1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
|
% Generated using the yosys 'help -write-tex-command-reference-manual' command.
\section{abc -- use ABC for technology mapping}
\label{cmd:abc}
\begin{lstlisting}[numbers=left,frame=single]
abc [options] [selection]
This pass uses the ABC tool [1] for technology mapping of yosys's internal gate
library to a target architecture.
-exe <command>
use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
This can e.g. be used to call a specific version of ABC or a wrapper.
-script <file>
use the specified ABC script file instead of the default script.
if <file> starts with a plus sign (+), then the rest of the filename
string is interpreted as the command string to be passed to ABC. The
leading plus sign is removed and all commas (,) in the string are
replaced with blanks before the string is passed to ABC.
if no -script parameter is given, the following scripts are used:
for -liberty without -constr:
strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
&nf {D}; &put
for -liberty with -constr:
strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
&nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p
for -lut/-luts (only one LUT size):
strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2;
lutpack {S}
for -lut/-luts (different LUT sizes):
strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2
for -sop:
strash; ifraig; scorr; dc2; dretime; strash; dch -f;
cover {I} {P}
otherwise:
strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
&nf {D}; &put
-fast
use different default scripts that are slightly faster (at the cost
of output quality):
for -liberty without -constr:
strash; dretime; map {D}
for -liberty with -constr:
strash; dretime; map {D}; buffer; upsize {D}; dnsize {D};
stime -p
for -lut/-luts:
strash; dretime; if
for -sop:
strash; dretime; cover -I {I} -P {P}
otherwise:
strash; dretime; map
-liberty <file>
generate netlists for the specified cell library (using the liberty
file format).
-constr <file>
pass this file with timing constraints to ABC. use with -liberty.
a constr file contains two lines:
set_driving_cell <cell_name>
set_load <floating_point_number>
the set_driving_cell statement defines which cell type is assumed to
drive the primary inputs and the set_load statement sets the load in
femtofarads for each primary output.
-D <picoseconds>
set delay target. the string {D} in the default scripts above is
replaced by this option when used, and an empty string otherwise.
this also replaces 'dretime' with 'dretime; retime -o {D}' in the
default scripts above.
-I <num>
maximum number of SOP inputs.
(replaces {I} in the default scripts above)
-P <num>
maximum number of SOP products.
(replaces {P} in the default scripts above)
-S <num>
maximum number of LUT inputs shared.
(replaces {S} in the default scripts above, default: -S 1)
-lut <width>
generate netlist using luts of (max) the specified width.
-lut <w1>:<w2>
generate netlist using luts of (max) the specified width <w2>. All
luts with width <= <w1> have constant cost. for luts larger than <w1>
the area cost doubles with each additional input bit. the delay cost
is still constant for all lut widths.
-luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
generate netlist using luts. Use the specified costs for luts with 1,
2, 3, .. inputs.
-sop
map to sum-of-product cells and inverters
-g type1,type2,...
Map to the specified list of gate types. Supported gates types are:
AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX,
NMUX, AOI3, OAI3, AOI4, OAI4.
(The NOT gate is always added to this list automatically.)
The following aliases can be used to reference common sets of gate types:
simple: AND OR XOR MUX
cmos2: NAND NOR
cmos3: NAND NOR AOI3 OAI3
cmos4: NAND NOR AOI3 OAI3 AOI4 OAI4
cmos: NAND NOR AOI3 OAI3 AOI4 OAI4 NMUX MUX XOR XNOR
gates: AND NAND OR NOR XOR XNOR ANDNOT ORNOT
aig: AND NAND OR NOR ANDNOT ORNOT
The alias 'all' represent the full set of all gate types.
Prefix a gate type with a '-' to remove it from the list. For example
the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.
The default is 'all,-NMUX,-AOI3,-OAI3,-AOI4,-OAI4'.
-dff
also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
clock domains are automatically partitioned in clock domains and each
domain is passed through ABC independently.
-clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
use only the specified clock domain. this is like -dff, but only FF
cells that belong to the specified clock domain are used.
-keepff
set the "keep" attribute on flip-flop output wires. (and thus preserve
them, for example for equivalence checking.)
-nocleanup
when this option is used, the temporary files created by this pass
are not removed. this is useful for debugging.
-showtmp
print the temp dir name in log. usually this is suppressed so that the
command output is identical across runs.
-markgroups
set a 'abcgroup' attribute on all objects created by ABC. The value of
this attribute is a unique integer for each ABC process started. This
is useful for debugging the partitioning of clock domains.
-dress
run the 'dress' command after all other ABC commands. This aims to
preserve naming by an equivalence check between the original and post-ABC
netlists (experimental).
When neither -liberty nor -lut is used, the Yosys standard cell library is
loaded into ABC before the ABC script is executed.
Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and then load that into ABC externally if
you want to use ABC to convert your design into another format.
[1] http://www.eecs.berkeley.edu/~alanmi/abc/
\end{lstlisting}
\section{abc9 -- use ABC9 for technology mapping}
\label{cmd:abc9}
\begin{lstlisting}[numbers=left,frame=single]
abc9 [options] [selection]
This script pass performs a sequence of commands to facilitate the use of the ABC
tool [1] for technology mapping of the current design to a target FPGA
architecture. Only fully-selected modules are supported.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-exe <command>
use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
This can e.g. be used to call a specific version of ABC or a wrapper.
-script <file>
use the specified ABC script file instead of the default script.
if <file> starts with a plus sign (+), then the rest of the filename
string is interpreted as the command string to be passed to ABC. The
leading plus sign is removed and all commas (,) in the string are
replaced with blanks before the string is passed to ABC.
if no -script parameter is given, the following scripts are used:
&scorr; &sweep; &dc2; &dch -f; &ps; &if {C} {W} {D} {R} -v; &mfs
-fast
use different default scripts that are slightly faster (at the cost
of output quality):
&if {C} {W} {D} {R} -v
-D <picoseconds>
set delay target. the string {D} in the default scripts above is
replaced by this option when used, and an empty string otherwise
(indicating best possible delay).
-lut <width>
generate netlist using luts of (max) the specified width.
-lut <w1>:<w2>
generate netlist using luts of (max) the specified width <w2>. All
luts with width <= <w1> have constant cost. for luts larger than <w1>
the area cost doubles with each additional input bit. the delay cost
is still constant for all lut widths.
-lut <file>
pass this file with lut library to ABC.
-luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
generate netlist using luts. Use the specified costs for luts with 1,
2, 3, .. inputs.
-maxlut <width>
when auto-generating the lut library, discard all luts equal to or
greater than this size (applicable when neither -lut nor -luts is
specified).
-dff
also pass $_ABC9_FF_ cells through to ABC. modules with many clock
domains are marked as such and automatically partitioned by ABC.
-nocleanup
when this option is used, the temporary files created by this pass
are not removed. this is useful for debugging.
-showtmp
print the temp dir name in log. usually this is suppressed so that the
command output is identical across runs.
-box <file>
pass this file with box library to ABC.
Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as an XAIGER file with `write_xaiger' and then load that into ABC
externally if you want to use ABC to convert your design into another format.
[1] http://www.eecs.berkeley.edu/~alanmi/abc/
pre:
abc9_ops -check
scc -set_attr abc9_scc_id {}
abc9_ops -mark_scc -prep_delays -prep_xaiger [-dff] (option for -dff)
abc9_ops -prep_lut <maxlut> (skip if -lut or -luts)
abc9_ops -prep_box [-dff] (skip if -box)
select -set abc9_holes A:abc9_holes
flatten -wb @abc9_holes
techmap @abc9_holes
abc9_ops -prep_dff (only if -dff)
opt -purge @abc9_holes
aigmap
wbflip @abc9_holes
map:
foreach module in selection
abc9_ops -write_lut <abc-temp-dir>/input.lut (skip if '-lut' or '-luts')
abc9_ops -write_box <abc-temp-dir>/input.box
write_xaiger -map <abc-temp-dir>/input.sym <abc-temp-dir>/input.xaig
abc9_exe [options] -cwd <abc-temp-dir> [-lut <abc-temp-dir>/input.lut] -box <abc-temp-dir>/input.box
read_aiger -xaiger -wideports -module_name <module-name>$abc9 -map <abc-temp-dir>/input.sym <abc-temp-dir>/output.aig
abc9_ops -reintegrate
\end{lstlisting}
\section{abc9\_exe -- use ABC9 for technology mapping}
\label{cmd:abc9_exe}
\begin{lstlisting}[numbers=left,frame=single]
abc9_exe [options]
This pass uses the ABC tool [1] for technology mapping of the top module
(according to the (* top *) attribute or if only one module is currently selected)
to a target FPGA architecture.
-exe <command>
use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
This can e.g. be used to call a specific version of ABC or a wrapper.
-script <file>
use the specified ABC script file instead of the default script.
if <file> starts with a plus sign (+), then the rest of the filename
string is interpreted as the command string to be passed to ABC. The
leading plus sign is removed and all commas (,) in the string are
replaced with blanks before the string is passed to ABC.
if no -script parameter is given, the following scripts are used:
&scorr; &sweep; &dc2; &dch -f; &ps; &if {C} {W} {D} {R} -v; &mfs
-fast
use different default scripts that are slightly faster (at the cost
of output quality):
&if {C} {W} {D} {R} -v
-D <picoseconds>
set delay target. the string {D} in the default scripts above is
replaced by this option when used, and an empty string otherwise
(indicating best possible delay).
-lut <width>
generate netlist using luts of (max) the specified width.
-lut <w1>:<w2>
generate netlist using luts of (max) the specified width <w2>. All
luts with width <= <w1> have constant cost. for luts larger than <w1>
the area cost doubles with each additional input bit. the delay cost
is still constant for all lut widths.
-lut <file>
pass this file with lut library to ABC.
-luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
generate netlist using luts. Use the specified costs for luts with 1,
2, 3, .. inputs.
-showtmp
print the temp dir name in log. usually this is suppressed so that the
command output is identical across runs.
-box <file>
pass this file with box library to ABC.
-cwd <dir>
use this as the current working directory, inside which the 'input.xaig'
file is expected. temporary files will be created in this directory, and
the mapped result will be written to 'output.aig'.
Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and then load that into ABC externally if
you want to use ABC to convert your design into another format.
[1] http://www.eecs.berkeley.edu/~alanmi/abc/
\end{lstlisting}
\section{abc9\_ops -- helper functions for ABC9}
\label{cmd:abc9_ops}
\begin{lstlisting}[numbers=left,frame=single]
abc9_ops [options] [selection]
This pass contains a set of supporting operations for use during ABC technology
mapping, and is expected to be called in conjunction with other operations from
the `abc9' script pass. Only fully-selected modules are supported.
-check
check that the design is valid, e.g. (* abc9_box_id *) values are unique,
(* abc9_carry *) is only given for one input/output port, etc.
-prep_delays
insert `$__ABC9_DELAY' blackbox cells into the design to account for
certain required times.
-mark_scc
for an arbitrarily chosen cell in each unique SCC of each selected module
(tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all
wires driven by this cell's outputs with a (* keep *) attribute in order
to break the SCC. this temporary attribute will be removed on -reintegrate.
-prep_xaiger
prepare the design for XAIGER output. this includes computing the
topological ordering of ABC9 boxes, as well as preparing the
'<module-name>$holes' module that contains the logic behaviour of ABC9
whiteboxes.
-dff
consider flop cells (those instantiating modules marked with (* abc9_flop *))
during -prep_{delays,xaiger,box}.
-prep_dff
compute the clock domain and initial value of each flop in the design.
process the '$holes' module to support clock-enable functionality.
-prep_lut <maxlut>
pre-compute the lut library by analysing all modules marked with
(* abc9_lut=<area> *).
-write_lut <dst>
write the pre-computed lut library to <dst>.
-prep_box
pre-compute the box library by analysing all modules marked with
(* abc9_box *).
-write_box <dst>
write the pre-computed box library to <dst>.
-reintegrate
for each selected module, re-intergrate the module '<module-name>$abc9'
by first recovering ABC9 boxes, and then stitching in the remaining primary
inputs and outputs.
\end{lstlisting}
\section{add -- add objects to the design}
\label{cmd:add}
\begin{lstlisting}[numbers=left,frame=single]
add <command> [selection]
This command adds objects to the design. It operates on all fully selected
modules. So e.g. 'add -wire foo' will add a wire foo to all selected modules.
add {-wire|-input|-inout|-output} <name> <width> [selection]
Add a wire (input, inout, output port) with the given name and width. The
command will fail if the object exists already and has different properties
than the object to be created.
add -global_input <name> <width> [selection]
Like 'add -input', but also connect the signal between instances of the
selected modules.
add {-assert|-assume|-live|-fair|-cover} <name1> [-if <name2>]
Add an $assert, $assume, etc. cell connected to a wire named name1, with its
enable signal optionally connected to a wire named name2 (default: 1'b1).
add -mod <name[s]>
Add module[s] with the specified name[s].
