect}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_detect [selection]

This pass detects finite state machines by identifying the state signal.
The state signal is then marked by setting the attribute 'fsm_encoding'
on the state signal to "auto".

Existing 'fsm_encoding' attributes are not changed by this pass.

Signals can be protected from being detected by this pass by setting the
'fsm_encoding' attribute to "none".
\end{lstlisting}

\section{fsm\_expand -- expand FSM cells by merging logic into it}
\label{cmd:fsm_expand}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_expand [-full] [selection]

The fsm_extract pass is conservative about the cells that belong to a finite
state machine. This pass can be used to merge additional auxiliary gates into
the finite state machine.

By default, fsm_expand is still a bit conservative regarding merging larger
word-wide cells. Call with -full to consider all cells for merging.
\end{lstlisting}

\section{fsm\_export -- exporting FSMs to KISS2 files}
\label{cmd:fsm_export}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_export [-noauto] [-o filename] [-origenc] [selection]

This pass creates a KISS2 file for every selected FSM. For FSMs with the
'fsm_export' attribute set, the attribute value is used as filename, otherwise
the module and cell name is used as filename. If the parameter '-o' is given,
the first exported FSM is written to the specified filename. This overwrites
the setting as specified with the 'fsm_export' attribute. All other FSMs are
exported to the default name as mentioned above.

    -noauto
        only export FSMs that have the 'fsm_export' attribute set

    -o filename
        filename of the first exported FSM

    -origenc
        use binary state encoding as state names instead of s0, s1, ...
\end{lstlisting}

\section{fsm\_extract -- extracting FSMs in design}
\label{cmd:fsm_extract}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_extract [selection]

This pass operates on all signals marked as FSM state signals using the
'fsm_encoding' attribute. It consumes the logic that creates the state signal
and uses the state signal to generate control signal and replaces it with an
FSM cell.

The generated FSM cell still generates the original state signal with its
original encoding. The 'fsm_opt' pass can be used in combination with the
'opt_clean' pass to eliminate this signal.
\end{lstlisting}

\section{fsm\_info -- print information on finite state machines}
\label{cmd:fsm_info}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_info [selection]

This pass dumps all internal information on FSM cells. It can be useful for
analyzing the synthesis process and is called automatically by the 'fsm'
pass so that this information is included in the synthesis log file.
\end{lstlisting}

\section{fsm\_map -- mapping FSMs to basic logic}
\label{cmd:fsm_map}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_map [selection]

This pass translates FSM cells to flip-flops and logic.
\end{lstlisting}

\section{fsm\_opt -- optimize finite state machines}
\label{cmd:fsm_opt}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_opt [selection]

This pass optimizes FSM cells. It detects which output signals are actually
not used and removes them from the FSM. This pass is usually used in
combination with the 'opt_clean' pass (see also 'help fsm').
\end{lstlisting}

\section{fsm\_recode -- recoding finite state machines}
\label{cmd:fsm_recode}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_recode [options] [selection]

This pass reassign the state encodings for FSM cells. At the moment only
one-hot encoding and binary encoding is supported.
    -encoding <type>
        specify the encoding scheme used for FSMs without the
        'fsm_encoding' attribute or with the attribute set to `auto'.

    -fm_set_fsm_file <file>
        generate a file containing the mapping from old to new FSM encoding
        in form of Synopsys Formality set_fsm_* commands.

    -encfile <file>
        write the mappings from old to new FSM encoding to a file in the
        following format:

            .fsm <module_name> <state_signal>
            .map <old_bitpattern> <new_bitpattern>
\end{lstlisting}

\section{greenpak4\_counters -- Extract GreenPak4 counter cells}
\label{cmd:greenpak4_counters}
\begin{lstlisting}[numbers=left,frame=single]
    greenpak4_counters [options] [selection]

This pass converts non-resettable or async resettable down counters to GreenPak4
counter cells (All other GreenPak4 counter modes must be instantiated manually.)
\end{lstlisting}

\section{greenpak4\_dffinv -- merge greenpak4 inverters and DFFs}
\label{cmd:greenpak4_dffinv}
\begin{lstlisting}[numbers=left,frame=single]
    greenpak4_dffinv [options] [selection]

Merge GP_INV cells with GP_DFF* cells.
\end{lstlisting}

\section{help -- display help messages}
\label{cmd:help}
\begin{lstlisting}[numbers=left,frame=single]
    help  ................  list all commands
    help <command>  ......  print help message for given command
    help -all  ...........  print complete command reference

    help -cells ..........  list all cell types
    help <celltype>  .....  print help message for given cell type
    help <celltype>+  ....  print verilog code for given cell type
\end{lstlisting}

\section{hierarchy -- check, expand and clean up design hierarchy}
\label{cmd:hierarchy}
\begin{lstlisting}[numbers=left,frame=single]
    hierarchy [-check] [-top <module>]
    hierarchy -generate <cell-types> <port-decls>

In parametric designs, a module might exists in several variations with
different parameter values. This pass looks at all modules in the current
design an re-runs the language frontends for the parametric modules as
needed.

    -check
        also check the design hierarchy. this generates an error when
        an unknown module is used as cell type.

    -purge_lib
        by default the hierarchy command will not remove library (blackbox)
        modules. use this option to also remove unused blackbox modules.

    -libdir <directory>
        search for files named <module_name>.v in the specified directory
        for unknown modules and automatically run read_verilog for each
        unknown module.

    -keep_positionals
        per default this pass also converts positional arguments in cells
        to arguments using port names. this option disables this behavior.

    -nokeep_asserts
        per default this pass sets the "keep" attribute on all modules
        that directly or indirectly contain one or more $assert cells. this
        option disables this behavior.

    -top <module>
        use the specified top module to built a design hierarchy. modules
        outside this tree (unused modules) are removed.

        when the -top option is used, the 'top' attribute will be set on the
        specified top module. otherwise a module with the 'top' attribute set
        will implicitly be used as top module, if such a module exists.

    -auto-top
        automatically determine the top of the design hierarchy and mark it.

In -generate mode this pass generates blackbox modules for the given cell
types (wildcards supported). For this the design is searched for cells that
match the given types and then the given port declarations are used to
determine the direction of the ports. The syntax for a port declaration is:

    {i|o|io}[@<num>]:<portname>

Input ports are specified with the 'i' prefix, output ports with the 'o'
prefix and inout ports with the 'io' prefix. The optional <num> specifies
the position of the port in the parameter list (needed when instantiated
using positional arguments). When <num> is not specified, the <portname> can
also contain wildcard characters.

This pass ignores the current selection and always operates on all modules
in the current design.
\end{lstlisting}

\section{hilomap -- technology mapping of constant hi- and/or lo-drivers}
\label{cmd:hilomap}
\begin{lstlisting}[numbers=left,frame=single]
    hilomap [options] [selection]

Map constants to 'tielo' and 'tiehi' driver cells.

    -hicell <celltype> <portname>
        Replace constant hi bits with this cell.

    -locell <celltype> <portname>
        Replace constant lo bits with this cell.

    -singleton
        Create only one hi/lo cell and connect all constant bits
        to that cell. Per default a separate cell is created for
        each constant bit.
\end{lstlisting}

\section{history -- show last interactive commands}
\label{cmd:history}
\begin{lstlisting}[numbers=left,frame=single]
    history

This command prints all commands in the shell history buffer. This are
all commands executed in an interactive session, but not the commands
from executed scripts.
\end{lstlisting}

\section{ice40\_ffinit -- iCE40: handle FF init values}
\label{cmd:ice40_ffinit}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_ffinit [options] [selection]

Remove zero init values for FF output signals. Add inverters to implement
nonzero init values.
\end{lstlisting}

\section{ice40\_ffssr -- iCE40: merge synchronous set/reset into FF cells}
\label{cmd:ice40_ffssr}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_ffssr [options] [selection]

Merge synchronous set/reset $_MUX_ cells into iCE40 FFs.
\end{lstlisting}

\section{ice40\_opt -- iCE40: perform simple optimizations}
\label{cmd:ice40_opt}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_opt [options] [selection]

This command executes the following script:

    do
        <ice40 specific optimizations>
        opt_expr -mux_undef -undriven [-full]
        opt_merge
        opt_rmdff
        opt_clean
    while <changed design>

When called with the option -unlut, this command will transform all already
mapped SB_LUT4 cells back to logic.
\end{lstlisting}

\section{insbuf -- insert buffer cells for connected wires}
\label{cmd:insbuf}
\begin{lstlisting}[numbers=left,frame=single]
    insbuf [options] [selection]

Insert buffer cells into the design for directly connected wires.

    -buf <celltype> <in-portname> <out-portname>
        Use the given cell type instead of $_BUF_. (Notice that the next
        call to "clean" will remove all $_BUF_ in the design.)
\end{lstlisting}

\section{iopadmap -- technology mapping of i/o pads (or buffers)}
\label{cmd:iopadmap}
\begin{lstlisting}[numbers=left,frame=single]
    iopadmap [options] [selection]

Map module inputs/outputs to PAD cells from a library. This pass
can only map to very simple PAD cells. Use 'techmap' to further map
the resulting cells to more sophisticated PAD cells.

    -inpad <celltype> <portname>[:<portname>]
        Map module input ports to the given cell type with the
        given output port name. if a 2nd portname is given, the
        signal is passed through the pad call, using the 2nd
        portname as the port facing the module port.

    -outpad <celltype> <portname>[:<portname>]
    -inoutpad <celltype> <portname>[:<portname>]
        Similar to -inpad, but for output and inout ports.

    -toutpad <celltype> <portname>:<portname>[:<portname>]
        Merges $_TBUF_ cells into the output pad cell. This takes precedence
        over the other -outpad cell. The first portname is the enable input
        of the tristate driver.

    -tinoutpad <celltype> <portname>:<portname>:<portname>[:<portname>]
        Merges $_TBUF_ cells into the inout pad cell. This takes precedence
        over the other -inoutpad cell. The first portname is the enable input
        of the tristate driver and the 2nd portname is the internal output
        buffering the external signal.

    -widthparam <param_name>
        Use the specified parameter name to set the port width.

    -nameparam <param_name>
        Use the specified parameter to set the port name.

    -bits
        create individual bit-wide buffers even for ports that
        are wider. (the default behavior is to create word-wide
        buffers using -widthparam to set the word size on the cell.)

Tristate PADS (-toutpad, -tinoutpad) always operate in -bits mode.
\end{lstlisting}

\section{json -- write design in JSON format}
\label{cmd:json}
\begin{lstlisting}[numbers=left,frame=single]
    json [options] [selection]

Write a JSON netlist of all selected objects.

    -o <filename>
        write to the specified file.

    -aig
        also include AIG models for the different gate types

See 'help write_json' for a description of the JSON format used.
\end{lstlisting}

\section{log -- print text and log files}
\label{cmd:log}
\begin{lstlisting}[numbers=left,frame=single]
    log string

Print the given string to the screen and/or the log file. This is useful for TCL
scripts, because the TCL command "puts" only goes to stdout but not to
logfiles.

    -stdout
        Print the output to stdout too. This is useful when all Yosys is executed
        with a script and the -q (quiet operation) argument to notify the user.

    -stderr
        Print the output to stderr too.

    -nolog
        Don't use the internal log() command. Use either -stdout or -stderr,
        otherwise no output will be generated at all.

    -n
        do not append a newline
\end{lstlisting}

\section{ls -- list modules or objects in modules}
\label{cmd:ls}
\begin{lstlisting}[numbers=left,frame=single]
    ls [selection]

When no active module is selected, this prints a list of modules.