\end{lstlisting}
\section{aigmap -- map logic to and-inverter-graph circuit}
\label{cmd:aigmap}
\begin{lstlisting}[numbers=left,frame=single]
aigmap [options] [selection]
Replace all logic cells with circuits made of only $_AND_ and
$_NOT_ cells.
-nand
Enable creation of $_NAND_ cells
-select
Overwrite replaced cells in the current selection with new $_AND_,
$_NOT_, and $_NAND_, cells
\end{lstlisting}
\section{alumacc -- extract ALU and MACC cells}
\label{cmd:alumacc}
\begin{lstlisting}[numbers=left,frame=single]
alumacc [selection]
This pass translates arithmetic operations like $add, $mul, $lt, etc. to $alu
and $macc cells.
\end{lstlisting}
\section{anlogic\_eqn -- Anlogic: Calculate equations for luts}
\label{cmd:anlogic_eqn}
\begin{lstlisting}[numbers=left,frame=single]
anlogic_eqn [selection]
Calculate equations for luts since bitstream generator depends on it.
\end{lstlisting}
\section{anlogic\_fixcarry -- Anlogic: fix carry chain}
\label{cmd:anlogic_fixcarry}
\begin{lstlisting}[numbers=left,frame=single]
anlogic_fixcarry [options] [selection]
Add Anlogic adders to fix carry chain if needed.
\end{lstlisting}
\section{assertpmux -- adds asserts for parallel muxes}
\label{cmd:assertpmux}
\begin{lstlisting}[numbers=left,frame=single]
assertpmux [options] [selection]
This command adds asserts to the design that assert that all parallel muxes
($pmux cells) have a maximum of one of their inputs enable at any time.
-noinit
do not enforce the pmux condition during the init state
-always
usually the $pmux condition is only checked when the $pmux output
is used by the mux tree it drives. this option will deactivate this
additional constraint and check the $pmux condition always.
\end{lstlisting}
\section{async2sync -- convert async FF inputs to sync circuits}
\label{cmd:async2sync}
\begin{lstlisting}[numbers=left,frame=single]
async2sync [options] [selection]
This command replaces async FF inputs with sync circuits emulating the same
behavior for when the async signals are actually synchronized to the clock.
This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the
reset value in the next cycle regardless of the data-in value at the time of
the clock edge.
Currently only $adff, $dffsr, and $dlatch cells are supported by this pass.
\end{lstlisting}
\section{attrmap -- renaming attributes}
\label{cmd:attrmap}
\begin{lstlisting}[numbers=left,frame=single]
attrmap [options] [selection]
This command renames attributes and/or maps key/value pairs to
other key/value pairs.
-tocase <name>
Match attribute names case-insensitively and set it to the specified
name.
-rename <old_name> <new_name>
Rename attributes as specified
-map <old_name>=<old_value> <new_name>=<new_value>
Map key/value pairs as indicated.
-imap <old_name>=<old_value> <new_name>=<new_value>
Like -map, but use case-insensitive match for <old_value> when
it is a string value.
-remove <name>=<value>
Remove attributes matching this pattern.
-modattr
Operate on module attributes instead of attributes on wires and cells.
For example, mapping Xilinx-style "keep" attributes to Yosys-style:
attrmap -tocase keep -imap keep="true" keep=1 \
-imap keep="false" keep=0 -remove keep=0
\end{lstlisting}
\section{attrmvcp -- move or copy attributes from wires to driving cells}
\label{cmd:attrmvcp}
\begin{lstlisting}[numbers=left,frame=single]
attrmvcp [options] [selection]
Move or copy attributes on wires to the cells driving them.
-copy
By default, attributes are moved. This will only add
the attribute to the cell, without removing it from
the wire.
-purge
If no selected cell consumes the attribute, then it is
left on the wire by default. This option will cause the
attribute to be removed from the wire, even if no selected
cell takes it.
-driven
By default, attriburtes are moved to the cell driving the
wire. With this option set it will be moved to the cell
driven by the wire instead.
-attr <attrname>
Move or copy this attribute. This option can be used
multiple times.
\end{lstlisting}
\section{autoname -- automatically assign names to objects}
\label{cmd:autoname}
\begin{lstlisting}[numbers=left,frame=single]
autoname [selection]
Assign auto-generated public names to objects with private names (the ones
with $-prefix).
\end{lstlisting}
\section{blackbox -- convert modules into blackbox modules}
\label{cmd:blackbox}
\begin{lstlisting}[numbers=left,frame=single]
blackbox [options] [selection]
Convert modules into blackbox modules (remove contents and set the blackbox
module attribute).
\end{lstlisting}
\section{bugpoint -- minimize testcases}
\label{cmd:bugpoint}
\begin{lstlisting}[numbers=left,frame=single]
bugpoint [options]
This command minimizes testcases that crash Yosys. It removes an arbitrary part
of the design and recursively invokes Yosys with a given script, repeating these
steps while it can find a smaller design that still causes a crash. Once this
command finishes, it replaces the current design with the smallest testcase it
was able to produce.
It is possible to specify the kinds of design part that will be removed. If none
are specified, all parts of design will be removed.
-yosys <filename>
use this Yosys binary. if not specified, `yosys` is used.
-script <filename>
use this script to crash Yosys. required.
-grep <string>
only consider crashes that place this string in the log file.
-fast
run `proc_clean; clean -purge` after each minimization step. converges
faster, but produces larger testcases, and may fail to produce any
testcase at all if the crash is related to dangling wires.
-clean
run `proc_clean; clean -purge` before checking testcase and after
finishing. produces smaller and more useful testcases, but may fail to
produce any testcase at all if the crash is related to dangling wires.
-modules
try to remove modules.
-ports
try to remove module ports.
-cells
try to remove cells.
-connections
try to reconnect ports to 'x.
-assigns
try to remove process assigns from cases.
-updates
try to remove process updates from syncs.
-runner "<prefix>"
child process wrapping command, e.g., "timeout 30", or valgrind.
\end{lstlisting}
\section{cd -- a shortcut for 'select -module <name>'}
\label{cmd:cd}
\begin{lstlisting}[numbers=left,frame=single]
cd <modname>
This is just a shortcut for 'select -module <modname>'.
cd <cellname>
When no module with the specified name is found, but there is a cell
with the specified name in the current module, then this is equivalent
to 'cd <celltype>'.
cd ..
Remove trailing substrings that start with '.' in current module name until
the name of a module in the current design is generated, then switch to that
module. Otherwise clear the current selection.
cd
This is just a shortcut for 'select -clear'.
\end{lstlisting}
\section{check -- check for obvious problems in the design}
\label{cmd:check}
\begin{lstlisting}[numbers=left,frame=single]
check [options] [selection]
This pass identifies the following problems in the current design:
- combinatorial loops
- two or more conflicting drivers for one wire
- used wires that do not have a driver
Options:
-noinit
Also check for wires which have the 'init' attribute set.
-initdrv
Also check for wires that have the 'init' attribute set and are not
driven by an FF cell type.
-mapped
Also check for internal cells that have not been mapped to cells of the
target architecture.
-allow-tbuf
Modify the -mapped behavior to still allow $_TBUF_ cells.
-assert
Produce a runtime error if any problems are found in the current design.
\end{lstlisting}
\section{chformal -- change formal constraints of the design}
\label{cmd:chformal}
\begin{lstlisting}[numbers=left,frame=single]
chformal [types] [mode] [options] [selection]
Make changes to the formal constraints of the design. The [types] options
the type of constraint to operate on. If none of the following options are given,
the command will operate on all constraint types:
-assert $assert cells, representing assert(...) constraints
-assume $assume cells, representing assume(...) constraints
-live $live cells, representing assert(s_eventually ...)
-fair $fair cells, representing assume(s_eventually ...)
-cover $cover cells, representing cover() statements
Exactly one of the following modes must be specified:
-remove
remove the cells and thus constraints from the design
-early
bypass FFs that only delay the activation of a constraint
-delay <N>
delay activation of the constraint by <N> clock cycles
-skip <N>
ignore activation of the constraint in the first <N> clock cycles
-assert2assume
-assume2assert
-live2fair
-fair2live
change the roles of cells as indicated. these options can be combined
\end{lstlisting}
\section{chparam -- re-evaluate modules with new parameters}
\label{cmd:chparam}
\begin{lstlisting}[numbers=left,frame=single]
chparam [ -set name value ]... [selection]
Re-evaluate the selected modules with new parameters. String values must be
passed in double quotes (").
chparam -list [selection]
List the available parameters of the selected modules.
\end{lstlisting}
\section{chtype -- change type of cells in the design}
\label{cmd:chtype}
\begin{lstlisting}[numbers=left,frame=single]
chtype [options] [selection]
Change the types of cells in the design.
-set <type>
set the cell type to the given type
-map <old_type> <new_type>
change cells types that match <old_type> to <new_type>
\end{lstlisting}
\section{clean -- remove unused cells and wires}
\label{cmd:clean}
\begin{lstlisting}[numbers=left,frame=single]
clean [options] [selection]
This is identical to 'opt_clean', but less verbose.
When commands are separated using the ';;' token, this command will be executed
between the commands.
When commands are separated using the ';;;' token, this command will be executed
in -purge mode between the commands.
\end{lstlisting}
\section{clk2fflogic -- convert clocked FFs to generic \$ff cells}
\label{cmd:clk2fflogic}
\begin{lstlisting}[numbers=left,frame=single]
clk2fflogic [options] [selection]
This command replaces clocked flip-flops with generic $ff cells that use the
implicit global clock. This is useful for formal verification of designs with
multiple clocks.
\end{lstlisting}
\section{clkbufmap -- insert global buffers on clock networks}
\label{cmd:clkbufmap}
\begin{lstlisting}[numbers=left,frame=single]
clkbufmap [options] [selection]
Inserts global buffers between nets connected to clock inputs and their drivers.
In the absence of any selection, all wires without the 'clkbuf_inhibit'
attribute will be considered for global buffer insertion.
Alternatively, to consider all wires without the 'buffer_type' attribute set to
'none' or 'bufr' one would specify:
'w:* a:buffer_type=none a:buffer_type=bufr %u %d'
as the selection.
-buf <celltype> <portname_out>:<portname_in>
Specifies the cell type to use for the global buffers
and its port names. The first port will be connected to
the clock network sinks, and the second will be connected
to the actual clock source. This option is required.
-inpad <celltype> <portname_out>:<portname_in>
If specified, a PAD cell of the given type is inserted on
clock nets that are also top module's inputs (in addition
to the global buffer).
\end{lstlisting}
\section{connect -- create or remove connections}
\label{cmd:connect}
\begin{lstlisting}[numbers=left,frame=single]
connect [-nomap] [-nounset] -set <lhs-expr> <rhs-expr>
Create a connection. This is equivalent to adding the statement 'assign
<lhs-expr> = <rhs-expr>;' to the Verilog input. Per default, all existing
drivers for <lhs-expr> are unconnected. This can be overwritten by using
the -nounset option.
connect [-nomap] -unset <expr>
Unconnect all existing drivers for the specified expression.
connect [-nomap] -port <cell> <port> <expr>
Connect the specified cell port to the specified cell port.
Per default signal alias names are resolved and all signal names are mapped
the the signal name of the primary driver. Using the -nomap option deactivates
this behavior.
The connect command operates in one module only. Either only one module must
be selected or an active module must be set using the 'cd' command.
This command does not operate on module with processes.
\end{lstlisting}
\section{connect\_rpc -- connect to RPC frontend}
\label{cmd:connect_rpc}
\begin{lstlisting}[numbers=left,frame=single]
connect_rpc -exec <command> [args...]
connect_rpc -path <path>
Load modules using an out-of-process frontend.
-exec <command> [args...]
run <command> with arguments [args...]. send requests on stdin, read
responses from stdout.
-path <path>
connect to Unix domain socket at <path>. (Unix)
connect to bidirectional byte-type named pipe at <path>. (Windows)
A simple JSON-based, newline-delimited protocol is used for communicating with
the frontend. Yosys requests data from the frontend by sending exactly 1 line
of JSON. Frontend responds with data or error message by replying with exactly
1 line of JSON as well.
-> {"method": "modules"}
<- {"modules": ["<module-name>", ...]}
<- {"error": "<error-message>"}
request for the list of modules that can be derived by this frontend.
the 'hierarchy' command will call back into this frontend if a cell
with type <module-name> is instantiated in the design.
-> {"method": "derive", "module": "<module-name">, "parameters": {
"<param-name>": {"type": "[unsigned|signed|string|real]",
"value": "<param-value>"}, ...}}
<- {"frontend": "[ilang|verilog|...]","source": "<source>"}}
<- {"error": "<error-message>"}
request for the module <module-name> to be derived for a specific set of
parameters. <param-name> starts with \ for named parameters, and with $
for unnamed parameters, which are numbered starting at 1.<param-value>
for integer parameters is always specified as a binary string of unlimited
precision. the <source> returned by the frontend is hygienically parsed
by a built-in Yosys <frontend>, allowing the RPC frontend to return any
convenient representation of the module. the derived module is cached,
so the response should be the same whenever the same set of parameters
is provided.
\end{lstlisting}
\section{connwrappers -- match width of input-output port pairs}
\label{cmd:connwrappers}
\begin{lstlisting}[numbers=left,frame=single]
connwrappers [options] [selection]
Wrappers are used in coarse-grain synthesis to wrap cells with smaller ports
in wrapper cells with a (larger) constant port size. I.e. the upper bits
of the wrapper output are signed/unsigned bit extended. This command uses this
knowledge to rewire the inputs of the driven cells to match the output of
the driving cell.
-signed <cell_type> <port_name> <width_param>
-unsigned <cell_type> <port_name> <width_param>
consider the specified signed/unsigned wrapper output
-port <cell_type> <port_name> <width_param> <sign_param>
use the specified parameter to decide if signed or unsigned
The options -signed, -unsigned, and -port can be specified multiple times.
\end{lstlisting}
\section{coolrunner2\_fixup -- insert necessary buffer cells for CoolRunner-II architecture}
\label{cmd:coolrunner2_fixup}
\begin{lstlisting}[numbers=left,frame=single]
coolrunner2_fixup [options] [selection]
Insert necessary buffer cells for CoolRunner-II architecture.
\end{lstlisting}
\section{coolrunner2\_sop -- break \$sop cells into ANDTERM/ORTERM cells}
\label{cmd:coolrunner2_sop}
\begin{lstlisting}[numbers=left,frame=single]
coolrunner2_sop [options] [selection]
Break $sop cells into ANDTERM/ORTERM cells.
\end{lstlisting}
\section{copy -- copy modules in the design}
\label{cmd:copy}
\begin{lstlisting}[numbers=left,frame=single]
copy old_name new_name
Copy the specified module. Note that selection patterns are not supported
by this command.
\end{lstlisting}
\section{cover -- print code coverage counters}
\label{cmd:cover}
\begin{lstlisting}[numbers=left,frame=single]
cover [options] [pattern]
Print the code coverage counters collected using the cover() macro in the Yosys
C++ code. This is useful to figure out what parts of Yosys are utilized by a
test bench.
-q
Do not print output to the normal destination (console and/or log file)
-o file
Write output to this file, truncate if exists.
-a file
Write output to this file, append if exists.
-d dir
Write output to a newly created file in the specified directory.
When one or more pattern (shell wildcards) are specified, then only counters
matching at least one pattern are printed.
It is also possible to instruct Yosys to print the coverage counters on program
exit to a file using environment variables:
YOSYS_COVER_DIR="{dir-name}" yosys {args}
This will create a file (with an auto-generated name) in this
directory and write the coverage counters to it.
YOSYS_COVER_FILE="{file-name}" yosys {args}
This will append the coverage counters to the specified file.
Hint: Use the following AWK command to consolidate Yosys coverage files:
gawk '{ p[$3] = $1; c[$3] += $2; } END { for (i in p)
printf "%-60s %10d %s\n", p[i], c[i], i; }' {files} | sort -k3
Coverage counters are only available in Yosys for Linux.
\end{lstlisting}
\section{cutpoint -- adds formal cut points to the design}
\label{cmd:cutpoint}
\begin{lstlisting}[numbers=left,frame=single]
cutpoint [options] [selection]
This command adds formal cut points to the design.
-undef
set cupoint nets to undef (x). the default behavior is to create a
$anyseq cell and drive the cutpoint net from that
\end{lstlisting}
\section{debug -- run command with debug log messages enabled}
\label{cmd:debug}
\begin{lstlisting}[numbers=left,frame=single]
debug cmd
Execute the specified command with debug log messages enabled
\end{lstlisting}
\section{delete -- delete objects in the design}
\label{cmd:delete}
\begin{lstlisting}[numbers=left,frame=single]
delete [selection]
Deletes the selected objects. This will also remove entire modules, if the
whole module is selected.
delete {-input|-output|-port} [selection]
Does not delete any object but removes the input and/or output flag on the
selected wires, thus 'deleting' module ports.
\end{lstlisting}
\section{deminout -- demote inout ports to input or output}
\label{cmd:deminout}
\begin{lstlisting}[numbers=left,frame=single]
deminout [options] [selection]
"Demote" inout ports to input or output ports, if possible.
\end{lstlisting}
\section{design -- save, restore and reset current design}
\label{cmd:design}
\begin{lstlisting}[numbers=left,frame=single]
design -reset
Clear the current design.
design -save <name>
Save the current design under the given name.
design -stash <name>
Save the current design under the given name and then clear the current design.
design -push
Push the current design to the stack and then clear the current design.
design -push-copy
Push the current design to the stack without clearing the current design.
design -pop
Reset the current design and pop the last design from the stack.
design -load <name>
Reset the current design and load the design previously saved under the given
name.
design -copy-from <name> [-as <new_mod_name>] <selection>
Copy modules from the specified design into the current one. The selection is
evaluated in the other design.
design -copy-to <name> [-as <new_mod_name>] [selection]
Copy modules from the current design into the specified one.
design -import <name> [-as <new_top_name>] [selection]
Import the specified design into the current design. The source design must
either have a selected top module or the selection must contain exactly one
module that is then used as top module for this command.
design -reset-vlog
The Verilog front-end remembers defined macros and top-level declarations
between calls to 'read_verilog'. This command resets this memory.
\end{lstlisting}
\section{determine\_init -- Determine the init value of cells}
\label{cmd:determine_init}
\begin{lstlisting}[numbers=left,frame=single]
determine_init [selection]
Determine the init value of cells that doesn't allow unknown init value.
\end{lstlisting}
\section{dff2dffe -- transform \$dff cells to \$dffe cells}
\label{cmd:dff2dffe}
\begin{lstlisting}[numbers=left,frame=single]
dff2dffe [options] [selection]
This pass transforms $dff cells driven by a tree of multiplexers with one or
more feedback paths to $dffe cells. It also works on gate-level cells such as
$_DFF_P_, $_DFF_N_ and $_MUX_.
-unmap
operate in the opposite direction: replace $dffe cells with combinations
of $dff and $mux cells. the options below are ignored in unmap mode.
-unmap-mince N
Same as -unmap but only unmap $dffe where the clock enable port
signal is used by less $dffe than the specified number
-direct <internal_gate_type> <external_gate_type>
map directly to external gate type. <internal_gate_type> can
be any internal gate-level FF cell (except $_DFFE_??_). the
<external_gate_type> is the cell type name for a cell with an
identical interface to the <internal_gate_type>, except it
also has an high-active enable port 'E'.
Usually <external_gate_type> is an intermediate cell type
that is then translated to the final type using 'techmap'.
-direct-match <pattern>
like -direct for all DFF cell types matching the expression.
this will use $__DFFE_* as <external_gate_type> matching the
internal gate type $_DFF_*_, and $__DFFSE_* for those matching
$_DFFS_*_, except for $_DFF_[NP]_, which is converted to
$_DFFE_[NP]_.
\end{lstlisting}
\section{dff2dffs -- process sync set/reset with SR over CE priority}
\label{cmd:dff2dffs}
\begin{lstlisting}[numbers=left,frame=single]
dff2dffs [options] [selection]
Merge synchronous set/reset $_MUX_ cells to create $__DFFS_[NP][NP][01], to be run before
dff2dffe for SR over CE priority.
-match-init
Disallow merging synchronous set/reset that has polarity opposite of the
output wire's init attribute (if any).
\end{lstlisting}
\section{dffinit -- set INIT param on FF cells}
\label{cmd:dffinit}
\begin{lstlisting}[numbers=left,frame=single]
dffinit [options] [selection]
This pass sets an FF cell parameter to the the initial value of the net it
drives. (This is primarily used in FPGA flows.)
-ff <cell_name> <output_port> <init_param>
operate on the specified cell type. this option can be used
multiple times.
-highlow
use the string values "high" and "low" to represent a single-bit
initial value of 1 or 0. (multi-bit values are not supported in this
mode.)
-strinit <string for high> <string for low>
use string values in the command line to represent a single-bit
initial value of 1 or 0. (multi-bit values are not supported in this
mode.)
-noreinit
fail if the FF cell has already a defined initial value set in other
passes and the initial value of the net it drives is not equal to
the already defined initial value.
\end{lstlisting}
\section{dfflibmap -- technology mapping of flip-flops}
\label{cmd:dfflibmap}
\begin{lstlisting}[numbers=left,frame=single]
dfflibmap [-prepare] -liberty <file> [selection]
Map internal flip-flop cells to the flip-flop cells in the technology
library specified in the given liberty file.
This pass may add inverters as needed. Therefore it is recommended to
first run this pass and then map the logic paths to the target technology.
When called with -prepare, this command will convert the internal FF cells
to the internal cell types that best match the cells found in the given
liberty file.
\end{lstlisting}
\section{dump -- print parts of the design in ilang format}
\label{cmd:dump}
\begin{lstlisting}[numbers=left,frame=single]
dump [options] [selection]
Write the selected parts of the design to the console or specified file in
ilang format.
-m
also dump the module headers, even if only parts of a single
module is selected
-n
only dump the module headers if the entire module is selected
-o <filename>
write to the specified file.
-a <filename>
like -outfile but append instead of overwrite
\end{lstlisting}
\section{echo -- turning echoing back of commands on and off}
\label{cmd:echo}
\begin{lstlisting}[numbers=left,frame=single]
echo on
Print all commands to log before executing them.
echo off
Do not print all commands to log before executing them. (default)
\end{lstlisting}
\section{ecp5\_ffinit -- ECP5: handle FF init values}
\label{cmd:ecp5_ffinit}
\begin{lstlisting}[numbers=left,frame=single]
ecp5_ffinit [options] [selection]
Remove init values for FF output signals when equal to reset value.
If reset is not used, set the reset value to the init value, otherwise
unmap out the reset (if not an async reset).
\end{lstlisting}
\section{ecp5\_gsr -- ECP5: handle GSR}
\label{cmd:ecp5_gsr}
\begin{lstlisting}[numbers=left,frame=single]
ecp5_gsr [options] [selection]
Trim active low async resets connected to GSR and resolve GSR parameter,
if a GSR or SGSR primitive is used in the design.
If any cell has the GSR parameter set to "AUTO", this will be resolved
to "ENABLED" if a GSR primitive is present and the (* nogsr *) attribute
is not set, otherwise it will be resolved to "DISABLED".
\end{lstlisting}
\section{edgetypes -- list all types of edges in selection}
\label{cmd:edgetypes}
\begin{lstlisting}[numbers=left,frame=single]
edgetypes [options] [selection]
This command lists all unique types of 'edges' found in the selection. An 'edge'
is a 4-tuple of source and sink cell type and port name.
\end{lstlisting}
\section{efinix\_fixcarry -- Efinix: fix carry chain}
\label{cmd:efinix_fixcarry}
\begin{lstlisting}[numbers=left,frame=single]
efinix_fixcarry [options] [selection]
Add Efinix adders to fix carry chain if needed.
\end{lstlisting}
\section{efinix\_gbuf -- Efinix: insert global clock buffers}
\label{cmd:efinix_gbuf}
\begin{lstlisting}[numbers=left,frame=single]
efinix_gbuf [options] [selection]
Add Efinix global clock buffers to top module as needed.
\end{lstlisting}
\section{equiv\_add -- add a \$equiv cell}
\label{cmd:equiv_add}
\begin{lstlisting}[numbers=left,frame=single]
equiv_add [-try] gold_sig gate_sig
This command adds an $equiv cell for the specified signals.
equiv_add [-try] -cell gold_cell gate_cell
This command adds $equiv cells for the ports of the specified cells.
\end{lstlisting}
\section{equiv\_induct -- proving \$equiv cells using temporal induction}
\label{cmd:equiv_induct}
\begin{lstlisting}[numbers=left,frame=single]
equiv_induct [options] [selection]
Uses a version of temporal induction to prove $equiv cells.
Only selected $equiv cells are proven and only selected cells are used to
perform the proof.