When an active module is selected, this prints a list of objects in the module.
\end{lstlisting}

\section{lut2mux -- convert \$lut to \$\_MUX\_}
\label{cmd:lut2mux}
\begin{lstlisting}[numbers=left,frame=single]
    lut2mux [options] [selection]

This pass converts $lut cells to $_MUX_ gates.
\end{lstlisting}

\section{maccmap -- mapping macc cells}
\label{cmd:maccmap}
\begin{lstlisting}[numbers=left,frame=single]
    maccmap [-unmap] [selection]

This pass maps $macc cells to yosys $fa and $alu cells. When the -unmap option
is used then the $macc cell is mapped to $add, $sub, etc. cells instead.
\end{lstlisting}

\section{memory -- translate memories to basic cells}
\label{cmd:memory}
\begin{lstlisting}[numbers=left,frame=single]
    memory [-nomap] [-nordff] [-memx] [-bram <bram_rules>] [selection]

This pass calls all the other memory_* passes in a useful order:

    memory_dff [-nordff]                (-memx implies -nordff)
    opt_clean
    memory_share
    opt_clean
    memory_memx                         (when called with -memx)
    memory_collect
    memory_bram -rules <bram_rules>     (when called with -bram)
    memory_map                          (skipped if called with -nomap)

This converts memories to word-wide DFFs and address decoders
or multiport memory blocks if called with the -nomap option.
\end{lstlisting}

\section{memory\_bram -- map memories to block rams}
\label{cmd:memory_bram}
\begin{lstlisting}[numbers=left,frame=single]
    memory_bram -rules <rule_file> [selection]

This pass converts the multi-port $mem memory cells into block ram instances.
The given rules file describes the available resources and how they should be
used.

The rules file contains a set of block ram description and a sequence of match
rules. A block ram description looks like this:

    bram RAMB1024X32     # name of BRAM cell
      init 1             # set to '1' if BRAM can be initialized
      abits 10           # number of address bits
      dbits 32           # number of data bits
      groups 2           # number of port groups
      ports  1 1         # number of ports in each group
      wrmode 1 0         # set to '1' if this groups is write ports
      enable 4 1         # number of enable bits
      transp 0 2         # transparent (for read ports)
      clocks 1 2         # clock configuration
      clkpol 2 2         # clock polarity configuration
    endbram

For the option 'transp' the value 0 means non-transparent, 1 means transparent
and a value greater than 1 means configurable. All groups with the same
value greater than 1 share the same configuration bit.

For the option 'clocks' the value 0 means non-clocked, and a value greater
than 0 means clocked. All groups with the same value share the same clock
signal.

For the option 'clkpol' the value 0 means negative edge, 1 means positive edge
and a value greater than 1 means configurable. All groups with the same value
greater than 1 share the same configuration bit.

Using the same bram name in different bram blocks will create different variants
of the bram. Verilog configuration parameters for the bram are created as needed.

It is also possible to create variants by repeating statements in the bram block
and appending '@<label>' to the individual statements.

A match rule looks like this:

    match RAMB1024X32
      max waste 16384    # only use this bram if <= 16k ram bits are unused
      min efficiency 80  # only use this bram if efficiency is at least 80%
    endmatch

It is possible to match against the following values with min/max rules:

    words  ........  number of words in memory in design
    abits  ........  number of address bits on memory in design
    dbits  ........  number of data bits on memory in design
    wports  .......  number of write ports on memory in design
    rports  .......  number of read ports on memory in design
    ports  ........  number of ports on memory in design
    bits  .........  number of bits in memory in design
    dups ..........  number of duplications for more read ports

    awaste  .......  number of unused address slots for this match
    dwaste  .......  number of unused data bits for this match
    bwaste  .......  number of unused bram bits for this match
    waste  ........  total number of unused bram bits (bwaste*dups)
    efficiency  ...  total percentage of used and non-duplicated bits

    acells  .......  number of cells in 'address-direction'
    dcells  .......  number of cells in 'data-direction'
    cells  ........  total number of cells (acells*dcells*dups)

The interface for the created bram instances is derived from the bram
description. Use 'techmap' to convert the created bram instances into
instances of the actual bram cells of your target architecture.

A match containing the command 'or_next_if_better' is only used if it
has a higher efficiency than the next match (and the one after that if
the next also has 'or_next_if_better' set, and so forth).

A match containing the command 'make_transp' will add external circuitry
to simulate 'transparent read', if necessary.

A match containing the command 'make_outreg' will add external flip-flops
to implement synchronous read ports, if necessary.

A match containing the command 'shuffle_enable A' will re-organize
the data bits to accommodate the enable pattern of port A.
\end{lstlisting}

\section{memory\_collect -- creating multi-port memory cells}
\label{cmd:memory_collect}
\begin{lstlisting}[numbers=left,frame=single]
    memory_collect [selection]

This pass collects memories and memory ports and creates generic multiport
memory cells.
\end{lstlisting}

\section{memory\_dff -- merge input/output DFFs into memories}
\label{cmd:memory_dff}
\begin{lstlisting}[numbers=left,frame=single]
    memory_dff [options] [selection]

This pass detects DFFs at memory ports and merges them into the memory port.
I.e. it consumes an asynchronous memory port and the flip-flops at its
interface and yields a synchronous memory port.

    -nordfff
        do not merge registers on read ports
\end{lstlisting}

\section{memory\_map -- translate multiport memories to basic cells}
\label{cmd:memory_map}
\begin{lstlisting}[numbers=left,frame=single]
    memory_map [selection]

This pass converts multiport memory cells as generated by the memory_collect
pass to word-wide DFFs and address decoders.
\end{lstlisting}

\section{memory\_memx -- emulate vlog sim behavior for mem ports}
\label{cmd:memory_memx}
\begin{lstlisting}[numbers=left,frame=single]
    memory_memx [selection]

This pass adds additional circuitry that emulates the Verilog simulation
behavior for out-of-bounds memory reads and writes.
\end{lstlisting}

\section{memory\_share -- consolidate memory ports}
\label{cmd:memory_share}
\begin{lstlisting}[numbers=left,frame=single]
    memory_share [selection]

This pass merges share-able memory ports into single memory ports.

The following methods are used to consolidate the number of memory ports:

  - When write ports are connected to async read ports accessing the same
    address, then this feedback path is converted to a write port with
    byte/part enable signals.

  - When multiple write ports access the same address then this is converted
    to a single write port with a more complex data and/or enable logic path.

  - When multiple write ports are never accessed at the same time (a SAT
    solver is used to determine this), then the ports are merged into a single
    write port.

Note that in addition to the algorithms implemented in this pass, the $memrd
and $memwr cells are also subject to generic resource sharing passes (and other
optimizations) such as "share" and "opt_merge".
\end{lstlisting}

\section{memory\_unpack -- unpack multi-port memory cells}
\label{cmd:memory_unpack}
\begin{lstlisting}[numbers=left,frame=single]
    memory_unpack [selection]

This pass converts the multi-port $mem memory cells into individual $memrd and
$memwr cells. It is the counterpart to the memory_collect pass.
\end{lstlisting}

\section{miter -- automatically create a miter circuit}
\label{cmd:miter}
\begin{lstlisting}[numbers=left,frame=single]
    miter -equiv [options] gold_name gate_name miter_name

Creates a miter circuit for equivalence checking. The gold- and gate- modules
must have the same interfaces. The miter circuit will have all inputs of the
two source modules, prefixed with 'in_'. The miter circuit has a 'trigger'
output that goes high if an output mismatch between the two source modules is
detected.

    -ignore_gold_x
        a undef (x) bit in the gold module output will match any value in
        the gate module output.

    -make_outputs
        also route the gold- and gate-outputs to 'gold_*' and 'gate_*' outputs
        on the miter circuit.

    -make_outcmp
        also create a cmp_* output for each gold/gate output pair.

    -make_assert
        also create an 'assert' cell that checks if trigger is always low.

    -flatten
        call 'flatten; opt_expr -keepdc -undriven;;' on the miter circuit.


    miter -assert [options] module [miter_name]

Creates a miter circuit for property checking. All input ports are kept,
output ports are discarded. An additional output 'trigger' is created that
goes high when an assert is violated. Without a miter_name, the existing
module is modified.

    -make_outputs
        keep module output ports.

    -flatten
        call 'flatten; opt_expr -keepdc -undriven;;' on the miter circuit.
\end{lstlisting}

\section{muxcover -- cover trees of MUX cells with wider MUXes}
\label{cmd:muxcover}
\begin{lstlisting}[numbers=left,frame=single]
    muxcover [options] [selection]

Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells

    -mux4, -mux8, -mux16
        Use the specified types of MUXes. If none of those options are used,
        the effect is the same as if all of them where used.

    -nodecode
        Do not insert decoder logic. This reduces the number of possible
        substitutions, but guarantees that the resulting circuit is not
        less efficient than the original circuit.
\end{lstlisting}

\section{nlutmap -- map to LUTs of different sizes}
\label{cmd:nlutmap}
\begin{lstlisting}[numbers=left,frame=single]
    nlutmap [options] [selection]

This pass uses successive calls to 'abc' to map to an architecture. That
provides a small number of differently sized LUTs.

    -luts N_1,N_2,N_3,...
        The number of LUTs with 1, 2, 3, ... inputs that are
        available in the target architecture.

    -assert
        Create an error if not all logic can be mapped

Excess logic that does not fit into the specified LUTs is mapped back
to generic logic gates ($_AND_, etc.).
\end{lstlisting}

\section{opt -- perform simple optimizations}
\label{cmd:opt}
\begin{lstlisting}[numbers=left,frame=single]
    opt [options] [selection]

This pass calls all the other opt_* passes in a useful order. This performs
a series of trivial optimizations and cleanups. This pass executes the other
passes in the following order:

    opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
    opt_merge [-share_all] -nomux

    do
        opt_muxtree
        opt_reduce [-fine] [-full]
        opt_merge [-share_all]
        opt_rmdff [-keepdc]
        opt_clean [-purge]
        opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
    while <changed design>

When called with -fast the following script is used instead:

    do
        opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
        opt_merge [-share_all]
        opt_rmdff [-keepdc]
        opt_clean [-purge]
    while <changed design in opt_rmdff>

Note: Options in square brackets (such as [-keepdc]) are passed through to
the opt_* commands when given to 'opt'.
\end{lstlisting}

\section{opt\_clean -- remove unused cells and wires}
\label{cmd:opt_clean}
\begin{lstlisting}[numbers=left,frame=single]
    opt_clean [options] [selection]

This pass identifies wires and cells that are unused and removes them. Other
passes often remove cells but leave the wires in the design or reconnect the
wires but leave the old cells in the design. This pass can be used to clean up
after the passes that do the actual work.

This pass only operates on completely selected modules without processes.

    -purge
        also remove internal nets if they have a public name
\end{lstlisting}

\section{opt\_expr -- perform const folding and simple expression rewriting}
\label{cmd:opt_expr}
\begin{lstlisting}[numbers=left,frame=single]
    opt_expr [options] [selection]

This pass performs const folding on internal cell types with constant inputs.
It also performs some simple expression rewritring.

    -mux_undef
        remove 'undef' inputs from $mux, $pmux and $_MUX_ cells

    -mux_bool
        replace $mux cells with inverters or buffers when possible

    -undriven
        replace undriven nets with undef (x) constants

    -clkinv
        optimize clock inverters by changing FF types

    -fine
        perform fine-grain optimizations

    -full
        alias for -mux_undef -mux_bool -undriven -fine

    -keepdc
        some optimizations change the behavior of the circuit with respect to
        don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
        all result bits to be set to x. this behavior changes when 'a+0' is
        replaced by 'a'. the -keepdc option disables all such optimizations.
\end{lstlisting}

\section{opt\_merge -- consolidate identical cells}
\label{cmd:opt_merge}
\begin{lstlisting}[numbers=left,frame=single]
    opt_merge [options] [selection]

This pass identifies cells with identical type and input signals. Such cells
are then merged to one cell.