-undef
enable modelling of undef states
-seq <N>
the max. number of time steps to be considered (default = 4)
This command is very effective in proving complex sequential circuits, when
the internal state of the circuit quickly propagates to $equiv cells.
However, this command uses a weak definition of 'equivalence': This command
proves that the two circuits will not diverge after they produce equal
outputs (observable points via $equiv) for at least <N> cycles (the <N>
specified via -seq).
Combined with simulation this is very powerful because simulation can give
you confidence that the circuits start out synced for at least <N> cycles
after reset.
\end{lstlisting}
\section{equiv\_make -- prepare a circuit for equivalence checking}
\label{cmd:equiv_make}
\begin{lstlisting}[numbers=left,frame=single]
equiv_make [options] gold_module gate_module equiv_module
This creates a module annotated with $equiv cells from two presumably
equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'
to work with the created equivalent checking module.
-inames
Also match cells and wires with $... names.
-blacklist <file>
Do not match cells or signals that match the names in the file.
-encfile <file>
Match FSM encodings using the description from the file.
See 'help fsm_recode' for details.
Note: The circuit created by this command is not a miter (with something like
a trigger output), but instead uses $equiv cells to encode the equivalence
checking problem. Use 'miter -equiv' if you want to create a miter circuit.
\end{lstlisting}
\section{equiv\_mark -- mark equivalence checking regions}
\label{cmd:equiv_mark}
\begin{lstlisting}[numbers=left,frame=single]
equiv_mark [options] [selection]
This command marks the regions in an equivalence checking module. Region 0 is
the proven part of the circuit. Regions with higher numbers are connected
unproven subcricuits. The integer attribute 'equiv_region' is set on all
wires and cells.
\end{lstlisting}
\section{equiv\_miter -- extract miter from equiv circuit}
\label{cmd:equiv_miter}
\begin{lstlisting}[numbers=left,frame=single]
equiv_miter [options] miter_module [selection]
This creates a miter module for further analysis of the selected $equiv cells.
-trigger
Create a trigger output
-cmp
Create cmp_* outputs for individual unproven $equiv cells
-assert
Create a $assert cell for each unproven $equiv cell
-undef
Create compare logic that handles undefs correctly
\end{lstlisting}
\section{equiv\_opt -- prove equivalence for optimized circuit}
\label{cmd:equiv_opt}
\begin{lstlisting}[numbers=left,frame=single]
equiv_opt [options] [command]
This command uses temporal induction to check circuit equivalence before and
after an optimization pass.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to the start of the command list, and empty to
label is synonymous to the end of the command list.
-map <filename>
expand the modules in this file before proving equivalence. this is
useful for handling architecture-specific primitives.
-blacklist <file>
Do not match cells or signals that match the names in the file
(passed to equiv_make).
-assert
produce an error if the circuits are not equivalent.
-multiclock
run clk2fflogic before equivalence checking.
-async2sync
run async2sync before equivalence checking.
-undef
enable modelling of undef states during equiv_induct.
The following commands are executed by this verification command:
run_pass:
hierarchy -auto-top
design -save preopt
[command]
design -stash postopt
prepare:
design -copy-from preopt -as gold A:top
design -copy-from postopt -as gate A:top
techmap: (only with -map)
techmap -wb -D EQUIV -autoproc -map <filename> ...
prove:
clk2fflogic (only with -multiclock)
async2sync (only with -async2sync)
equiv_make -blacklist <filename> ... gold gate equiv
equiv_induct [-undef] equiv
equiv_status [-assert] equiv
restore:
design -load preopt
\end{lstlisting}
\section{equiv\_purge -- purge equivalence checking module}
\label{cmd:equiv_purge}
\begin{lstlisting}[numbers=left,frame=single]
equiv_purge [options] [selection]
This command removes the proven part of an equivalence checking module, leaving
only the unproven segments in the design. This will also remove and add module
ports as needed.
\end{lstlisting}
\section{equiv\_remove -- remove \$equiv cells}
\label{cmd:equiv_remove}
\begin{lstlisting}[numbers=left,frame=single]
equiv_remove [options] [selection]
This command removes the selected $equiv cells. If neither -gold nor -gate is
used then only proven cells are removed.
-gold
keep gold circuit
-gate
keep gate circuit
\end{lstlisting}
\section{equiv\_simple -- try proving simple \$equiv instances}
\label{cmd:equiv_simple}
\begin{lstlisting}[numbers=left,frame=single]
equiv_simple [options] [selection]
This command tries to prove $equiv cells using a simple direct SAT approach.
-v
verbose output
-undef
enable modelling of undef states
-short
create shorter input cones that stop at shared nodes. This yields
simpler SAT problems but sometimes fails to prove equivalence.
-nogroup
disabling grouping of $equiv cells by output wire
-seq <N>
the max. number of time steps to be considered (default = 1)
\end{lstlisting}
\section{equiv\_status -- print status of equivalent checking module}
\label{cmd:equiv_status}
\begin{lstlisting}[numbers=left,frame=single]
equiv_status [options] [selection]
This command prints status information for all selected $equiv cells.
-assert
produce an error if any unproven $equiv cell is found
\end{lstlisting}
\section{equiv\_struct -- structural equivalence checking}
\label{cmd:equiv_struct}
\begin{lstlisting}[numbers=left,frame=single]
equiv_struct [options] [selection]
This command adds additional $equiv cells based on the assumption that the
gold and gate circuit are structurally equivalent. Note that this can introduce
bad $equiv cells in cases where the netlists are not structurally equivalent,
for example when analyzing circuits with cells with commutative inputs. This
command will also de-duplicate gates.
-fwd
by default this command performans forward sweeps until nothing can
be merged by forwards sweeps, then backward sweeps until forward
sweeps are effective again. with this option set only forward sweeps
are performed.
-fwonly <cell_type>
add the specified cell type to the list of cell types that are only
merged in forward sweeps and never in backward sweeps. $equiv is in
this list automatically.
-icells
by default, the internal RTL and gate cell types are ignored. add
this option to also process those cell types with this command.
-maxiter <N>
maximum number of iterations to run before aborting
\end{lstlisting}
\section{eval -- evaluate the circuit given an input}
\label{cmd:eval}
\begin{lstlisting}[numbers=left,frame=single]
eval [options] [selection]
This command evaluates the value of a signal given the value of all required
inputs.
-set <signal> <value>
set the specified signal to the specified value.
-set-undef
set all unspecified source signals to undef (x)
-table <signal>
create a truth table using the specified input signals
-show <signal>
show the value for the specified signal. if no -show option is passed
then all output ports of the current module are used.
\end{lstlisting}
\section{exec -- execute commands in the operating system shell}
\label{cmd:exec}
\begin{lstlisting}[numbers=left,frame=single]
exec [options] -- [command]
Execute a command in the operating system shell. All supplied arguments are
concatenated and passed as a command to popen(3). Whitespace is not guaranteed
to be preserved, even if quoted. stdin and stderr are not connected, while stdout is
logged unless the "-q" option is specified.
-q
Suppress stdout and stderr from subprocess
-expect-return <int>
Generate an error if popen() does not return specified value.
May only be specified once; the final specified value is controlling
if specified multiple times.
-expect-stdout <regex>
Generate an error if the specified regex does not match any line
in subprocess's stdout. May be specified multiple times.
-not-expect-stdout <regex>
Generate an error if the specified regex matches any line
in subprocess's stdout. May be specified multiple times.
Example: exec -q -expect-return 0 -- echo "bananapie" | grep "nana"
\end{lstlisting}
\section{expose -- convert internal signals to module ports}
\label{cmd:expose}
\begin{lstlisting}[numbers=left,frame=single]
expose [options] [selection]
This command exposes all selected internal signals of a module as additional
outputs.
-dff
only consider wires that are directly driven by register cell.
-cut
when exposing a wire, create an input/output pair and cut the internal
signal path at that wire.
-input
when exposing a wire, create an input port and disconnect the internal
driver.
-shared
only expose those signals that are shared among the selected modules.
this is useful for preparing modules for equivalence checking.
-evert
also turn connections to instances of other modules to additional
inputs and outputs and remove the module instances.
-evert-dff
turn flip-flops to sets of inputs and outputs.
-sep <separator>
when creating new wire/port names, the original object name is suffixed
with this separator (default: '.') and the port name or a type
designator for the exposed signal.
\end{lstlisting}
\section{extract -- find subcircuits and replace them with cells}
\label{cmd:extract}
\begin{lstlisting}[numbers=left,frame=single]
extract -map <map_file> [options] [selection]
extract -mine <out_file> [options] [selection]
This pass looks for subcircuits that are isomorphic to any of the modules
in the given map file and replaces them with instances of this modules. The
map file can be a Verilog source file (*.v) or an ilang file (*.il).
-map <map_file>
use the modules in this file as reference. This option can be used
multiple times.
-map %<design-name>
use the modules in this in-memory design as reference. This option can
be used multiple times.
-verbose
print debug output while analyzing
-constports
also find instances with constant drivers. this may be much
slower than the normal operation.
-nodefaultswaps
normally builtin port swapping rules for internal cells are used per
default. This turns that off, so e.g. 'a^b' does not match 'b^a'
when this option is used.
-compat <needle_type> <haystack_type>
Per default, the cells in the map file (needle) must have the
type as the cells in the active design (haystack). This option
can be used to register additional pairs of types that should
match. This option can be used multiple times.
-swap <needle_type> <port1>,<port2>[,...]
Register a set of swappable ports for a needle cell type.
This option can be used multiple times.
-perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]
Register a valid permutation of swappable ports for a needle
cell type. This option can be used multiple times.
-cell_attr <attribute_name>
Attributes on cells with the given name must match.
-wire_attr <attribute_name>
Attributes on wires with the given name must match.
-ignore_parameters
Do not use parameters when matching cells.
-ignore_param <cell_type> <parameter_name>
Do not use this parameter when matching cells.
This pass does not operate on modules with unprocessed processes in it.
(I.e. the 'proc' pass should be used first to convert processes to netlists.)
This pass can also be used for mining for frequent subcircuits. In this mode
the following options are to be used instead of the -map option.
-mine <out_file>
mine for frequent subcircuits and write them to the given ilang file
-mine_cells_span <min> <max>
only mine for subcircuits with the specified number of cells
default value: 3 5
-mine_min_freq <num>
only mine for subcircuits with at least the specified number of matches
default value: 10
-mine_limit_matches_per_module <num>
when calculating the number of matches for a subcircuit, don't count
more than the specified number of matches per module
-mine_max_fanout <num>
don't consider internal signals with more than <num> connections
The modules in the map file may have the attribute 'extract_order' set to an
integer value. Then this value is used to determine the order in which the pass
tries to map the modules to the design (ascending, default value is 0).
See 'help techmap' for a pass that does the opposite thing.
\end{lstlisting}
\section{extract\_counter -- Extract GreenPak4 counter cells}
\label{cmd:extract_counter}
\begin{lstlisting}[numbers=left,frame=single]
extract_counter [options] [selection]
This pass converts non-resettable or async resettable down counters to
counter cells. Use a target-specific 'techmap' map file to convert those cells
to the actual target cells.
-maxwidth N
Only extract counters up to N bits wide (default 64)
-minwidth N
Only extract counters at least N bits wide (default 2)
-allow_arst yes|no
Allow counters to have async reset (default yes)
-dir up|down|both
Look for up-counters, down-counters, or both (default down)
-pout X,Y,...
Only allow parallel output from the counter to the listed cell types
(if not specified, parallel outputs are not restricted)
\end{lstlisting}
\section{extract\_fa -- find and extract full/half adders}
\label{cmd:extract_fa}
\begin{lstlisting}[numbers=left,frame=single]
extract_fa [options] [selection]
This pass extracts full/half adders from a gate-level design.
-fa, -ha
Enable cell types (fa=full adder, ha=half adder)
All types are enabled if none of this options is used
-d <int>
Set maximum depth for extracted logic cones (default=20)
-b <int>
Set maximum breadth for extracted logic cones (default=6)
-v
Verbose output
\end{lstlisting}
\section{extract\_reduce -- converts gate chains into \$reduce\_* cells}
\label{cmd:extract_reduce}
\begin{lstlisting}[numbers=left,frame=single]
extract_reduce [options] [selection]
converts gate chains into $reduce_* cells
This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them
with their corresponding $reduce_* cells. Because this command only operates on
these cell types, it is recommended to map the design to only these cell types
using the `abc -g` command. Note that, in some cases, it may be more effective
to map the design to only $_AND_ cells, run extract_reduce, map the remaining
parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.
-allow-off-chain
Allows matching of cells that have loads outside the chain. These cells
will be replicated and folded into the $reduce_* cell, but the original
cell will remain, driving its original loads.
\end{lstlisting}
\section{extractinv -- extract explicit inverter cells for invertible cell pins}
\label{cmd:extractinv}
\begin{lstlisting}[numbers=left,frame=single]
extractinv [options] [selection]
Searches the design for all cells with invertible pins controlled by a cell
parameter (eg. IS_CLK_INVERTED on many Xilinx cells) and removes the parameter.
If the parameter was set to 1, inserts an explicit inverter cell in front of
the pin instead. Normally used for output to ISE, which does not support the
inversion parameters.
To mark a cell port as invertible, use (* invertible_pin = "param_name" *)
on the wire in the blackbox module. The parameter value should have
the same width as the port, and will be effectively XORed with it.
-inv <celltype> <portname_out>:<portname_in>
Specifies the cell type to use for the inverters and its port names.
This option is required.
\end{lstlisting}
\section{flatten -- flatten design}
\label{cmd:flatten}
\begin{lstlisting}[numbers=left,frame=single]
flatten [options] [selection]
This pass flattens the design by replacing cells by their implementation. This
pass is very similar to the 'techmap' pass. The only difference is that this
pass is using the current design as mapping library.
Cells and/or modules with the 'keep_hierarchy' attribute set will not be
flattened by this command.
-wb
Ignore the 'whitebox' attribute on cell implementations.
\end{lstlisting}
\section{flowmap -- pack LUTs with FlowMap}
\label{cmd:flowmap}
\begin{lstlisting}[numbers=left,frame=single]
flowmap [options] [selection]
This pass uses the FlowMap technology mapping algorithm to pack logic gates
into k-LUTs with optimal depth. It allows mapping any circuit elements that can
be evaluated with the `eval` pass, including cells with multiple output ports
and multi-bit input and output ports.
-maxlut k
perform technology mapping for a k-LUT architecture. if not specified,
defaults to 3.
-minlut n
only produce n-input or larger LUTs. if not specified, defaults to 1.
-cells <cell>[,<cell>,...]
map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,
$_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.
-relax
perform depth relaxation and area minimization.
-r-alpha n, -r-beta n, -r-gamma n
parameters of depth relaxation heuristic potential function.
if not specified, alpha=8, beta=2, gamma=1.
-optarea n
optimize for area by trading off at most n logic levels for fewer LUTs.
n may be zero, to optimize for area without increasing depth.
implies -relax.
-debug
dump intermediate graphs.
-debug-relax
explain decisions performed during depth relaxation.
\end{lstlisting}
\section{fmcombine -- combine two instances of a cell into one}
\label{cmd:fmcombine}
\begin{lstlisting}[numbers=left,frame=single]
fmcombine [options] module_name gold_cell gate_cell
This pass takes two cells, which are instances of the same module, and replaces
them with one instance of a special 'combined' module, that effectively
contains two copies of the original module, plus some formal properties.
This is useful for formal test benches that check what differences in behavior
a slight difference in input causes in a module.
-initeq
Insert assumptions that initially all FFs in both circuits have the
same initial values.
-anyeq
Do not duplicate $anyseq/$anyconst cells.
-fwd
Insert forward hint assumptions into the combined module.
-bwd
Insert backward hint assumptions into the combined module.
(Backward hints are logically equivalend to fordward hits, but
some solvers are faster with bwd hints, or even both -bwd and -fwd.)
-nop
Don't insert hint assumptions into the combined module.
(This should not provide any speedup over the original design, but
strangely sometimes it does.)
If none of -fwd, -bwd, and -nop is given, then -fwd is used as default.
\end{lstlisting}
\section{fminit -- set init values/sequences for formal}
\label{cmd:fminit}
\begin{lstlisting}[numbers=left,frame=single]
fminit [options] <selection>
This pass creates init constraints (for example for reset sequences) in a formal
model.
-seq <signal> <sequence>
Set sequence using comma-separated list of values, use 'z for
unconstrained bits. The last value is used for the remainder of the
trace.
-set <signal> <value>
Add constant value constraint
-posedge <signal>
-negedge <signal>
Set clock for init sequences
\end{lstlisting}
\section{freduce -- perform functional reduction}
\label{cmd:freduce}
\begin{lstlisting}[numbers=left,frame=single]
freduce [options] [selection]
This pass performs functional reduction in the circuit. I.e. if two nodes are
equivalent, they are merged to one node and one of the redundant drivers is
disconnected. A subsequent call to 'clean' will remove the redundant drivers.
-v, -vv
enable verbose or very verbose output
-inv
enable explicit handling of inverted signals
-stop <n>
stop after <n> reduction operations. this is mostly used for
debugging the freduce command itself.
-dump <prefix>
dump the design to <prefix>_<module>_<num>.il after each reduction
operation. this is mostly used for debugging the freduce command.
This pass is undef-aware, i.e. it considers don't-care values for detecting
equivalent nodes.
All selected wires are considered for rewiring. The selected cells cover the
circuit that is analyzed.
\end{lstlisting}
\section{fsm -- extract and optimize finite state machines}
\label{cmd:fsm}
\begin{lstlisting}[numbers=left,frame=single]
fsm [options] [selection]
This pass calls all the other fsm_* passes in a useful order. This performs
FSM extraction and optimization. It also calls opt_clean as needed:
fsm_detect unless got option -nodetect
fsm_extract
fsm_opt
opt_clean
fsm_opt
fsm_expand if got option -expand
opt_clean if got option -expand
fsm_opt if got option -expand
fsm_recode unless got option -norecode
fsm_info
fsm_export if got option -export
fsm_map unless got option -nomap
Options:
-expand, -norecode, -export, -nomap
enable or disable passes as indicated above
-fullexpand
call expand with -full option
-encoding type
-fm_set_fsm_file file
-encfile file
passed through to fsm_recode pass
\end{lstlisting}
\section{fsm\_detect -- finding FSMs in design}
\label{cmd:fsm_detect}
\begin{lstlisting}[numbers=left,frame=single]
fsm_detect [selection]
This pass detects finite state machines by identifying the state signal.
The state signal is then marked by setting the attribute 'fsm_encoding'
on the state signal to "auto".
Existing 'fsm_encoding' attributes are not changed by this pass.
Signals can be protected from being detected by this pass by setting the
'fsm_encoding' attribute to "none".
\end{lstlisting}
\section{fsm\_expand -- expand FSM cells by merging logic into it}
\label{cmd:fsm_expand}
\begin{lstlisting}[numbers=left,frame=single]
fsm_expand [-full] [selection]
The fsm_extract pass is conservative about the cells that belong to a finite
state machine. This pass can be used to merge additional auxiliary gates into
the finite state machine.
By default, fsm_expand is still a bit conservative regarding merging larger
word-wide cells. Call with -full to consider all cells for merging.
\end{lstlisting}
\section{fsm\_export -- exporting FSMs to KISS2 files}
\label{cmd:fsm_export}
\begin{lstlisting}[numbers=left,frame=single]
fsm_export [-noauto] [-o filename] [-origenc] [selection]
This pass creates a KISS2 file for every selected FSM. For FSMs with the
'fsm_export' attribute set, the attribute value is used as filename, otherwise
the module and cell name is used as filename. If the parameter '-o' is given,
the first exported FSM is written to the specified filename. This overwrites
the setting as specified with the 'fsm_export' attribute. All other FSMs are
exported to the default name as mentioned above.
-noauto
only export FSMs that have the 'fsm_export' attribute set
-o filename
filename of the first exported FSM
-origenc
use binary state encoding as state names instead of s0, s1, ...
\end{lstlisting}
\section{fsm\_extract -- extracting FSMs in design}
\label{cmd:fsm_extract}
\begin{lstlisting}[numbers=left,frame=single]
fsm_extract [selection]
This pass operates on all signals marked as FSM state signals using the
'fsm_encoding' attribute. It consumes the logic that creates the state signal
and uses the state signal to generate control signal and replaces it with an
FSM cell.
The generated FSM cell still generates the original state signal with its
original encoding. The 'fsm_opt' pass can be used in combination with the
'opt_clean' pass to eliminate this signal.
\end{lstlisting}
\section{fsm\_info -- print information on finite state machines}
\label{cmd:fsm_info}
\begin{lstlisting}[numbers=left,frame=single]
fsm_info [selection]
This pass dumps all internal information on FSM cells. It can be useful for
analyzing the synthesis process and is called automatically by the 'fsm'
pass so that this information is included in the synthesis log file.
\end{lstlisting}
\section{fsm\_map -- mapping FSMs to basic logic}
\label{cmd:fsm_map}
\begin{lstlisting}[numbers=left,frame=single]
fsm_map [selection]
This pass translates FSM cells to flip-flops and logic.
\end{lstlisting}
\section{fsm\_opt -- optimize finite state machines}
\label{cmd:fsm_opt}
\begin{lstlisting}[numbers=left,frame=single]
fsm_opt [selection]
This pass optimizes FSM cells. It detects which output signals are actually
not used and removes them from the FSM. This pass is usually used in
combination with the 'opt_clean' pass (see also 'help fsm').
\end{lstlisting}
\section{fsm\_recode -- recoding finite state machines}
\label{cmd:fsm_recode}
\begin{lstlisting}[numbers=left,frame=single]
fsm_recode [options] [selection]
This pass reassign the state encodings for FSM cells. At the moment only
one-hot encoding and binary encoding is supported.
-encoding <type>
specify the encoding scheme used for FSMs without the
'fsm_encoding' attribute or with the attribute set to `auto'.
-fm_set_fsm_file <file>
generate a file containing the mapping from old to new FSM encoding
in form of Synopsys Formality set_fsm_* commands.
-encfile <file>
write the mappings from old to new FSM encoding to a file in the
following format:
.fsm <module_name> <state_signal>
.map <old_bitpattern> <new_bitpattern>
\end{lstlisting}
\section{greenpak4\_dffinv -- merge greenpak4 inverters and DFF/latches}
\label{cmd:greenpak4_dffinv}
\begin{lstlisting}[numbers=left,frame=single]
greenpak4_dffinv [options] [selection]
Merge GP_INV cells with GP_DFF* and GP_DLATCH* cells.
\end{lstlisting}
\section{help -- display help messages}
\label{cmd:help}
\begin{lstlisting}[numbers=left,frame=single]
help ................ list all commands
help <command> ...... print help message for given command
help -all ........... print complete command reference
help -cells .......... list all cell types
help <celltype> ..... print help message for given cell type
help <celltype>+ .... print verilog code for given cell type
\end{lstlisting}
\section{hierarchy -- check, expand and clean up design hierarchy}
\label{cmd:hierarchy}
\begin{lstlisting}[numbers=left,frame=single]
hierarchy [-check] [-top <module>]
hierarchy -generate <cell-types> <port-decls>
In parametric designs, a module might exists in several variations with
different parameter values. This pass looks at all modules in the current
design an re-runs the language frontends for the parametric modules as
needed. It also resolves assignments to wired logic data types (wand/wor),
resolves positional module parameters, unroll array instances, and more.
-check
also check the design hierarchy. this generates an error when
an unknown module is used as cell type.
-simcheck
like -check, but also throw an error if blackbox modules are
instantiated, and throw an error if the design has no top module.
-purge_lib
by default the hierarchy command will not remove library (blackbox)
modules. use this option to also remove unused blackbox modules.
-libdir <directory>
search for files named <module_name>.v in the specified directory
for unknown modules and automatically run read_verilog for each
unknown module.
-keep_positionals
per default this pass also converts positional arguments in cells
to arguments using port names. This option disables this behavior.
-keep_portwidths
per default this pass adjusts the port width on cells that are
module instances when the width does not match the module port. This
option disables this behavior.
-nodefaults
do not resolve input port default values
-nokeep_asserts
per default this pass sets the "keep" attribute on all modules
that directly or indirectly contain one or more formal properties.
This option disables this behavior.
-top <module>
use the specified top module to build the design hierarchy. Modules
outside this tree (unused modules) are removed.
when the -top option is used, the 'top' attribute will be set on the
specified top module. otherwise a module with the 'top' attribute set
will implicitly be used as top module, if such a module exists.
-auto-top
automatically determine the top of the design hierarchy and mark it.
-chparam name value
elaborate the top module using this parameter value. Modules on which
this parameter does not exist may cause a warning message to be output.
This option can be specified multiple times to override multiple
parameters. String values must be passed in double quotes (").
In -generate mode this pass generates blackbox modules for the given cell
types (wildcards supported). For this the design is searched for cells that
match the given types and then the given port declarations are used to
determine the direction of the ports. The syntax for a port declaration is:
{i|o|io}[@<num>]:<portname>
Input ports are specified with the 'i' prefix, output ports with the 'o'
prefix and inout ports with the 'io' prefix. The optional <num> specifies
the position of the port in the parameter list (needed when instantiated
using positional arguments). When <num> is not specified, the <portname> can
also contain wildcard characters.