    -nomux
        Do not merge MUX cells.

    -share_all
        Operate on all cell types, not just built-in types.
\end{lstlisting}

\section{opt\_muxtree -- eliminate dead trees in multiplexer trees}
\label{cmd:opt_muxtree}
\begin{lstlisting}[numbers=left,frame=single]
    opt_muxtree [selection]

This pass analyzes the control signals for the multiplexer trees in the design
and identifies inputs that can never be active. It then removes this dead
branches from the multiplexer trees.

This pass only operates on completely selected modules without processes.
\end{lstlisting}

\section{opt\_reduce -- simplify large MUXes and AND/OR gates}
\label{cmd:opt_reduce}
\begin{lstlisting}[numbers=left,frame=single]
    opt_reduce [options] [selection]

This pass performs two interlinked optimizations:

1. it consolidates trees of large AND gates or OR gates and eliminates
duplicated inputs.

2. it identifies duplicated inputs to MUXes and replaces them with a single
input with the original control signals OR'ed together.

    -fine
      perform fine-grain optimizations

    -full
      alias for -fine
\end{lstlisting}

\section{opt\_rmdff -- remove DFFs with constant inputs}
\label{cmd:opt_rmdff}
\begin{lstlisting}[numbers=left,frame=single]
    opt_rmdff [-keepdc] [selection]

This pass identifies flip-flops with constant inputs and replaces them with
a constant driver.
\end{lstlisting}

\section{plugin -- load and list loaded plugins}
\label{cmd:plugin}
\begin{lstlisting}[numbers=left,frame=single]
    plugin [options]

Load and list loaded plugins.

    -i <plugin_filename>
        Load (install) the specified plugin.

    -a <alias_name>
        Register the specified alias name for the loaded plugin

    -l
        List loaded plugins
\end{lstlisting}

\section{pmuxtree -- transform \$pmux cells to trees of \$mux cells}
\label{cmd:pmuxtree}
\begin{lstlisting}[numbers=left,frame=single]
    pmuxtree [options] [selection]

This pass transforms $pmux cells to a trees of $mux cells.
\end{lstlisting}

\section{prep -- generic synthesis script}
\label{cmd:prep}
\begin{lstlisting}[numbers=left,frame=single]
    prep [options]

This command runs a conservative RTL synthesis. A typical application for this
is the preparation stage of a verification flow. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -auto-top
        automatically determine the top of the design hierarchy

    -flatten
        flatten the design before synthesis. this will pass '-auto-top' to
        'hierarchy' if no top module is specified.

    -ifx
        passed to 'proc'. uses verilog simulation behavior for verilog if/case
        undef handling. this also prevents 'wreduce' from being run.

    -memx
        simulate verilog simulation behavior for out-of-bounds memory accesses
        using the 'memory_memx' pass. This option implies -nordff.

    -nomem
        do not run any of the memory_* passes

    -nordff
        passed to 'memory_dff'. prohibits merging of FFs into memory read ports

     -nokeepdc
        do not call opt_* with -keepdc

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top> | -auto-top]

    coarse:
        proc [-ifx]
        flatten    (if -flatten)
        opt_expr -keepdc
        opt_clean
        check
        opt -keepdc
        wreduce [-memx]
        memory_dff [-nordff]
        memory_memx    (if -memx)
        opt_clean
        memory_collect
        opt -keepdc -fast

    check:
        stat
        check
\end{lstlisting}

\section{proc -- translate processes to netlists}
\label{cmd:proc}
\begin{lstlisting}[numbers=left,frame=single]
    proc [options] [selection]

This pass calls all the other proc_* passes in the most common order.

    proc_clean
    proc_rmdead
    proc_init
    proc_arst
    proc_mux
    proc_dlatch
    proc_dff
    proc_clean

This replaces the processes in the design with multiplexers,
flip-flops and latches.

The following options are supported:

    -global_arst [!]<netname>
        This option is passed through to proc_arst.

    -ifx
        This option is passed through to proc_mux. proc_rmdead is not
        executed in -ifx mode.
\end{lstlisting}

\section{proc\_arst -- detect asynchronous resets}
\label{cmd:proc_arst}
\begin{lstlisting}[numbers=left,frame=single]
    proc_arst [-global_arst [!]<netname>] [selection]

This pass identifies asynchronous resets in the processes and converts them
to a different internal representation that is suitable for generating
flip-flop cells with asynchronous resets.

    -global_arst [!]<netname>
        In modules that have a net with the given name, use this net as async
        reset for registers that have been assign initial values in their
        declaration ('reg foobar = constant_value;'). Use the '!' modifier for
        active low reset signals. Note: the frontend stores the default value
        in the 'init' attribute on the net.
\end{lstlisting}

\section{proc\_clean -- remove empty parts of processes}
\label{cmd:proc_clean}
\begin{lstlisting}[numbers=left,frame=single]
    proc_clean [selection]

This pass removes empty parts of processes and ultimately removes a process
if it contains only empty structures.
\end{lstlisting}

\section{proc\_dff -- extract flip-flops from processes}
\label{cmd:proc_dff}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dff [selection]

This pass identifies flip-flops in the processes and converts them to
d-type flip-flop cells.
\end{lstlisting}

\section{proc\_dlatch -- extract latches from processes}
\label{cmd:proc_dlatch}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dlatch [selection]

This pass identifies latches in the processes and converts them to
d-type latches.
\end{lstlisting}

\section{proc\_init -- convert initial block to init attributes}
\label{cmd:proc_init}
\begin{lstlisting}[numbers=left,frame=single]
    proc_init [selection]

This pass extracts the 'init' actions from processes (generated from Verilog
'initial' blocks) and sets the initial value to the 'init' attribute on the
respective wire.
\end{lstlisting}

\section{proc\_mux -- convert decision trees to multiplexers}
\label{cmd:proc_mux}
\begin{lstlisting}[numbers=left,frame=single]
    proc_mux [options] [selection]

This pass converts the decision trees in processes (originating from if-else
and case statements) to trees of multiplexer cells.

    -ifx
        Use Verilog simulation behavior with respect to undef values in
        'case' expressions and 'if' conditions.
\end{lstlisting}

\section{proc\_rmdead -- eliminate dead trees in decision trees}
\label{cmd:proc_rmdead}
\begin{lstlisting}[numbers=left,frame=single]
    proc_rmdead [selection]

This pass identifies unreachable branches in decision trees and removes them.
\end{lstlisting}

\section{qwp -- quadratic wirelength placer}
\label{cmd:qwp}
\begin{lstlisting}[numbers=left,frame=single]
    qwp [options] [selection]

This command runs quadratic wirelength placement on the selected modules and
annotates the cells in the design with 'qwp_position' attributes.

    -ltr
        Add left-to-right constraints: constrain all inputs on the left border
        outputs to the right border.

    -alpha
        Add constraints for inputs/outputs to be placed in alphanumerical
        order along the y-axis (top-to-bottom).

    -grid N
        Number of grid divisions in x- and y-direction. (default=16)

    -dump <html_file_name>
        Dump a protocol of the placement algorithm to the html file.

    -v
        Verbose solver output for profiling or debugging

Note: This implementation of a quadratic wirelength placer uses exact
dense matrix operations. It is only a toy-placer for small circuits.
\end{lstlisting}

\section{read\_blif -- read BLIF file}
\label{cmd:read_blif}
\begin{lstlisting}[numbers=left,frame=single]
    read_blif [filename]

Load modules from a BLIF file into the current design.

    -sop
        Create $sop cells instead of $lut cells
\end{lstlisting}

\section{read\_ilang -- read modules from ilang file}
\label{cmd:read_ilang}
\begin{lstlisting}[numbers=left,frame=single]
    read_ilang [filename]

Load modules from an ilang file to the current design. (ilang is a text
representation of a design in yosys's internal format.)
\end{lstlisting}

\section{read\_liberty -- read cells from liberty file}
\label{cmd:read_liberty}
\begin{lstlisting}[numbers=left,frame=single]
    read_liberty [filename]

Read cells from liberty file as modules into current design.

    -lib
        only create empty blackbox modules

    -ignore_redef
        ignore re-definitions of modules. (the default behavior is to
        create an error message.)

    -ignore_miss_func
        ignore cells with missing function specification of outputs

    -ignore_miss_dir
        ignore cells with a missing or invalid direction
        specification on a pin

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules
\end{lstlisting}

\section{read\_verilog -- read modules from Verilog file}
\label{cmd:read_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    read_verilog [options] [filename]

Load modules from a Verilog file to the current design. A large subset of
Verilog-2005 is supported.

    -sv
        enable support for SystemVerilog features. (only a small subset
        of SystemVerilog is supported)

    -formal
        enable support for SystemVerilog assertions and some Yosys extensions
        replace the implicit -D SYNTHESIS with -D FORMAL

    -norestrict
        ignore restrict() assertions

    -assume-asserts
        treat all assert() statements like assume() statements

    -dump_ast1
        dump abstract syntax tree (before simplification)

    -dump_ast2
        dump abstract syntax tree (after simplification)

    -dump_vlog
        dump ast as Verilog code (after simplification)

    -dump_rtlil
        dump generated RTLIL netlist

    -yydebug
        enable parser debug output

    -nolatches
        usually latches are synthesized into logic loops
        this option prohibits this and sets the output to 'x'
        in what would be the latches hold condition

        this behavior can also be achieved by setting the
        'nolatches' attribute on the respective module or
        always block.

    -nomem2reg
        under certain conditions memories are converted to registers
        early during simplification to ensure correct handling of
        complex corner cases. this option disables this behavior.

        this can also be achieved by setting the 'nomem2reg'
        attribute on the respective module or register.

        This is potentially dangerous. Usually the front-end has good
        reasons for converting an array to a list of registers.
        Prohibiting this step will likely result in incorrect synthesis
        results.

    -mem2reg
        always convert memories to registers. this can also be
        achieved by setting the 'mem2reg' attribute on the respective
        module or register.

    -nomeminit
        do not infer $meminit cells and instead convert initialized
        memories to registers directly in the front-end.

    -ppdump
        dump Verilog code after pre-processor

    -nopp
        do not run the pre-processor

    -nodpi
        disable DPI-C support

    -lib
        only create empty blackbox modules. This implies -DBLACKBOX.

    -noopt
        don't perform basic optimizations (such as const folding) in the
        high-level front-end.

    -icells
        interpret cell types starting with '$' as internal cell types

    -ignore_redef
        ignore re-definitions of modules. (the default behavior is to
        create an error message.)

    -defer
        only read the abstract syntax tree and defer actual compilation
        to a later 'hierarchy' command. Useful in cases where the default
        parameters of modules yield invalid or not synthesizable code.

    -noautowire
        make the default of `default_nettype be "none" instead of "wire".

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules

    -Dname[=definition]
        define the preprocessor symbol 'name' and set its optional value
        'definition'

    -Idir
        add 'dir' to the directories which are used when searching include
        files

The command 'verilog_defaults' can be used to register default options for
subsequent calls to 'read_verilog'.

Note that the Verilog frontend does a pretty good job of processing valid
verilog input, but has not very good error reporting. It generally is
recommended to use a simulator (for example Icarus Verilog) for checking
the syntax of the code, rather than to rely on read_verilog for that.