This pass ignores the current selection and always operates on all modules
in the current design.
\end{lstlisting}
\section{hilomap -- technology mapping of constant hi- and/or lo-drivers}
\label{cmd:hilomap}
\begin{lstlisting}[numbers=left,frame=single]
hilomap [options] [selection]
Map constants to 'tielo' and 'tiehi' driver cells.
-hicell <celltype> <portname>
Replace constant hi bits with this cell.
-locell <celltype> <portname>
Replace constant lo bits with this cell.
-singleton
Create only one hi/lo cell and connect all constant bits
to that cell. Per default a separate cell is created for
each constant bit.
\end{lstlisting}
\section{history -- show last interactive commands}
\label{cmd:history}
\begin{lstlisting}[numbers=left,frame=single]
history
This command prints all commands in the shell history buffer. This are
all commands executed in an interactive session, but not the commands
from executed scripts.
\end{lstlisting}
\section{ice40\_braminit -- iCE40: perform SB\_RAM40\_4K initialization from file}
\label{cmd:ice40_braminit}
\begin{lstlisting}[numbers=left,frame=single]
ice40_braminit
This command processes all SB_RAM40_4K blocks with a non-empty INIT_FILE
parameter and converts it into the required INIT_x attributes
\end{lstlisting}
\section{ice40\_dsp -- iCE40: map multipliers}
\label{cmd:ice40_dsp}
\begin{lstlisting}[numbers=left,frame=single]
ice40_dsp [options] [selection]
Map multipliers ($mul/SB_MAC16) and multiply-accumulate ($mul/SB_MAC16 + $add)
cells into iCE40 DSP resources.
Currently, only the 16x16 multiply mode is supported and not the 2 x 8x8 mode.
Pack input registers (A, B, {C,D}; with optional hold), pipeline registers
({F,J,K,G}, H), output registers (O -- full 32-bits or lower 16-bits only; with
optional hold), and post-adder into into the SB_MAC16 resource.
Multiply-accumulate operations using the post-adder with feedback on the {C,D}
input will be folded into the DSP. In this scenario only, resetting the
the accumulator to an arbitrary value can be inferred to use the {C,D} input.
\end{lstlisting}
\section{ice40\_ffinit -- iCE40: handle FF init values}
\label{cmd:ice40_ffinit}
\begin{lstlisting}[numbers=left,frame=single]
ice40_ffinit [options] [selection]
Remove zero init values for FF output signals. Add inverters to implement
nonzero init values.
\end{lstlisting}
\section{ice40\_ffssr -- iCE40: merge synchronous set/reset into FF cells}
\label{cmd:ice40_ffssr}
\begin{lstlisting}[numbers=left,frame=single]
ice40_ffssr [options] [selection]
Merge synchronous set/reset $_MUX_ cells into iCE40 FFs.
\end{lstlisting}
\section{ice40\_opt -- iCE40: perform simple optimizations}
\label{cmd:ice40_opt}
\begin{lstlisting}[numbers=left,frame=single]
ice40_opt [options] [selection]
This command executes the following script:
do
<ice40 specific optimizations>
opt_expr -mux_undef -undriven [-full]
opt_merge
opt_rmdff
opt_clean
while <changed design>
\end{lstlisting}
\section{ice40\_wrapcarry -- iCE40: wrap carries}
\label{cmd:ice40_wrapcarry}
\begin{lstlisting}[numbers=left,frame=single]
ice40_wrapcarry [selection]
Wrap manually instantiated SB_CARRY cells, along with their associated SB_LUT4s,
into an internal $__ICE40_CARRY_WRAPPER cell for preservation across technology
mapping.
Attributes on both cells will have their names prefixed with 'SB_CARRY.' or
'SB_LUT4.' and attached to the wrapping cell.
A (* keep *) attribute on either cell will be logically OR-ed together.
-unwrap
unwrap $__ICE40_CARRY_WRAPPER cells back into SB_CARRYs and SB_LUT4s,
including restoring their attributes.
\end{lstlisting}
\section{insbuf -- insert buffer cells for connected wires}
\label{cmd:insbuf}
\begin{lstlisting}[numbers=left,frame=single]
insbuf [options] [selection]
Insert buffer cells into the design for directly connected wires.
-buf <celltype> <in-portname> <out-portname>
Use the given cell type instead of $_BUF_. (Notice that the next
call to "clean" will remove all $_BUF_ in the design.)
\end{lstlisting}
\section{iopadmap -- technology mapping of i/o pads (or buffers)}
\label{cmd:iopadmap}
\begin{lstlisting}[numbers=left,frame=single]
iopadmap [options] [selection]
Map module inputs/outputs to PAD cells from a library. This pass
can only map to very simple PAD cells. Use 'techmap' to further map
the resulting cells to more sophisticated PAD cells.
-inpad <celltype> <portname>[:<portname>]
Map module input ports to the given cell type with the
given output port name. if a 2nd portname is given, the
signal is passed through the pad call, using the 2nd
portname as the port facing the module port.
-outpad <celltype> <portname>[:<portname>]
-inoutpad <celltype> <portname>[:<portname>]
Similar to -inpad, but for output and inout ports.
-toutpad <celltype> <portname>:<portname>[:<portname>]
Merges $_TBUF_ cells into the output pad cell. This takes precedence
over the other -outpad cell. The first portname is the enable input
of the tristate driver.
-tinoutpad <celltype> <portname>:<portname>:<portname>[:<portname>]
Merges $_TBUF_ cells into the inout pad cell. This takes precedence
over the other -inoutpad cell. The first portname is the enable input
of the tristate driver and the 2nd portname is the internal output
buffering the external signal.
-ignore <celltype> <portname>[:<portname>]*
Skips mapping inputs/outputs that are already connected to given
ports of the given cell. Can be used multiple times. This is in
addition to the cells specified as mapping targets.
-widthparam <param_name>
Use the specified parameter name to set the port width.
-nameparam <param_name>
Use the specified parameter to set the port name.
-bits
create individual bit-wide buffers even for ports that
are wider. (the default behavior is to create word-wide
buffers using -widthparam to set the word size on the cell.)
Tristate PADS (-toutpad, -tinoutpad) always operate in -bits mode.
\end{lstlisting}
\section{json -- write design in JSON format}
\label{cmd:json}
\begin{lstlisting}[numbers=left,frame=single]
json [options] [selection]
Write a JSON netlist of all selected objects.
-o <filename>
write to the specified file.
-aig
also include AIG models for the different gate types
-compat-int
emit 32-bit or smaller fully-defined parameter values directly
as JSON numbers (for compatibility with old parsers)
See 'help write_json' for a description of the JSON format used.
\end{lstlisting}
\section{log -- print text and log files}
\label{cmd:log}
\begin{lstlisting}[numbers=left,frame=single]
log string
Print the given string to the screen and/or the log file. This is useful for TCL
scripts, because the TCL command "puts" only goes to stdout but not to
logfiles.
-stdout
Print the output to stdout too. This is useful when all Yosys is executed
with a script and the -q (quiet operation) argument to notify the user.
-stderr
Print the output to stderr too.
-nolog
Don't use the internal log() command. Use either -stdout or -stderr,
otherwise no output will be generated at all.
-n
do not append a newline
\end{lstlisting}
\section{logger -- set logger properties}
\label{cmd:logger}
\begin{lstlisting}[numbers=left,frame=single]
logger [options]
This command sets global logger properties, also available using command line
options.
-[no]time
enable/disable display of timestamp in log output.
-[no]stderr
enable/disable logging errors to stderr.
-warn regex
print a warning for all log messages matching the regex.
-nowarn regex
if a warning message matches the regex, it is printed as regular
message instead.
-werror regex
if a warning message matches the regex, it is printed as error
message instead and the tool terminates with a nonzero return code.
-[no]debug
globally enable/disable debug log messages.
-experimental <feature>
do not print warnings for the specified experimental feature
-expect <type> <regex> <expected_count>
expect log,warning or error to appear. In case of error return code is 0.
-expect-no-warnings
gives error in case there is at least one warning that is not expected.
\end{lstlisting}
\section{ls -- list modules or objects in modules}
\label{cmd:ls}
\begin{lstlisting}[numbers=left,frame=single]
ls [selection]
When no active module is selected, this prints a list of modules.
When an active module is selected, this prints a list of objects in the module.
\end{lstlisting}
\section{ltp -- print longest topological path}
\label{cmd:ltp}
\begin{lstlisting}[numbers=left,frame=single]
ltp [options] [selection]
This command prints the longest topological path in the design. (Only considers
paths within a single module, so the design must be flattened.)
-noff
automatically exclude FF cell types
\end{lstlisting}
\section{lut2mux -- convert \$lut to \$\_MUX\_}
\label{cmd:lut2mux}
\begin{lstlisting}[numbers=left,frame=single]
lut2mux [options] [selection]
This pass converts $lut cells to $_MUX_ gates.
\end{lstlisting}
\section{maccmap -- mapping macc cells}
\label{cmd:maccmap}
\begin{lstlisting}[numbers=left,frame=single]
maccmap [-unmap] [selection]
This pass maps $macc cells to yosys $fa and $alu cells. When the -unmap option
is used then the $macc cell is mapped to $add, $sub, etc. cells instead.
\end{lstlisting}
\section{memory -- translate memories to basic cells}
\label{cmd:memory}
\begin{lstlisting}[numbers=left,frame=single]
memory [-nomap] [-nordff] [-memx] [-bram <bram_rules>] [selection]
This pass calls all the other memory_* passes in a useful order:
opt_mem
memory_dff [-nordff] (-memx implies -nordff)
opt_clean
memory_share
opt_clean
memory_memx (when called with -memx)
memory_collect
memory_bram -rules <bram_rules> (when called with -bram)
memory_map (skipped if called with -nomap)
This converts memories to word-wide DFFs and address decoders
or multiport memory blocks if called with the -nomap option.
\end{lstlisting}
\section{memory\_bram -- map memories to block rams}
\label{cmd:memory_bram}
\begin{lstlisting}[numbers=left,frame=single]
memory_bram -rules <rule_file> [selection]
This pass converts the multi-port $mem memory cells into block ram instances.
The given rules file describes the available resources and how they should be
used.
The rules file contains configuration options, a set of block ram description
and a sequence of match rules.
The option 'attr_icase' configures how attribute values are matched. The value 0
means case-sensitive, 1 means case-insensitive.
A block ram description looks like this:
bram RAMB1024X32 # name of BRAM cell
init 1 # set to '1' if BRAM can be initialized
abits 10 # number of address bits
dbits 32 # number of data bits
groups 2 # number of port groups
ports 1 1 # number of ports in each group
wrmode 1 0 # set to '1' if this groups is write ports
enable 4 1 # number of enable bits
transp 0 2 # transparent (for read ports)
clocks 1 2 # clock configuration
clkpol 2 2 # clock polarity configuration
endbram
For the option 'transp' the value 0 means non-transparent, 1 means transparent
and a value greater than 1 means configurable. All groups with the same
value greater than 1 share the same configuration bit.
For the option 'clocks' the value 0 means non-clocked, and a value greater
than 0 means clocked. All groups with the same value share the same clock
signal.
For the option 'clkpol' the value 0 means negative edge, 1 means positive edge
and a value greater than 1 means configurable. All groups with the same value
greater than 1 share the same configuration bit.
Using the same bram name in different bram blocks will create different variants
of the bram. Verilog configuration parameters for the bram are created as needed.
It is also possible to create variants by repeating statements in the bram block
and appending '@<label>' to the individual statements.
A match rule looks like this:
match RAMB1024X32
max waste 16384 # only use this bram if <= 16k ram bits are unused
min efficiency 80 # only use this bram if efficiency is at least 80%
endmatch
It is possible to match against the following values with min/max rules:
words ........ number of words in memory in design
abits ........ number of address bits on memory in design
dbits ........ number of data bits on memory in design
wports ....... number of write ports on memory in design
rports ....... number of read ports on memory in design
ports ........ number of ports on memory in design
bits ......... number of bits in memory in design
dups .......... number of duplications for more read ports
awaste ....... number of unused address slots for this match
dwaste ....... number of unused data bits for this match
bwaste ....... number of unused bram bits for this match
waste ........ total number of unused bram bits (bwaste*dups)
efficiency ... total percentage of used and non-duplicated bits
acells ....... number of cells in 'address-direction'
dcells ....... number of cells in 'data-direction'
cells ........ total number of cells (acells*dcells*dups)
A match containing the command 'attribute' followed by a list of space
separated 'name[=string_value]' values requires that the memory contains any
one of the given attribute name and string values (where specified), or name
and integer 1 value (if no string_value given, since Verilog will interpret
'(* attr *)' as '(* attr=1 *)').
A name prefixed with '!' indicates that the attribute must not exist.
The interface for the created bram instances is derived from the bram
description. Use 'techmap' to convert the created bram instances into
instances of the actual bram cells of your target architecture.
A match containing the command 'or_next_if_better' is only used if it
has a higher efficiency than the next match (and the one after that if
the next also has 'or_next_if_better' set, and so forth).
A match containing the command 'make_transp' will add external circuitry
to simulate 'transparent read', if necessary.
A match containing the command 'make_outreg' will add external flip-flops
to implement synchronous read ports, if necessary.
A match containing the command 'shuffle_enable A' will re-organize
the data bits to accommodate the enable pattern of port A.
\end{lstlisting}
\section{memory\_collect -- creating multi-port memory cells}
\label{cmd:memory_collect}
\begin{lstlisting}[numbers=left,frame=single]
memory_collect [selection]
This pass collects memories and memory ports and creates generic multiport
memory cells.
\end{lstlisting}
\section{memory\_dff -- merge input/output DFFs into memories}
\label{cmd:memory_dff}
\begin{lstlisting}[numbers=left,frame=single]
memory_dff [options] [selection]
This pass detects DFFs at memory ports and merges them into the memory port.
I.e. it consumes an asynchronous memory port and the flip-flops at its
interface and yields a synchronous memory port.
-nordfff
do not merge registers on read ports
\end{lstlisting}
\section{memory\_map -- translate multiport memories to basic cells}
\label{cmd:memory_map}
\begin{lstlisting}[numbers=left,frame=single]
memory_map [options] [selection]
This pass converts multiport memory cells as generated by the memory_collect
pass to word-wide DFFs and address decoders.
-attr !<name>
do not map memories that have attribute <name> set.
-attr <name>[=<value>]
for memories that have attribute <name> set, only map them if its value
is a string <value> (if specified), or an integer 1 (otherwise). if this
option is specified multiple times, map the memory if the attribute is
to any of the values.
-iattr
for -attr, ignore case of <value>.
\end{lstlisting}
\section{memory\_memx -- emulate vlog sim behavior for mem ports}
\label{cmd:memory_memx}
\begin{lstlisting}[numbers=left,frame=single]
memory_memx [selection]
This pass adds additional circuitry that emulates the Verilog simulation
behavior for out-of-bounds memory reads and writes.
\end{lstlisting}
\section{memory\_nordff -- extract read port FFs from memories}
\label{cmd:memory_nordff}
\begin{lstlisting}[numbers=left,frame=single]
memory_nordff [options] [selection]
This pass extracts FFs from memory read ports. This results in a netlist
similar to what one would get from calling memory_dff with -nordff.
\end{lstlisting}
\section{memory\_share -- consolidate memory ports}
\label{cmd:memory_share}
\begin{lstlisting}[numbers=left,frame=single]
memory_share [selection]
This pass merges share-able memory ports into single memory ports.
The following methods are used to consolidate the number of memory ports:
- When write ports are connected to async read ports accessing the same
address, then this feedback path is converted to a write port with
byte/part enable signals.
- When multiple write ports access the same address then this is converted
to a single write port with a more complex data and/or enable logic path.
- When multiple write ports are never accessed at the same time (a SAT
solver is used to determine this), then the ports are merged into a single
write port.
Note that in addition to the algorithms implemented in this pass, the $memrd
and $memwr cells are also subject to generic resource sharing passes (and other
optimizations) such as "share" and "opt_merge".
\end{lstlisting}
\section{memory\_unpack -- unpack multi-port memory cells}
\label{cmd:memory_unpack}
\begin{lstlisting}[numbers=left,frame=single]
memory_unpack [selection]
This pass converts the multi-port $mem memory cells into individual $memrd and
$memwr cells. It is the counterpart to the memory_collect pass.
\end{lstlisting}
\section{miter -- automatically create a miter circuit}
\label{cmd:miter}
\begin{lstlisting}[numbers=left,frame=single]
miter -equiv [options] gold_name gate_name miter_name
Creates a miter circuit for equivalence checking. The gold- and gate- modules
must have the same interfaces. The miter circuit will have all inputs of the
two source modules, prefixed with 'in_'. The miter circuit has a 'trigger'
output that goes high if an output mismatch between the two source modules is
detected.
-ignore_gold_x
a undef (x) bit in the gold module output will match any value in
the gate module output.
-make_outputs
also route the gold- and gate-outputs to 'gold_*' and 'gate_*' outputs
on the miter circuit.
-make_outcmp
also create a cmp_* output for each gold/gate output pair.
-make_assert
also create an 'assert' cell that checks if trigger is always low.
-flatten
call 'flatten -wb; opt_expr -keepdc -undriven;;' on the miter circuit.
miter -assert [options] module [miter_name]
Creates a miter circuit for property checking. All input ports are kept,
output ports are discarded. An additional output 'trigger' is created that
goes high when an assert is violated. Without a miter_name, the existing
module is modified.
-make_outputs
keep module output ports.
-flatten
call 'flatten -wb; opt_expr -keepdc -undriven;;' on the miter circuit.
\end{lstlisting}
\section{mutate -- generate or apply design mutations}
\label{cmd:mutate}
\begin{lstlisting}[numbers=left,frame=single]
mutate -list N [options] [selection]
Create a list of N mutations using an even sampling.
-o filename
Write list to this file instead of console output
-s filename
Write a list of all src tags found in the design to the specified file
-seed N
RNG seed for selecting mutations
-none
Include a "none" mutation in the output
-ctrl name width value
Add -ctrl options to the output. Use 'value' for first mutation, then
simply count up from there.
-mode name
-module name
-cell name
-port name
-portbit int
-ctrlbit int
-wire name
-wirebit int
-src string
Filter list of mutation candidates to those matching
the given parameters.
-cfg option int
Set a configuration option. Options available:
weight_pq_w weight_pq_b weight_pq_c weight_pq_s
weight_pq_mw weight_pq_mb weight_pq_mc weight_pq_ms
weight_cover pick_cover_prcnt
mutate -mode MODE [options]
Apply the given mutation.
-ctrl name width value
Add a control signal with the given name and width. The mutation is
activated if the control signal equals the given value.
-module name
-cell name
-port name
-portbit int
-ctrlbit int
Mutation parameters, as generated by 'mutate -list N'.
-wire name
-wirebit int
-src string
Ignored. (They are generated by -list for documentation purposes.)
\end{lstlisting}
\section{muxcover -- cover trees of MUX cells with wider MUXes}
\label{cmd:muxcover}
\begin{lstlisting}[numbers=left,frame=single]
muxcover [options] [selection]
Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells
-mux4[=cost], -mux8[=cost], -mux16[=cost]
Cover $_MUX_ trees using the specified types of MUXes (with optional
integer costs). If none of these options are given, the effect is the
same as if all of them are.
Default costs: $_MUX4_ = 220, $_MUX8_ = 460,
$_MUX16_ = 940
-mux2=cost
Use the specified cost for $_MUX_ cells when making covering decisions.
Default cost: $_MUX_ = 100
-dmux=cost
Use the specified cost for $_MUX_ cells used in decoders.
Default cost: 90
-nodecode
Do not insert decoder logic. This reduces the number of possible
substitutions, but guarantees that the resulting circuit is not
less efficient than the original circuit.
-nopartial
Do not consider mappings that use $_MUX<N>_ to select from less
than <N> different signals.
\end{lstlisting}
\section{muxpack -- \$mux/\$pmux cascades to \$pmux}
\label{cmd:muxpack}
\begin{lstlisting}[numbers=left,frame=single]
muxpack [selection]
This pass converts cascaded chains of $pmux cells (e.g. those create from case
constructs) and $mux cells (e.g. those created by if-else constructs) into
$pmux cells.
This optimisation is conservative --- it will only pack $mux or $pmux cells
whose select lines are driven by '$eq' cells with other such cells if it can be
certain that their select inputs are mutually exclusive.
\end{lstlisting}
\section{nlutmap -- map to LUTs of different sizes}
\label{cmd:nlutmap}
\begin{lstlisting}[numbers=left,frame=single]
nlutmap [options] [selection]
This pass uses successive calls to 'abc' to map to an architecture. That
provides a small number of differently sized LUTs.
-luts N_1,N_2,N_3,...
The number of LUTs with 1, 2, 3, ... inputs that are
available in the target architecture.
-assert
Create an error if not all logic can be mapped
Excess logic that does not fit into the specified LUTs is mapped back
to generic logic gates ($_AND_, etc.).
\end{lstlisting}
\section{onehot -- optimize \$eq cells for onehot signals}
\label{cmd:onehot}
\begin{lstlisting}[numbers=left,frame=single]
onehot [options] [selection]
This pass optimizes $eq cells that compare one-hot signals against constants
-v, -vv
verbose output
\end{lstlisting}
\section{opt -- perform simple optimizations}
\label{cmd:opt}
\begin{lstlisting}[numbers=left,frame=single]
opt [options] [selection]
This pass calls all the other opt_* passes in a useful order. This performs
a series of trivial optimizations and cleanups. This pass executes the other
passes in the following order:
opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
opt_merge [-share_all] -nomux
do
opt_muxtree
opt_reduce [-fine] [-full]
opt_merge [-share_all]
opt_share (-full only)
opt_rmdff [-keepdc] [-sat]
opt_clean [-purge]
opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
while <changed design>
When called with -fast the following script is used instead:
do
opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
opt_merge [-share_all]
opt_rmdff [-keepdc] [-sat]
opt_clean [-purge]
while <changed design in opt_rmdff>
Note: Options in square brackets (such as [-keepdc]) are passed through to
the opt_* commands when given to 'opt'.
\end{lstlisting}
\section{opt\_clean -- remove unused cells and wires}
\label{cmd:opt_clean}
\begin{lstlisting}[numbers=left,frame=single]
opt_clean [options] [selection]
This pass identifies wires and cells that are unused and removes them. Other
passes often remove cells but leave the wires in the design or reconnect the
wires but leave the old cells in the design. This pass can be used to clean up
after the passes that do the actual work.
This pass only operates on completely selected modules without processes.
-purge
also remove internal nets if they have a public name
\end{lstlisting}
\section{opt\_demorgan -- Optimize reductions with DeMorgan equivalents}
\label{cmd:opt_demorgan}
\begin{lstlisting}[numbers=left,frame=single]
opt_demorgan [selection]
This pass pushes inverters through $reduce_* cells if this will reduce the
overall gate count of the circuit
\end{lstlisting}
\section{opt\_expr -- perform const folding and simple expression rewriting}
\label{cmd:opt_expr}
\begin{lstlisting}[numbers=left,frame=single]
opt_expr [options] [selection]
This pass performs const folding on internal cell types with constant inputs.
It also performs some simple expression rewriting.
-mux_undef
remove 'undef' inputs from $mux, $pmux and $_MUX_ cells
-mux_bool
replace $mux cells with inverters or buffers when possible
-undriven
replace undriven nets with undef (x) constants
-clkinv
optimize clock inverters by changing FF types
-fine
perform fine-grain optimizations
-full
alias for -mux_undef -mux_bool -undriven -fine
-keepdc
some optimizations change the behavior of the circuit with respect to
don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
all result bits to be set to x. this behavior changes when 'a+0' is
replaced by 'a'. the -keepdc option disables all such optimizations.
\end{lstlisting}
\section{opt\_lut -- optimize LUT cells}
\label{cmd:opt_lut}
\begin{lstlisting}[numbers=left,frame=single]
opt_lut [options] [selection]
This pass combines cascaded $lut cells with unused inputs.
-dlogic <type>:<cell-port>=<LUT-input>[:<cell-port>=<LUT-input>...]
preserve connections to dedicated logic cell <type> that has ports
<cell-port> connected to LUT inputs <LUT-input>. this includes
the case where both LUT and dedicated logic input are connected to
the same constant.
-limit N
only perform the first N combines, then stop. useful for debugging.
\end{lstlisting}
\section{opt\_lut\_ins -- discard unused LUT inputs}
\label{cmd:opt_lut_ins}
\begin{lstlisting}[numbers=left,frame=single]
opt_lut_ins [options] [selection]
This pass removes unused inputs from LUT cells (that is, inputs that can not
influence the output signal given this LUT's value). While such LUTs cannot
be directly emitted by ABC, they can be a result of various post-ABC
transformations, such as mapping wide LUTs (not all sub-LUTs will use the
full set of inputs) or optimizations such as xilinx_dffopt.