See the Yosys README file for a list of non-standard Verilog features
supported by the Yosys Verilog front-end.
\end{lstlisting}

\section{rename -- rename object in the design}
\label{cmd:rename}
\begin{lstlisting}[numbers=left,frame=single]
    rename old_name new_name

Rename the specified object. Note that selection patterns are not supported
by this command.


    rename -enumerate [-pattern <pattern>] [selection]

Assign short auto-generated names to all selected wires and cells with private
names. The -pattern option can be used to set the pattern for the new names.
The character % in the pattern is replaced with a integer number. The default
pattern is '_%_'.

    rename -hide [selection]

Assign private names (the ones with $-prefix) to all selected wires and cells
with public names. This ignores all selected ports.

    rename -top new_name

Rename top module.
\end{lstlisting}

\section{sat -- solve a SAT problem in the circuit}
\label{cmd:sat}
\begin{lstlisting}[numbers=left,frame=single]
    sat [options] [selection]

This command solves a SAT problem defined over the currently selected circuit
and additional constraints passed as parameters.

    -all
        show all solutions to the problem (this can grow exponentially, use
        -max <N> instead to get <N> solutions)

    -max <N>
        like -all, but limit number of solutions to <N>

    -enable_undef
        enable modeling of undef value (aka 'x-bits')
        this option is implied by -set-def, -set-undef et. cetera

    -max_undef
        maximize the number of undef bits in solutions, giving a better
        picture of which input bits are actually vital to the solution.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-def <signal>
        add a constraint that all bits of the given signal must be defined

    -set-any-undef <signal>
        add a constraint that at least one bit of the given signal is undefined

    -set-all-undef <signal>
        add a constraint that all bits of the given signal are undefined

    -set-def-inputs
        add -set-def constraints for all module inputs

    -show <signal>
        show the model for the specified signal. if no -show option is
        passed then a set of signals to be shown is automatically selected.

    -show-inputs, -show-outputs, -show-ports
        add all module (input/output) ports to the list of shown signals

    -show-regs, -show-public, -show-all
        show all registers, show signals with 'public' names, show all signals

    -ignore_div_by_zero
        ignore all solutions that involve a division by zero

    -ignore_unknown_cells
        ignore all cells that can not be matched to a SAT model

The following options can be used to set up a sequential problem:

    -seq <N>
        set up a sequential problem with <N> time steps. The steps will
        be numbered from 1 to N.

        note: for large <N> it can be significantly faster to use
        -tempinduct-baseonly -maxsteps <N> instead of -seq <N>.

    -set-at <N> <signal> <value>
    -unset-at <N> <signal>
        set or unset the specified signal to the specified value in the
        given timestep. this has priority over a -set for the same signal.

    -set-assumes
        set all assumptions provided via $assume cells

    -set-def-at <N> <signal>
    -set-any-undef-at <N> <signal>
    -set-all-undef-at <N> <signal>
        add undef constraints in the given timestep.

    -set-init <signal> <value>
        set the initial value for the register driving the signal to the value

    -set-init-undef
        set all initial states (not set using -set-init) to undef

    -set-init-def
        do not force a value for the initial state but do not allow undef

    -set-init-zero
        set all initial states (not set using -set-init) to zero

    -dump_vcd <vcd-file-name>
        dump SAT model (counter example in proof) to VCD file

    -dump_json <json-file-name>
        dump SAT model (counter example in proof) to a WaveJSON file.

    -dump_cnf <cnf-file-name>
        dump CNF of SAT problem (in DIMACS format). in temporal induction
        proofs this is the CNF of the first induction step.

The following additional options can be used to set up a proof. If also -seq
is passed, a temporal induction proof is performed.

    -tempinduct
        Perform a temporal induction proof. In a temporal induction proof it is
        proven that the condition holds forever after the number of time steps
        specified using -seq.

    -tempinduct-def
        Perform a temporal induction proof. Assume an initial state with all
        registers set to defined values for the induction step.

    -tempinduct-baseonly
        Run only the basecase half of temporal induction (requires -maxsteps)

    -tempinduct-inductonly
        Run only the induction half of temporal induction

    -tempinduct-skip <N>
        Skip the first <N> steps of the induction proof.

        note: this will assume that the base case holds for <N> steps.
        this must be proven independently with "-tempinduct-baseonly
        -maxsteps <N>". Use -initsteps if you just want to set a
        minimal induction length.

    -prove <signal> <value>
        Attempt to proof that <signal> is always <value>.

    -prove-x <signal> <value>
        Like -prove, but an undef (x) bit in the lhs matches any value on
        the right hand side. Useful for equivalence checking.

    -prove-asserts
        Prove that all asserts in the design hold.

    -prove-skip <N>
        Do not enforce the prove-condition for the first <N> time steps.

    -maxsteps <N>
        Set a maximum length for the induction.

    -initsteps <N>
        Set initial length for the induction.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -stepsize <N>
        Increase the size of the induction proof in steps of <N>.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -timeout <N>
        Maximum number of seconds a single SAT instance may take.

    -verify
        Return an error and stop the synthesis script if the proof fails.

    -verify-no-timeout
        Like -verify but do not return an error for timeouts.

    -falsify
        Return an error and stop the synthesis script if the proof succeeds.

    -falsify-no-timeout
        Like -falsify but do not return an error for timeouts.
\end{lstlisting}

\section{scatter -- add additional intermediate nets}
\label{cmd:scatter}
\begin{lstlisting}[numbers=left,frame=single]
    scatter [selection]

This command adds additional intermediate nets on all cell ports. This is used
for testing the correct use of the SigMap helper in passes. If you don't know
what this means: don't worry -- you only need this pass when testing your own
extensions to Yosys.

Use the opt_clean command to get rid of the additional nets.
\end{lstlisting}

\section{scc -- detect strongly connected components (logic loops)}
\label{cmd:scc}
\begin{lstlisting}[numbers=left,frame=single]
    scc [options] [selection]

This command identifies strongly connected components (aka logic loops) in the
design.

    -expect <num>
        expect to find exactly <num> SSCs. A different number of SSCs will
        produce an error.

    -max_depth <num>
        limit to loops not longer than the specified number of cells. This
        can e.g. be useful in identifying small local loops in a module that
        implements one large SCC.

    -nofeedback
        do not count cells that have their output fed back into one of their
        inputs as single-cell scc.

    -all_cell_types
        Usually this command only considers internal non-memory cells. With
        this option set, all cells are considered. For unknown cells all ports
        are assumed to be bidirectional 'inout' ports.

    -set_attr <name> <value>
    -set_cell_attr <name> <value>
    -set_wire_attr <name> <value>
        set the specified attribute on all cells and/or wires that are part of
        a logic loop. the special token {} in the value is replaced with a
        unique identifier for the logic loop.

    -select
        replace the current selection with a selection of all cells and wires
        that are part of a found logic loop
\end{lstlisting}

\section{script -- execute commands from script file}
\label{cmd:script}
\begin{lstlisting}[numbers=left,frame=single]
    script <filename> [<from_label>:<to_label>]

This command executes the yosys commands in the specified file.

The 2nd argument can be used to only execute the section of the
file between the specified labels. An empty from label is synonymous
for the beginning of the file and an empty to label is synonymous
for the end of the file.

If only one label is specified (without ':') then only the block
marked with that label (until the next label) is executed.
\end{lstlisting}

\section{select -- modify and view the list of selected objects}
\label{cmd:select}
\begin{lstlisting}[numbers=left,frame=single]
    select [ -add | -del | -set <name> ] {-read <filename> | <selection>}
    select [ <assert_option> ] {-read <filename> | <selection>}
    select [ -list | -write <filename> | -count | -clear ]
    select -module <modname>

Most commands use the list of currently selected objects to determine which part
of the design to operate on. This command can be used to modify and view this
list of selected objects.

Note that many commands support an optional [selection] argument that can be
used to override the global selection for the command. The syntax of this
optional argument is identical to the syntax of the <selection> argument
described here.

    -add, -del
        add or remove the given objects to the current selection.
        without this options the current selection is replaced.

    -set <name>
        do not modify the current selection. instead save the new selection
        under the given name (see @<name> below). to save the current selection,
        use "select -set <name> %"

    -assert-none
        do not modify the current selection. instead assert that the given
        selection is empty. i.e. produce an error if any object matching the
        selection is found.

    -assert-any
        do not modify the current selection. instead assert that the given
        selection is non-empty. i.e. produce an error if no object matching
        the selection is found.

    -assert-count N
        do not modify the current selection. instead assert that the given
        selection contains exactly N objects.

    -assert-max N
        do not modify the current selection. instead assert that the given
        selection contains less than or exactly N objects.

    -assert-min N
        do not modify the current selection. instead assert that the given
        selection contains at least N objects.

    -list
        list all objects in the current selection

    -write <filename>
        like -list but write the output to the specified file

    -read <filename>
        read the specified file (written by -write)

    -count
        count all objects in the current selection

    -clear
        clear the current selection. this effectively selects the whole
        design. it also resets the selected module (see -module). use the
        command 'select *' to select everything but stay in the current module.

    -none
        create an empty selection. the current module is unchanged.

    -module <modname>
        limit the current scope to the specified module.
        the difference between this and simply selecting the module
        is that all object names are interpreted relative to this
        module after this command until the selection is cleared again.

When this command is called without an argument, the current selection
is displayed in a compact form (i.e. only the module name when a whole module
is selected).

The <selection> argument itself is a series of commands for a simple stack
machine. Each element on the stack represents a set of selected objects.
After this commands have been executed, the union of all remaining sets
on the stack is computed and used as selection for the command.

Pushing (selecting) object when not in -module mode:

    <mod_pattern>
        select the specified module(s)

    <mod_pattern>/<obj_pattern>
        select the specified object(s) from the module(s)

Pushing (selecting) object when in -module mode:

    <obj_pattern>
        select the specified object(s) from the current module

A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
matching module names, or one of the following:

    A:<pattern>, A:<pattern>=<pattern>
        all modules with an attribute matching the given pattern
        in addition to = also <, <=, >=, and > are supported

An <obj_pattern> can be an object name, wildcard expression, or one of
the following:

    w:<pattern>
        all wires with a name matching the given wildcard pattern

    i:<pattern>, o:<pattern>, x:<pattern>
        all inputs (i:), outputs (o:) or any ports (x:) with matching names

    s:<size>, s:<min>:<max>
        all wires with a matching width

    m:<pattern>
        all memories with a name matching the given pattern

    c:<pattern>
        all cells with a name matching the given pattern

    t:<pattern>
        all cells with a type matching the given pattern

    p:<pattern>
        all processes with a name matching the given pattern

    a:<pattern>
        all objects with an attribute name matching the given pattern

    a:<pattern>=<pattern>
        all objects with a matching attribute name-value-pair.
        in addition to = also <, <=, >=, and > are supported

    r:<pattern>, r:<pattern>=<pattern>
        cells with matching parameters. also with <, <=, >= and >.

    n:<pattern>
        all objects with a name matching the given pattern
        (i.e. 'n:' is optional as it is the default matching rule)

    @<name>
        push the selection saved prior with 'select -set <name> ...'

The following actions can be performed on the top sets on the stack:

    %
        push a copy of the current selection to the stack

    %%
        replace the stack with a union of all elements on it

    %n
        replace top set with its invert

    %u
        replace the two top sets on the stack with their union

    %i
        replace the two top sets on the stack with their intersection

    %d
        pop the top set from the stack and subtract it from the new top

    %D
        like %d but swap the roles of two top sets on the stack

    %c
        create a copy of the top set from the stack and push it

    %x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        expand top set <num1> num times according to the specified rules.
        (i.e. select all cells connected to selected wires and select all
        wires connected to selected cells) The rules specify which cell
        ports to use for this. the syntax for a rule is a '-' for exclusion
        and a '+' for inclusion, followed by an optional comma separated
        list of cell types followed by an optional comma separated list of
        cell ports in square brackets. a rule can also be just a cell or wire
        name that limits the expansion (is included but does not go beyond).
        select at most <num2> objects. a warning message is printed when this
        limit is reached. When '*' is used instead of <num1> then the process
        is repeated until no further object are selected.

    %ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
    %co[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        similar to %x, but only select input (%ci) or output cones (%co)

    %xe[...] %cie[...] %coe
        like %x, %ci, and %co but only consider combinatorial cells

    %a
        expand top set by selecting all wires that are (at least in part)
        aliases for selected wires.

    %s
        expand top set by adding all modules that implement cells in selected
        modules

    %m
        expand top set by selecting all modules that contain selected objects

    %M
        select modules that implement selected cells

    %C
        select cells that implement selected modules

    %R[<num>]
        select <num> random objects from top selection (default 1)

Example: the following command selects all wires that are connected to a
'GATE' input of a 'SWITCH' cell:

    select */t:SWITCH %x:+[GATE] */t:SWITCH %d
\end{lstlisting}

\section{setattr -- set/unset attributes on objects}
\label{cmd:setattr}
\begin{lstlisting}[numbers=left,frame=single]
    setattr [ -mod ] [ -set name value | -unset name ]... [selection]

Set/unset the given attributes on the selected objects. String values must be
passed in double quotes (").

When called with -mod, this command will set and unset attributes on modules
instead of objects within modules.
\end{lstlisting}

\section{setparam -- set/unset parameters on objects}
\label{cmd:setparam}
\begin{lstlisting}[numbers=left,frame=single]
    setparam [ -type cell_type ] [ -set name value | -unset name ]... [selection]

Set/unset the given parameters on the selected cells. String values must be
passed in double quotes (").

The -type option can be used to change the cell type of the selected cells.
\end{lstlisting}

\section{setundef -- replace undef values with defined constants}
\label{cmd:setundef}
\begin{lstlisting}[numbers=left,frame=single]
    setundef [options] [selection]

This command replaced undef (x) constants with defined (0/1) constants.

    -undriven
        also set undriven nets to constant values

    -zero
        replace with bits cleared (0)

    -one
        replace with bits set (1)

    -random <seed>
        replace with random bits using the specified integer als seed
        value for the random number generator.

    -init
        also create/update init values for flip-flops
\end{lstlisting}

\section{share -- perform sat-based resource sharing}
\label{cmd:share}
\begin{lstlisting}[numbers=left,frame=single]
    share [options] [selection]

This pass merges shareable resources into a single resource. A SAT solver
is used to determine if two resources are share-able.

  -force
    Per default the selection of cells that is considered for sharing is
    narrowed using a list of cell types. With this option all selected
    cells are considered for resource sharing.

    IMPORTANT NOTE: If the -all option is used then no cells with internal
    state must be selected!

  -aggressive
    Per default some heuristics are used to reduce the number of cells
    considered for resource sharing to only large resources. This options
    turns this heuristics off, resulting in much more cells being considered
    for resource sharing.

  -fast
    Only consider the simple part of the control logic in SAT solving, resulting
    in much easier SAT problems at the cost of maybe missing some opportunities
    for resource sharing.

  -limit N
    Only perform the first N merges, then stop. This is useful for debugging.
\end{lstlisting}

\section{shell -- enter interactive command mode}
\label{cmd:shell}
\begin{lstlisting}[numbers=left,frame=single]
    shell

This command enters the interactive command mode. This can be useful
in a script to interrupt the script at a certain point and allow for
interactive inspection or manual synthesis of the design at this point.

The command prompt of the interactive shell indicates the current
selection (see 'help select'):

    yosys>
        the entire design is selected

    yosys*>
        only part of the design is selected

    yosys [modname]>
        the entire module 'modname' is selected using 'select -module modname'

    yosys [modname]*>
        only part of current module 'modname' is selected

When in interactive shell, some errors (e.g. invalid command arguments)
do not terminate yosys but return to the command prompt.

This command is the default action if nothing else has been specified
on the command line.

Press Ctrl-D or type 'exit' to leave the interactive shell.
\end{lstlisting}

\section{show -- generate schematics using graphviz}
\label{cmd:show}
\begin{lstlisting}[numbers=left,frame=single]
    show [options] [selection]

Create a graphviz DOT file for the selected part of the design and compile it
to a graphics file (usually SVG or PostScript).

    -viewer <viewer>
        Run the specified command with the graphics file as parameter.

    -format <format>
        Generate a graphics file in the specified format. Use 'dot' to just
        generate a .dot file, or other <format> strings such as 'svg' or 'ps'
        to generate files in other formats (this calls the 'dot' command).

    -lib <verilog_or_ilang_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

        note: in most cases it is better to load the library before calling
        show with 'read_verilog -lib <filename>'. it is also possible to
        load liberty files with 'read_liberty -lib <filename>'.

    -prefix <prefix>
        generate <prefix>.* instead of ~/.yosys_show.*

    -color <color> <object>
        assign the specified color to the specified object. The object can be
        a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -label <text> <object>
        assign the specified label text to the specified object. The object can
        be a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -colors <seed>
        Randomly assign colors to the wires. The integer argument is the seed
        for the random number generator. Change the seed value if the colored
        graph still is ambiguous. A seed of zero deactivates the coloring.

    -colorattr <attribute_name>
        Use the specified attribute to assign colors. A unique color is
        assigned to each unique value of this attribute.

    -width
        annotate busses with a label indicating the width of the bus.

    -signed
        mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
        cell parameter) with an asterisk next to the port name.

    -stretch
        stretch the graph so all inputs are on the left side and all outputs
        (including inout ports) are on the right side.

    -pause
        wait for the use to press enter to before returning

    -enum
        enumerate objects with internal ($-prefixed) names

    -long
        do not abbreviate objects with internal ($-prefixed) names

    -notitle
        do not add the module name as graph title to the dot file

When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic.

The generated output files are '~/.yosys_show.dot' and '~/.yosys_show.<format>',
unless another prefix is specified using -prefix <prefix>.

Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched each time
the 'show' command is executed.
\end{lstlisting}

\section{shregmap -- map shift registers}
\label{cmd:shregmap}
\begin{lstlisting}[numbers=left,frame=single]
    shregmap [options] [selection]

This pass converts chains of $_DFF_[NP]_ gates to target specific shift register
primitives. The generated shift register will be of type $__SHREG_DFF_[NP]_ and
will use the same interface as the original $_DFF_*_ cells. The cell parameter
'DEPTH' will contain the depth of the shift register. Use a target-specific
'techmap' map file to convert those cells to the actual target cells.

    -minlen N
        minimum length of shift register (default = 2)
        (this is the length after -keep_before and -keep_after)

    -maxlen N
        maximum length of shift register (default = no limit)
        larger chains will be mapped to multiple shift register instances

    -keep_before N
        number of DFFs to keep before the shift register (default = 0)

    -keep_after N
        number of DFFs to keep after the shift register (default = 0)

    -clkpol pos|neg|any
        limit match to only positive or negative edge clocks. (default = any)

    -enpol pos|neg|none|any_or_none|any
        limit match to FFs with the specified enable polarity. (default = none)

    -match <cell_type>[:<d_port_name>:<q_port_name>]
        match the specified cells instead of $_DFF_N_ and $_DFF_P_. If
        ':<d_port_name>:<q_port_name>' is omitted then 'D' and 'Q' is used
        by default. E.g. the option '-clkpol pos' is just an alias for
        '-match $_DFF_P_', which is an alias for '-match $_DFF_P_:D:Q'.

    -params
        instead of encoding the clock and enable polarity in the cell name by
        deriving from the original cell name, simply name all generated cells
        $__SHREG_ and use CLKPOL and ENPOL parameters. An ENPOL value of 2 is
        used to denote cells without enable input. The ENPOL parameter is
        omitted when '-enpol none' (or no -enpol option) is passed.

    -zinit
        assume the shift register is automatically zero-initialized, so it
        becomes legal to merge zero initialized FFs into the shift register.

    -init
        map initialized registers to the shift reg, add an INIT parameter to
        generated cells with the initialization value. (first bit to shift out
        in LSB position)

    -tech greenpak4
        map to greenpak4 shift registers.
\end{lstlisting}

\section{simplemap -- mapping simple coarse-grain cells}
\label{cmd:simplemap}
\begin{lstlisting}[numbers=left,frame=single]
    simplemap [selection]

This pass maps a small selection of simple coarse-grain cells to yosys gate
primitives. The following internal cell types are mapped by this pass:

  $not, $pos, $and, $or, $xor, $xnor
  $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
  $logic_not, $logic_and, $logic_or, $mux, $tribuf
  $sr, $ff, $dff, $dffsr, $adff, $dlatch
\end{lstlisting}

\section{singleton -- create singleton modules}
\label{cmd:singleton}
\begin{lstlisting}[numbers=left,frame=single]
    singleton [selection]

By default, a module that is instantiated by several other modules is only
kept once in the design. This preserves the original modularity of the design
and reduces the overall size of the design in memory. But it prevents certain
optimizations and other operations on the design. This pass creates singleton
modules for all selected cells. The created modules are marked with the
'singleton' attribute.

This commands only operates on modules that by themself have the 'singleton'
attribute set (the 'top' module is a singleton implicitly).
\end{lstlisting}

\section{splice -- create explicit splicing cells}
\label{cmd:splice}
\begin{lstlisting}[numbers=left,frame=single]
    splice [options] [selection]

This command adds $slice and $concat cells to the design to make the splicing
of multi-bit signals explicit. This for example is useful for coarse grain
synthesis, where dedicated hardware is needed to splice signals.

    -sel_by_cell
        only select the cell ports to rewire by the cell. if the selection
        contains a cell, than all cell inputs are rewired, if necessary.

    -sel_by_wire
        only select the cell ports to rewire by the wire. if the selection
        contains a wire, than all cell ports driven by this wire are wired,
        if necessary.

    -sel_any_bit
        it is sufficient if the driver of any bit of a cell port is selected.
        by default all bits must be selected.

    -wires
        also add $slice and $concat cells to drive otherwise unused wires.

    -no_outputs
        do not rewire selected module outputs.

    -port <name>
        only rewire cell ports with the specified name. can be used multiple
        times. implies -no_output.

    -no_port <name>
        do not rewire cell ports with the specified name. can be used multiple
        times. can not be combined with -port <name>.

By default selected output wires and all cell ports of selected cells driven
by selected wires are rewired.
\end{lstlisting}

\section{splitnets -- split up multi-bit nets}
\label{cmd:splitnets}
\begin{lstlisting}[numbers=left,frame=single]
    splitnets [options] [selection]

This command splits multi-bit nets into single-bit nets.

    -format char1[char2[char3]]
        the first char is inserted between the net name and the bit index, the
        second char is appended to the netname. e.g. -format () creates net
        names like 'mysignal(42)'. the 3rd character is the range separation
        character when creating multi-bit wires. the default is '[]:'.

    -ports
        also split module ports. per default only internal signals are split.

    -driver
        don't blindly split nets in individual bits. instead look at the driver
        and split nets so that no driver drives only part of a net.
\end{lstlisting}

\section{stat -- print some statistics}
\label{cmd:stat}
\begin{lstlisting}[numbers=left,frame=single]
    stat [options] [selection]

Print some statistics (number of objects) on the selected portion of the
design.

    -top <module>
        print design hierarchy with this module as top. if the design is fully
        selected and a module has the 'top' attribute set, this module is used
        default value for this option.

    -liberty <liberty_file>
        use cell area information from the provided liberty file

    -width
        annotate internal cell types with their word width.
        e.g. $add_8 for an 8 bit wide $add cell.
\end{lstlisting}

\section{submod -- moving part of a module to a new submodule}
\label{cmd:submod}
\begin{lstlisting}[numbers=left,frame=single]
    submod [-copy] [selection]

This pass identifies all cells with the 'submod' attribute and moves them to
a newly created module. The value of the attribute is used as name for the
cell that replaces the group of cells with the same attribute value.

This pass can be used to create a design hierarchy in flat design. This can
be useful for analyzing or reverse-engineering a design.

This pass only operates on completely selected modules with no processes
or memories.


    submod -name <name> [-copy] [selection]

As above, but don't use the 'submod' attribute but instead use the selection.
Only objects from one module might be selected. The value of the -name option
is used as the value of the 'submod' attribute above.

By default the cells are 'moved' from the source module and the source module
will use an instance of the new module after this command is finished. Call
with -copy to not modify the source module.
\end{lstlisting}

\section{synth -- generic synthesis script}
\label{cmd:synth}
\begin{lstlisting}[numbers=left,frame=single]
    synth [options]

This command runs the default synthesis script. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -auto-top
        automatically determine the top of the design hierarchy

    -flatten
        flatten the design before synthesis. this will pass '-auto-top' to
        'hierarchy' if no top module is specified.

    -encfile <file>
        passed to 'fsm_recode' via 'fsm'

    -nofsm
        do not run FSM optimization

    -noabc
        do not run abc (as if yosys was compiled without ABC support)

    -noalumacc
        do not run 'alumacc' pass. i.e. keep arithmetic operators in
        their direct form ($add, $sub, etc.).

    -nordff
        passed to 'memory'. prohibits merging of FFs into memory read ports

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top> | -auto-top]

    coarse:
        proc
        flatten    (if -flatten)
        opt_expr
        opt_clean
        check
        opt
        wreduce
        alumacc
        share
        opt
        fsm
        opt -fast
        memory -nomap
        opt_clean

    fine:
        opt -fast -full
        memory_map
        opt -full
        techmap
        opt -fast
        abc -fast
        opt -fast

    check:
        hierarchy -check
        stat
        check
\end{lstlisting}

\section{synth\_gowin -- synthesis for Gowin FPGAs}
\label{cmd:synth_gowin}
\begin{lstlisting}[numbers=left,frame=single]
    synth_gowin [options]

This command runs synthesis for Gowin FPGAs. This work is experimental.

    -top <module>
        use the specified module as top module (default='top')

    -vout <file>
        write the design to the specified Verilog netlist file. writing of an
        output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/gowin/cells_sim.v
        hierarchy -check -top <top>

    flatten:
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        clean -purge
        splitnets -ports
        setundef -undriven -zero
        abc -dff    (only if -retime)

    map_luts:
        abc -lut 4
        clean

    map_cells:
        techmap -map +/gowin/cells_map.v
        hilomap -hicell VCC V -locell GND G
        iopadmap -inpad IBUF O:I -outpad OBUF I:O
        clean -purge

    check:
        hierarchy -check
        stat
        check -noinit

    vout:
        write_verilog -attr2comment -defparam -renameprefix gen <file-name>
\end{lstlisting}

\section{synth\_greenpak4 -- synthesis for GreenPAK4 FPGAs}
\label{cmd:synth_greenpak4}
\begin{lstlisting}[numbers=left,frame=single]
    synth_greenpak4 [options]

This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.

    -top <module>
        use the specified module as top module (default='top')

    -part <part>
        synthesize for the specified part. Valid values are SLG46140V,
        SLG46620V, and SLG46621V (default).

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/greenpak4/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    fine:
        greenpak4_counters
        clean
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
        opt -fast
        abc -dff    (only if -retime)

    map_luts:
        nlutmap -assert -luts 0,6,8,2     (for -part SLG46140V)
        nlutmap -assert -luts 2,8,16,2    (for -part SLG46620V)
        nlutmap -assert -luts 2,8,16,2    (for -part SLG46621V)
        clean

    map_cells:
        shregmap -tech greenpak4
        dfflibmap -liberty +/greenpak4/gp_dff.lib
        dffinit -ff GP_DFF Q INIT
        dffinit -ff GP_DFFR Q INIT
        dffinit -ff GP_DFFS Q INIT
        dffinit -ff GP_DFFSR Q INIT
        iopadmap -bits -inpad GP_IBUF OUT:IN -outpad GP_OBUF IN:OUT -inoutpad GP_OBUF OUT:IN -toutpad GP_OBUFT OE:IN:OUT -tinoutpad GP_IOBUF OE:OUT:IN:IO
        attrmvcp -attr src -attr LOC t:GP_OBUF t:GP_OBUFT t:GP_IOBUF n:*
        attrmvcp -attr src -attr LOC -driven t:GP_IBUF n:*
        techmap -map +/greenpak4/cells_map.v
        greenpak4_dffinv
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_ice40 -- synthesis for iCE40 FPGAs}
\label{cmd:synth_ice40}
\begin{lstlisting}[numbers=left,frame=single]
    synth_ice40 [options]

This command runs synthesis for iCE40 FPGAs.

    -top <module>
        use the specified module as top module (default='top')

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option

    -nocarry
        do not use SB_CARRY cells in output netlist

    -nobram
        do not use SB_RAM40_4K* cells in output netlist

    -abc2
        run two passes of 'abc' for slightly improved logic density


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/ice40/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    bram:    (skip if -nobram)
        memory_bram -rules +/ice40/brams.txt
        techmap -map +/ice40/brams_map.v

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v -map +/ice40/arith_map.v
        abc -dff    (only if -retime)
        ice40_opt

    map_ffs:
        dffsr2dff
        dff2dffe -direct-match $_DFF_*
        techmap -map +/ice40/cells_map.v
        opt_expr -mux_undef
        simplemap
        ice40_ffinit
        ice40_ffssr
        ice40_opt -full

    map_luts:
        abc          (only if -abc2)
        ice40_opt    (only if -abc2)
        techmap -map +/ice40/latches_map.v
        abc -lut 4
        clean

    map_cells:
        techmap -map +/ice40/cells_map.v
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    blif:
        write_blif -gates -attr -param <file-name>

    edif:
        write_edif <file-name>
\end{lstlisting}

\section{synth\_xilinx -- synthesis for Xilinx FPGAs}
\label{cmd:synth_xilinx}
\begin{lstlisting}[numbers=left,frame=single]
    synth_xilinx [options]

This command runs synthesis for Xilinx FPGAs. This command does not operate on
partly selected designs. At the moment this command creates netlists that are
compatible with 7-Series Xilinx devices.

    -top <module>
        use the specified module as top module

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -flatten
        flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/xilinx/cells_sim.v
        read_verilog -lib +/xilinx/cells_xtra.v
        read_verilog -lib +/xilinx/brams_bb.v
        read_verilog -lib +/xilinx/drams_bb.v
        hierarchy -check -top <top>

    flatten:     (only if -flatten)
        proc
        flatten

    coarse:
        synth -run coarse

    bram:
        memory_bram -rules +/xilinx/brams.txt
        techmap -map +/xilinx/brams_map.v

    dram:
        memory_bram -rules +/xilinx/drams.txt
        techmap -map +/xilinx/drams_map.v

    fine:
        opt -fast -full
        memory_map
        dffsr2dff
        dff2dffe
        opt -full
        techmap -map +/techmap.v -map +/xilinx/arith_map.v
        opt -fast

    map_luts:
        abc -luts 2:2,3,6:5,10,20 [-dff]
        clean

    map_cells:
        techmap -map +/xilinx/cells_map.v
        dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    edif:     (only if -edif)
        write_edif <file-name>
\end{lstlisting}

\section{tcl -- execute a TCL script file}
\label{cmd:tcl}
\begin{lstlisting}[numbers=left,frame=single]
    tcl <filename>

This command executes the tcl commands in the specified file.
Use 'yosys cmd' to run the yosys command 'cmd' from tcl.

The tcl command 'yosys -import' can be used to import all yosys
commands directly as tcl commands to the tcl shell. The yosys
command 'proc' is wrapped using the tcl command 'procs' in order
to avoid a name collision with the tcl builtin command 'proc'.
\end{lstlisting}

\section{techmap -- generic technology mapper}
\label{cmd:techmap}
\begin{lstlisting}[numbers=left,frame=single]
    techmap [-map filename] [selection]

This pass implements a very simple technology mapper that replaces cells in
the design with implementations given in form of a Verilog or ilang source
file.

    -map filename
        the library of cell implementations to be used.
        without this parameter a builtin library is used that
        transforms the internal RTL cells to the internal gate
        library.

    -map %<design-name>
        like -map above, but with an in-memory design instead of a file.

    -extern
        load the cell implementations as separate modules into the design
        instead of inlining them.

    -max_iter <number>
        only run the specified number of iterations.

    -recursive
        instead of the iterative breadth-first algorithm use a recursive
        depth-first algorithm. both methods should yield equivalent results,
        but may differ in performance.

    -autoproc
        Automatically call "proc" on implementations that contain processes.

    -assert
        this option will cause techmap to exit with an error if it can't map
        a selected cell. only cell types that end on an underscore are accepted
        as final cell types by this mode.

    -D <define>, -I <incdir>
        this options are passed as-is to the Verilog frontend for loading the
        map file. Note that the Verilog frontend is also called with the
        '-ignore_redef' option set.

When a module in the map file has the 'techmap_celltype' attribute set, it will
match cells with a type that match the text value of this attribute. Otherwise
the module name will be used to match the cell.

When a module in the map file has the 'techmap_simplemap' attribute set, techmap
will use 'simplemap' (see 'help simplemap') to map cells matching the module.

When a module in the map file has the 'techmap_maccmap' attribute set, techmap
will use 'maccmap' (see 'help maccmap') to map cells matching the module.

When a module in the map file has the 'techmap_wrap' attribute set, techmap
will create a wrapper for the cell and then run the command string that the
attribute is set to on the wrapper module.

All wires in the modules from the map file matching the pattern _TECHMAP_*
or *._TECHMAP_* are special wires that are used to pass instructions from
the mapping module to the techmap command. At the moment the following special
wires are supported:

    _TECHMAP_FAIL_
        When this wire is set to a non-zero constant value, techmap will not
        use this module and instead try the next module with a matching
        'techmap_celltype' attribute.

        When such a wire exists but does not have a constant value after all
        _TECHMAP_DO_* commands have been executed, an error is generated.

    _TECHMAP_DO_*
        This wires are evaluated in alphabetical order. The constant text value
        of this wire is a yosys command (or sequence of commands) that is run
        by techmap on the module. A common use case is to run 'proc' on modules
        that are written using always-statements.

        When such a wire has a non-constant value at the time it is to be
        evaluated, an error is produced. That means it is possible for such a
        wire to start out as non-constant and evaluate to a constant value
        during processing of other _TECHMAP_DO_* commands.

        A _TECHMAP_DO_* command may start with the special token 'CONSTMAP; '.
        in this case techmap will create a copy for each distinct configuration
        of constant inputs and shorted inputs at this point and import the
        constant and connected bits into the map module. All further commands
        are executed in this copy. This is a very convenient way of creating
        optimized specializations of techmap modules without using the special
        parameters described below.

        A _TECHMAP_DO_* command may start with the special token 'RECURSION; '.
        then techmap will recursively replace the cells in the module with their
        implementation. This is not affected by the -max_iter option.

        It is possible to combine both prefixes to 'RECURSION; CONSTMAP; '.

In addition to this special wires, techmap also supports special parameters in
modules in the map file:

    _TECHMAP_CELLTYPE_
        When a parameter with this name exists, it will be set to the type name
        of the cell that matches the module.

    _TECHMAP_CONSTMSK_<port-name>_
    _TECHMAP_CONSTVAL_<port-name>_
        When this pair of parameters is available in a module for a port, then
        former has a 1-bit for each constant input bit and the latter has the
        value for this bit. The unused bits of the latter are set to undef (x).

    _TECHMAP_BITS_CONNMAP_
    _TECHMAP_CONNMAP_<port-name>_
        For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
        exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
        N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
        bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
        This can be used to detect shorted inputs.

When a module in the map file has a parameter where the according cell in the
design has a port, the module from the map file is only used if the port in
the design is connected to a constant value. The parameter is then set to the
constant value.

A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
of the cell that is being replaced.

See 'help extract' for a pass that does the opposite thing.

See 'help flatten' for a pass that does flatten the design (which is
essentially techmap but using the design itself as map library).
\end{lstlisting}

\section{tee -- redirect command output to file}
\label{cmd:tee}
\begin{lstlisting}[numbers=left,frame=single]
    tee [-q] [-o logfile|-a logfile] cmd

Execute the specified command, optionally writing the commands output to the
specified logfile(s).

    -q
        Do not print output to the normal destination (console and/or log file)

    -o logfile
        Write output to this file, truncate if exists.

    -a logfile
        Write output to this file, append if exists.

    +INT, -INT
        Add/subract INT from the -v setting for this command.
\end{lstlisting}

\section{test\_abcloop -- automatically test handling of loops in abc command}
\label{cmd:test_abcloop}
\begin{lstlisting}[numbers=left,frame=single]
    test_abcloop [options]

Test handling of logic loops in ABC.

    -n {integer}
        create this number of circuits and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).
\end{lstlisting}

\section{test\_autotb -- generate simple test benches}
\label{cmd:test_autotb}
\begin{lstlisting}[numbers=left,frame=single]
    test_autotb [options] [filename]

Automatically create primitive Verilog test benches for all modules in the
design. The generated testbenches toggle the input pins of the module in
a semi-random manner and dumps the resulting output signals.

This can be used to check the synthesis results for simple circuits by
comparing the testbench output for the input files and the synthesis results.

The backend automatically detects clock signals. Additionally a signal can
be forced to be interpreted as clock signal by setting the attribute
'gentb_clock' on the signal.

The attribute 'gentb_constant' can be used to force a signal to a constant
value after initialization. This can e.g. be used to force a reset signal
low in order to explore more inner states in a state machine.

    -n <int>
        number of iterations the test bench should run (default = 1000)
\end{lstlisting}

\section{test\_cell -- automatically test the implementation of a cell type}
\label{cmd:test_cell}
\begin{lstlisting}[numbers=left,frame=single]
    test_cell [options] {cell-types}

Tests the internal implementation of the given cell type (for example '$add')
by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..

Run with 'all' instead of a cell type to run the test on all supported
cell types. Use for example 'all /$add' for all cell types except $add.

    -n {integer}
        create this number of cell instances and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).

    -f {ilang_file}
        don't generate circuits. instead load the specified ilang file.

    -w {filename_prefix}
        don't test anything. just generate the circuits and write them
        to ilang files with the specified prefix

    -map {filename}
        pass this option to techmap.

    -simlib
        use "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc"

    -aigmap
        instead of calling "techmap", call "aigmap"

    -muxdiv
        when creating test benches with dividers, create an additional mux
        to mask out the division-by-zero case

    -script {script_file}
        instead of calling "techmap", call "script {script_file}".

    -const
        set some input bits to random constant values

    -nosat
        do not check SAT model or run SAT equivalence checking

    -noeval
        do not check const-eval models

    -edges
        test cell edges db creator against sat-based implementation

    -v
        print additional debug information to the console

    -vlog {filename}
        create a Verilog test bench to test simlib and write_verilog
\end{lstlisting}

\section{torder -- print cells in topological order}
\label{cmd:torder}
\begin{lstlisting}[numbers=left,frame=single]
    torder [options] [selection]

This command prints the selected cells in topological order.

    -stop <cell_type> <cell_port>
        do not use the specified cell port in topological sorting

    -noautostop
        by default Q outputs of internal FF cells and memory read port outputs
        are not used in topological sorting. this option deactivates that.
\end{lstlisting}

\section{trace -- redirect command output to file}
\label{cmd:trace}
\begin{lstlisting}[numbers=left,frame=single]
    trace cmd

Execute the specified command, logging all changes the command performs on
the design in real time.
\end{lstlisting}

\section{tribuf -- infer tri-state buffers}
\label{cmd:tribuf}
\begin{lstlisting}[numbers=left,frame=single]
    tribuf [options] [selection]

This pass transforms $mux cells with 'z' inputs to tristate buffers.

    -merge
        merge multiple tri-state buffers driving the same net
        into a single buffer.

    -logic
        convert tri-state buffers that do not drive output ports
        to non-tristate logic. this option implies -merge.
\end{lstlisting}

\section{verific -- load Verilog and VHDL designs using Verific}
\label{cmd:verific}
\begin{lstlisting}[numbers=left,frame=single]
    verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv} <verilog-file>..

Load the specified Verilog/SystemVerilog files into Verific.


    verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008} <vhdl-file>..

Load the specified VHDL files into Verific.


    verific -import [-gates] {-all | <top-module>..}

Elaborate the design for the specified top modules, import to Yosys and
reset the internal state of Verific. A gate-level netlist is created
when called with -gates.

Visit http://verific.com/ for more information on Verific.
\end{lstlisting}

\section{verilog\_defaults -- set default options for read\_verilog}
\label{cmd:verilog_defaults}
\begin{lstlisting}[numbers=left,frame=single]
    verilog_defaults -add [options]

Add the specified options to the list of default options to read_verilog.


    verilog_defaults -clear

Clear the list of Verilog default options.


    verilog_defaults -push
    verilog_defaults -pop

Push or pop the list of default options to a stack. Note that -push does
not imply -clear.
\end{lstlisting}

\section{vhdl2verilog -- importing VHDL designs using vhdl2verilog}
\label{cmd:vhdl2verilog}
\begin{lstlisting}[numbers=left,frame=single]
    vhdl2verilog [options] <vhdl-file>..

This command reads VHDL source files using the 'vhdl2verilog' tool and the
Yosys Verilog frontend.

    -out <out_file>
        do not import the vhdl2verilog output. instead write it to the
        specified file.

    -vhdl2verilog_dir <directory>
        do use the specified vhdl2verilog installation. this is the directory
        that contains the setup_env.sh file. when this option is not present,
        it is assumed that vhdl2verilog is in the PATH environment variable.

    -top <top-entity-name>
        The name of the top entity. This option is mandatory.

The following options are passed as-is to vhdl2verilog:

    -arch <architecture_name>
    -unroll_generate
    -nogenericeval
    -nouniquify
    -oldparser
    -suppress <list>
    -quiet
    -nobanner
    -mapfile <file>

vhdl2verilog can be obtained from:
http://www.edautils.com/vhdl2verilog.html
\end{lstlisting}

\section{wreduce -- reduce the word size of operations if possible}
\label{cmd:wreduce}
\begin{lstlisting}[numbers=left,frame=single]
    wreduce [options] [selection]

This command reduces the word size of operations. For example it will replace
the 32 bit adders in the following code with adders of more appropriate widths:

    module test(input [3:0] a, b, c, output [7:0] y);
        assign y = a + b + c + 1;
    endmodule

Options:

    -memx
        Do not change the width of memory address ports. Use this options in
        flows that use the 'memory_memx' pass.
\end{lstlisting}

\section{write\_blif -- write design to BLIF file}
\label{cmd:write_blif}
\begin{lstlisting}[numbers=left,frame=single]
    write_blif [options] [filename]

Write the current design to an BLIF file.

    -top top_module
        set the specified module as design top module

    -buf <cell-type> <in-port> <out-port>
        use cells of type <cell-type> with the specified port names for buffers

    -unbuf <cell-type> <in-port> <out-port>
        replace buffer cells with the specified name and port names with
        a .names statement that models a buffer

    -true <cell-type> <out-port>
    -false <cell-type> <out-port>
    -undef <cell-type> <out-port>
        use the specified cell types to drive nets that are constant 1, 0, or
        undefined. when '-' is used as <cell-type>, then <out-port> specifies
        the wire name to be used for the constant signal and no cell driving
        that wire is generated. when '+' is used as <cell-type>, then <out-port>
        specifies the wire name to be used for the constant signal and a .names
        statement is generated to drive the wire.

    -noalias
        if a net name is aliasing another net name, then by default a net
        without fanout is created that is driven by the other net. This option
        suppresses the generation of this nets without fanout.

The following options can be useful when the generated file is not going to be
read by a BLIF parser but a custom tool. It is recommended to not name the output
file *.blif when any of this options is used.

    -icells
        do not translate Yosys's internal gates to generic BLIF logic
        functions. Instead create .subckt or .gate lines for all cells.

    -gates
        print .gate instead of .subckt lines for all cells that are not
        instantiations of other modules from this design.

    -conn
        do not generate buffers for connected wires. instead use the
        non-standard .conn statement.

    -attr
        use the non-standard .attr statement to write cell attributes

    -param
        use the non-standard .param statement to write cell parameters

    -cname
        use the non-standard .cname statement to write cell names

    -blackbox
        write blackbox cells with .blackbox statement.

    -impltf
        do not write definitions for the $true, $false and $undef wires.
\end{lstlisting}

\section{write\_btor -- write design to BTOR file}
\label{cmd:write_btor}
\begin{lstlisting}[numbers=left,frame=single]
    write_btor [filename]

Write the current design to an BTOR file.
\end{lstlisting}

\section{write\_edif -- write design to EDIF netlist file}
\label{cmd:write_edif}
\begin{lstlisting}[numbers=left,frame=single]
    write_edif [options] [filename]

Write the current design to an EDIF netlist file.

    -top top_module
        set the specified module as design top module

    -nogndvcc
        do not create "GND" and "VCC" cells. (this will produce an error
        if the design contains constant nets. use "hilomap" to map to custom
        constant drivers first)

Unfortunately there are different "flavors" of the EDIF file format. This
command generates EDIF files for the Xilinx place&route tools. It might be
necessary to make small modifications to this command when a different tool
is targeted.
\end{lstlisting}

\section{write\_file -- write a text to a file}
\label{cmd:write_file}
\begin{lstlisting}[numbers=left,frame=single]
    write_file [options] output_file [input_file]

Write the text from the input file to the output file.

    -a
        Append to output file (instead of overwriting)


Inside a script the input file can also can a here-document:

    write_file hello.txt <<EOT
    Hello World!
    EOT
\end{lstlisting}

\section{write\_ilang -- write design to ilang file}
\label{cmd:write_ilang}
\begin{lstlisting}[numbers=left,frame=single]
    write_ilang [filename]

Write the current design to an 'ilang' file. (ilang is a text representation
of a design in yosys's internal format.)

    -selected
        only write selected parts of the design.
\end{lstlisting}

\section{write\_intersynth -- write design to InterSynth netlist file}
\label{cmd:write_intersynth}
\begin{lstlisting}[numbers=left,frame=single]
    write_intersynth [options] [filename]

Write the current design to an 'intersynth' netlist file. InterSynth is
a tool for Coarse-Grain Example-Driven Interconnect Synthesis.

    -notypes
        do not generate celltypes and conntypes commands. i.e. just output
        the netlists. this is used for postsilicon synthesis.

    -lib <verilog_or_ilang_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.

http://www.clifford.at/intersynth/
\end{lstlisting}

\section{write\_json -- write design to a JSON file}
\label{cmd:write_json}
\begin{lstlisting}[numbers=left,frame=single]
    write_json [options] [filename]

Write a JSON netlist of the current design.

    -aig
        include AIG models for the different gate types


The general syntax of the JSON output created by this command is as follows:

    {
      "modules": {
        <module_name>: {
          "ports": {
            <port_name>: <port_details>,
            ...
          },
          "cells": {
            <cell_name>: <cell_details>,
            ...
          },
          "netnames": {
            <net_name>: <net_details>,
            ...
          }
        }
      },
      "models": {
        ...
      },
    }

Where <port_details> is:

    {
      "direction": <"input" | "output" | "inout">,
      "bits": <bit_vector>
    }

And <cell_details> is:

    {
      "hide_name": <1 | 0>,
      "type": <cell_type>,
      "parameters": {
        <parameter_name>: <parameter_value>,
        ...
      },
      "attributes": {
        <attribute_name>: <attribute_value>,
        ...
      },
      "port_directions": {
        <port_name>: <"input" | "output" | "inout">,
        ...
      },
      "connections": {
        <port_name>: <bit_vector>,
        ...
      },
    }

And <net_details> is:

    {
      "hide_name": <1 | 0>,
      "bits": <bit_vector>
    }

The "hide_name" fields are set to 1 when the name of this cell or net is
automatically created and is likely not of interest for a regular user.

The "port_directions" section is only included for cells for which the
interface is known.

Module and cell ports and nets can be single bit wide or vectors of multiple
bits. Each individual signal bit is assigned a unique integer. The <bit_vector>
values referenced above are vectors of this integers. Signal bits that are
connected to a constant driver are denoted as string "0" or "1" instead of
a number.

For example the following Verilog code:

    module test(input x, y);
      (* keep *) foo #(.P(42), .Q(1337))
          foo_inst (.A({x, y}), .B({y, x}), .C({4'd10, {4{x}}}));
    endmodule

Translates to the following JSON output:

    {
      "modules": {
        "test": {
          "ports": {
            "x": {
              "direction": "input",
              "bits": [ 2 ]
            },
            "y": {
              "direction": "input",
              "bits": [ 3 ]
            }
          },
          "cells": {
            "foo_inst": {
              "hide_name": 0,
              "type": "foo",
              "parameters": {
                "Q": 1337,
                "P": 42
              },
              "attributes": {
                "keep": 1,
                "src": "test.v:2"
              },
              "connections": {
                "C": [ 2, 2, 2, 2, "0", "1", "0", "1" ],
                "B": [ 2, 3 ],
                "A": [ 3, 2 ]
              }
            }
          },
          "netnames": {
            "y": {
              "hide_name": 0,
              "bits": [ 3 ],
              "attributes": {
                "src": "test.v:1"
              }
            },
            "x": {
              "hide_name": 0,
              "bits": [ 2 ],
              "attributes": {
                "src": "test.v:1"
              }
            }
          }
        }
      }
    }

The models are given as And-Inverter-Graphs (AIGs) in the following form:

    "models": {
      <model_name>: [
        /*   0 */ [ <node-spec> ],
        /*   1 */ [ <node-spec> ],
        /*   2 */ [ <node-spec> ],
        ...
      ],
      ...
    },

The following node-types may be used:

    [ "port", <portname>, <bitindex>, <out-list> ]
      - the value of the specified input port bit

    [ "nport", <portname>, <bitindex>, <out-list> ]
      - the inverted value of the specified input port bit

    [ "and", <node-index>, <node-index>, <out-list> ]
      - the ANDed value of the specified nodes

    [ "nand", <node-index>, <node-index>, <out-list> ]
      - the inverted ANDed value of the specified nodes

    [ "true", <out-list> ]
      - the constant value 1

    [ "false", <out-list> ]
      - the constant value 0

All nodes appear in topological order. I.e. only nodes with smaller indices
are referenced by "and" and "nand" nodes.

The optional <out-list> at the end of a node specification is a list of
output portname and bitindex pairs, specifying the outputs driven by this node.

For example, the following is the model for a 3-input 3-output $reduce_and cell
inferred by the following code:

    module test(input [2:0] in, output [2:0] out);
      assign in = &out;
    endmodule

    "$reduce_and:3U:3": [
      /*   0 */ [ "port", "A", 0 ],
      /*   1 */ [ "port", "A", 1 ],
      /*   2 */ [ "and", 0, 1 ],
      /*   3 */ [ "port", "A", 2 ],
      /*   4 */ [ "and", 2, 3, "Y", 0 ],
      /*   5 */ [ "false", "Y", 1, "Y", 2 ]
    ]

Future version of Yosys might add support for additional fields in the JSON
format. A program processing this format must ignore all unknown fields.
\end{lstlisting}

\section{write\_smt2 -- write design to SMT-LIBv2 file}
\label{cmd:write_smt2}
\begin{lstlisting}[numbers=left,frame=single]
    write_smt2 [options] [filename]

Write a SMT-LIBv2 [1] description of the current design. For a module with name
'<mod>' this will declare the sort '<mod>_s' (state of the module) and the
functions operating on that state.

The '<mod>_s' sort represents a module state. Additional '<mod>_n' functions
are provided that can be used to access the values of the signals in the module.
By default only ports, registers, and wires with the 'keep' attribute set are
made available via such functions. With the -nobv option, multi-bit wires are
exported as separate functions of type Bool for the individual bits. Without
-nobv multi-bit wires are exported as single functions of type BitVec.

The '<mod>_t' function evaluates to 'true' when the given pair of states
describes a valid state transition.

The '<mod>_a' function evaluates to 'true' when the given state satisfies
the asserts in the module.

The '<mod>_u' function evaluates to 'true' when the given state satisfies
the assumptions in the module.

The '<mod>_i' function evaluates to 'true' when the given state conforms
to the initial state. Furthermore the '<mod>_is' function should be asserted
to be true for initial states in addition to '<mod>_i', and should be
asserted to be false for non-initial states.

For hierarchical designs, the '<mod>_h' function must be asserted for each
state to establish the design hierarchy. The '<mod>_h <cellname>' function
evaluates to the state corresponding to the given cell within <mod>.

    -verbose
        this will print the recursive walk used to export the modules.

    -nobv
        disable support for BitVec (FixedSizeBitVectors theory). without this
        option multi-bit wires are represented using the BitVec sort and
        support for coarse grain cells (incl. arithmetic) is enabled.

    -nomem
        disable support for memories (via ArraysEx theory). this option is
        implied by -nobv. only $mem cells without merged registers in
        read ports are supported. call "memory" with -nordff to make sure
        that no registers are merged into $mem read ports. '<mod>_m' functions
        will be generated for accessing the arrays that are used to represent
        memories.

    -wires
        create '<mod>_n' functions for all public wires. by default only ports,
        registers, and wires with the 'keep' attribute are exported.

    -tpl <template_file>
        use the given template file. the line containing only the token '%%'
        is replaced with the regular output of this command.

[1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David
R. Cok's tutorial: http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

---------------------------------------------------------------------------

Example:

Consider the following module (test.v). We want to prove that the output can
never transition from a non-zero value to a zero value.

        module test(input clk, output reg [3:0] y);
          always @(posedge clk)
            y <= (y << 1) | ^y;
        endmodule

For this proof we create the following template (test.tpl).

        ; we need QF_UFBV for this poof
        (set-logic QF_UFBV)

        ; insert the auto-generated code here
        %%

        ; declare two state variables s1 and s2
        (declare-fun s1 () test_s)
        (declare-fun s2 () test_s)

        ; state s2 is the successor of state s1
        (assert (test_t s1 s2))

        ; we are looking for a model with y non-zero in s1
        (assert (distinct (|test_n y| s1) #b0000))

        ; we are looking for a model with y zero in s2
        (assert (= (|test_n y| s2) #b0000))

        ; is there such a model?
        (check-sat)

The following yosys script will create a 'test.smt2' file for our proof:

        read_verilog test.v
        hierarchy -check; proc; opt; check -assert
        write_smt2 -bv -tpl test.tpl test.smt2

Running 'cvc4 test.smt2' will print 'unsat' because y can never transition
from non-zero to zero in the test design.
\end{lstlisting}

\section{write\_smv -- write design to SMV file}
\label{cmd:write_smv}
\begin{lstlisting}[numbers=left,frame=single]
    write_smv [options] [filename]

Write an SMV description of the current design.

    -verbose
        this will print the recursive walk used to export the modules.

    -tpl <template_file>
        use the given template file. the line containing only the token '%%'
        is replaced with the regular output of this command.

THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}

\section{write\_spice -- write design to SPICE netlist file}
\label{cmd:write_spice}
\begin{lstlisting}[numbers=left,frame=single]
    write_spice [options] [filename]

Write the current design to an SPICE netlist file.

    -big_endian
        generate multi-bit ports in MSB first order
        (default is LSB first)

    -neg net_name
        set the net name for constant 0 (default: Vss)

    -pos net_name
        set the net name for constant 1 (default: Vdd)

    -nc_prefix
        prefix for not-connected nets (default: _NC)

    -inames
        include names of internal ($-prefixed) nets in outputs
        (default is to use net numbers instead)

    -top top_module
        set the specified module as design top module
\end{lstlisting}

\section{write\_verilog -- write design to Verilog file}
\label{cmd:write_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    write_verilog [options] [filename]

Write the current design to a Verilog file.

    -norename
        without this option all internal object names (the ones with a dollar
        instead of a backslash prefix) are changed to short names in the
        format '_<number>_'.

    -renameprefix <prefix>
        insert this prefix in front of auto-generated instance names

    -noattr
        with this option no attributes are included in the output

    -attr2comment
        with this option attributes are included as comments in the output

    -noexpr
        without this option all internal cells are converted to Verilog
        expressions.

    -nodec
        32-bit constant values are by default dumped as decimal numbers,
        not bit pattern. This option deactivates this feature and instead
        will write out all constants in binary.

    -nostr
        Parameters and attributes that are specified as strings in the
        original input will be output as strings by this back-end. This
        deactivates this feature and instead will write string constants
        as binary numbers.

    -defparam
        Use 'defparam' statements instead of the Verilog-2001 syntax for
        cell parameters.

    -blackboxes
        usually modules with the 'blackbox' attribute are ignored. with
        this option set only the modules with the 'blackbox' attribute
        are written to the output file.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.

    -v
        verbose output (print new names of all renamed wires and cells)

Note that RTLIL processes can't always be mapped directly to Verilog
always blocks. This frontend should only be used to export an RTLIL
netlist, i.e. after the "proc" pass has been used to convert all
processes to logic networks and registers. A warning is generated when
this command is called on a design with RTLIL processes.
\end{lstlisting}

\section{zinit -- add inverters so all FF are zero-initialized}
\label{cmd:zinit}
\begin{lstlisting}[numbers=left,frame=single]
    zinit [options] [selection]

Add inverters as needed to make all FFs zero-initialized.

    -all
        also add zero initialization to uninitialized FFs
\end{lstlisting}