-tech <technology>
Instead of generic $lut cells, operate on LUT cells specific
to the given technology. Valid values are: xilinx, ecp5, gowin.
\end{lstlisting}
\section{opt\_mem -- optimize memories}
\label{cmd:opt_mem}
\begin{lstlisting}[numbers=left,frame=single]
opt_mem [options] [selection]
This pass performs various optimizations on memories in the design.
\end{lstlisting}
\section{opt\_merge -- consolidate identical cells}
\label{cmd:opt_merge}
\begin{lstlisting}[numbers=left,frame=single]
opt_merge [options] [selection]
This pass identifies cells with identical type and input signals. Such cells
are then merged to one cell.
-nomux
Do not merge MUX cells.
-share_all
Operate on all cell types, not just built-in types.
\end{lstlisting}
\section{opt\_muxtree -- eliminate dead trees in multiplexer trees}
\label{cmd:opt_muxtree}
\begin{lstlisting}[numbers=left,frame=single]
opt_muxtree [selection]
This pass analyzes the control signals for the multiplexer trees in the design
and identifies inputs that can never be active. It then removes this dead
branches from the multiplexer trees.
This pass only operates on completely selected modules without processes.
\end{lstlisting}
\section{opt\_reduce -- simplify large MUXes and AND/OR gates}
\label{cmd:opt_reduce}
\begin{lstlisting}[numbers=left,frame=single]
opt_reduce [options] [selection]
This pass performs two interlinked optimizations:
1. it consolidates trees of large AND gates or OR gates and eliminates
duplicated inputs.
2. it identifies duplicated inputs to MUXes and replaces them with a single
input with the original control signals OR'ed together.
-fine
perform fine-grain optimizations
-full
alias for -fine
\end{lstlisting}
\section{opt\_rmdff -- remove DFFs with constant inputs}
\label{cmd:opt_rmdff}
\begin{lstlisting}[numbers=left,frame=single]
opt_rmdff [-keepdc] [-sat] [selection]
This pass identifies flip-flops with constant inputs and replaces them with
a constant driver.
-sat
additionally invoke SAT solver to detect and remove flip-flops (with
non-constant inputs) that can also be replaced with a constant driver
\end{lstlisting}
\section{opt\_share -- merge mutually exclusive cells of the same type that share an input signal}
\label{cmd:opt_share}
\begin{lstlisting}[numbers=left,frame=single]
opt_share [selection]
This pass identifies mutually exclusive cells of the same type that:
(a) share an input signal,
(b) drive the same $mux, $_MUX_, or $pmux multiplexing cell,
allowing the cell to be merged and the multiplexer to be moved from
multiplexing its output to multiplexing the non-shared input signals.
\end{lstlisting}
\section{paramap -- renaming cell parameters}
\label{cmd:paramap}
\begin{lstlisting}[numbers=left,frame=single]
paramap [options] [selection]
This command renames cell parameters and/or maps key/value pairs to
other key/value pairs.
-tocase <name>
Match attribute names case-insensitively and set it to the specified
name.
-rename <old_name> <new_name>
Rename attributes as specified
-map <old_name>=<old_value> <new_name>=<new_value>
Map key/value pairs as indicated.
-imap <old_name>=<old_value> <new_name>=<new_value>
Like -map, but use case-insensitive match for <old_value> when
it is a string value.
-remove <name>=<value>
Remove attributes matching this pattern.
For example, mapping Diamond-style ECP5 "init" attributes to Yosys-style:
paramap -tocase INIT t:LUT4
\end{lstlisting}
\section{peepopt -- collection of peephole optimizers}
\label{cmd:peepopt}
\begin{lstlisting}[numbers=left,frame=single]
peepopt [options] [selection]
This pass applies a collection of peephole optimizers to the current design.
\end{lstlisting}
\section{plugin -- load and list loaded plugins}
\label{cmd:plugin}
\begin{lstlisting}[numbers=left,frame=single]
plugin [options]
Load and list loaded plugins.
-i <plugin_filename>
Load (install) the specified plugin.
-a <alias_name>
Register the specified alias name for the loaded plugin
-l
List loaded plugins
\end{lstlisting}
\section{pmux2shiftx -- transform \$pmux cells to \$shiftx cells}
\label{cmd:pmux2shiftx}
\begin{lstlisting}[numbers=left,frame=single]
pmux2shiftx [options] [selection]
This pass transforms $pmux cells to $shiftx cells.
-v, -vv
verbose output
-min_density <percentage>
specifies the minimum density for the shifter
default: 50
-min_choices <int>
specified the minimum number of choices for a control signal
default: 3
-onehot ignore|pmux|shiftx
select strategy for one-hot encoded control signals
default: pmux
-norange
disable $sub inference for "range decoders"
\end{lstlisting}
\section{pmuxtree -- transform \$pmux cells to trees of \$mux cells}
\label{cmd:pmuxtree}
\begin{lstlisting}[numbers=left,frame=single]
pmuxtree [selection]
This pass transforms $pmux cells to trees of $mux cells.
\end{lstlisting}
\section{portlist -- list (top-level) ports}
\label{cmd:portlist}
\begin{lstlisting}[numbers=left,frame=single]
portlist [options] [selection]
This command lists all module ports found in the selected modules.
If no selection is provided then it lists the ports on the top module.
-m
print verilog blackbox module definitions instead of port lists
\end{lstlisting}
\section{prep -- generic synthesis script}
\label{cmd:prep}
\begin{lstlisting}[numbers=left,frame=single]
prep [options]
This command runs a conservative RTL synthesis. A typical application for this
is the preparation stage of a verification flow. This command does not operate
on partly selected designs.
-top <module>
use the specified module as top module (default='top')
-auto-top
automatically determine the top of the design hierarchy
-flatten
flatten the design before synthesis. this will pass '-auto-top' to
'hierarchy' if no top module is specified.
-ifx
passed to 'proc'. uses verilog simulation behavior for verilog if/case
undef handling. this also prevents 'wreduce' from being run.
-memx
simulate verilog simulation behavior for out-of-bounds memory accesses
using the 'memory_memx' pass.
-nomem
do not run any of the memory_* passes
-rdff
do not pass -nordff to 'memory_dff'. This enables merging of FFs into
memory read ports.
-nokeepdc
do not call opt_* with -keepdc
-run <from_label>[:<to_label>]
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
The following commands are executed by this synthesis command:
begin:
hierarchy -check [-top <top> | -auto-top]
coarse:
proc [-ifx]
flatten (if -flatten)
opt_expr -keepdc
opt_clean
check
opt -keepdc
wreduce -keepdc [-memx]
memory_dff [-nordff]
memory_memx (if -memx)
opt_clean
memory_collect
opt -keepdc -fast
check:
stat
check
\end{lstlisting}
\section{proc -- translate processes to netlists}
\label{cmd:proc}
\begin{lstlisting}[numbers=left,frame=single]
proc [options] [selection]
This pass calls all the other proc_* passes in the most common order.
proc_clean
proc_rmdead
proc_prune
proc_init
proc_arst
proc_mux
proc_dlatch
proc_dff
proc_clean
This replaces the processes in the design with multiplexers,
flip-flops and latches.
The following options are supported:
-global_arst [!]<netname>
This option is passed through to proc_arst.
-ifx
This option is passed through to proc_mux. proc_rmdead is not
executed in -ifx mode.
\end{lstlisting}
\section{proc\_arst -- detect asynchronous resets}
\label{cmd:proc_arst}
\begin{lstlisting}[numbers=left,frame=single]
proc_arst [-global_arst [!]<netname>] [selection]
This pass identifies asynchronous resets in the processes and converts them
to a different internal representation that is suitable for generating
flip-flop cells with asynchronous resets.
-global_arst [!]<netname>
In modules that have a net with the given name, use this net as async
reset for registers that have been assign initial values in their
declaration ('reg foobar = constant_value;'). Use the '!' modifier for
active low reset signals. Note: the frontend stores the default value
in the 'init' attribute on the net.
\end{lstlisting}
\section{proc\_clean -- remove empty parts of processes}
\label{cmd:proc_clean}
\begin{lstlisting}[numbers=left,frame=single]
proc_clean [options] [selection]
-quiet
do not print any messages.
This pass removes empty parts of processes and ultimately removes a process
if it contains only empty structures.
\end{lstlisting}
\section{proc\_dff -- extract flip-flops from processes}
\label{cmd:proc_dff}
\begin{lstlisting}[numbers=left,frame=single]
proc_dff [selection]
This pass identifies flip-flops in the processes and converts them to
d-type flip-flop cells.
\end{lstlisting}
\section{proc\_dlatch -- extract latches from processes}
\label{cmd:proc_dlatch}
\begin{lstlisting}[numbers=left,frame=single]
proc_dlatch [selection]
This pass identifies latches in the processes and converts them to
d-type latches.
\end{lstlisting}
\section{proc\_init -- convert initial block to init attributes}
\label{cmd:proc_init}
\begin{lstlisting}[numbers=left,frame=single]
proc_init [selection]
This pass extracts the 'init' actions from processes (generated from Verilog
'initial' blocks) and sets the initial value to the 'init' attribute on the
respective wire.
\end{lstlisting}
\section{proc\_mux -- convert decision trees to multiplexers}
\label{cmd:proc_mux}
\begin{lstlisting}[numbers=left,frame=single]
proc_mux [options] [selection]
This pass converts the decision trees in processes (originating from if-else
and case statements) to trees of multiplexer cells.
-ifx
Use Verilog simulation behavior with respect to undef values in
'case' expressions and 'if' conditions.
\end{lstlisting}
\section{proc\_prune -- remove redundant assignments}
\label{cmd:proc_prune}
\begin{lstlisting}[numbers=left,frame=single]
proc_prune [selection]
This pass identifies assignments in processes that are always overwritten by
a later assignment to the same signal and removes them.
\end{lstlisting}
\section{proc\_rmdead -- eliminate dead trees in decision trees}
\label{cmd:proc_rmdead}
\begin{lstlisting}[numbers=left,frame=single]
proc_rmdead [selection]
This pass identifies unreachable branches in decision trees and removes them.
\end{lstlisting}
\section{qwp -- quadratic wirelength placer}
\label{cmd:qwp}
\begin{lstlisting}[numbers=left,frame=single]
qwp [options] [selection]
This command runs quadratic wirelength placement on the selected modules and
annotates the cells in the design with 'qwp_position' attributes.
-ltr
Add left-to-right constraints: constrain all inputs on the left border
outputs to the right border.
-alpha
Add constraints for inputs/outputs to be placed in alphanumerical
order along the y-axis (top-to-bottom).
-grid N
Number of grid divisions in x- and y-direction. (default=16)
-dump <html_file_name>
Dump a protocol of the placement algorithm to the html file.
-v
Verbose solver output for profiling or debugging
Note: This implementation of a quadratic wirelength placer uses exact
dense matrix operations. It is only a toy-placer for small circuits.
\end{lstlisting}
\section{read -- load HDL designs}
\label{cmd:read}
\begin{lstlisting}[numbers=left,frame=single]
read {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv|-formal} <verilog-file>..
Load the specified Verilog/SystemVerilog files. (Full SystemVerilog support
is only available via Verific.)
Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.
read {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl} <vhdl-file>..
Load the specified VHDL files. (Requires Verific.)
read -define <macro>[=<value>]..
Set global Verilog/SystemVerilog defines.
read -undef <macro>..
Unset global Verilog/SystemVerilog defines.
read -incdir <directory>
Add directory to global Verilog/SystemVerilog include directories.
read -verific
read -noverific
Subsequent calls to 'read' will either use or not use Verific. Calling 'read'
with -verific will result in an error on Yosys binaries that are built without
Verific support. The default is to use Verific if it is available.
\end{lstlisting}
\section{read\_aiger -- read AIGER file}
\label{cmd:read_aiger}
\begin{lstlisting}[numbers=left,frame=single]
read_aiger [options] [filename]
Load module from an AIGER file into the current design.
-module_name <module_name>
name of module to be created (default: <filename>)
-clk_name <wire_name>
if specified, AIGER latches to be transformed into $_DFF_P_ cells
clocked by wire of this name. otherwise, $_FF_ cells will be used
-map <filename>
read file with port and latch symbols
-wideports
merge ports that match the pattern 'name[int]' into a single
multi-bit port 'name'
-xaiger
read XAIGER extensions
\end{lstlisting}
\section{read\_blif -- read BLIF file}
\label{cmd:read_blif}
\begin{lstlisting}[numbers=left,frame=single]
read_blif [options] [filename]
Load modules from a BLIF file into the current design.
-sop
Create $sop cells instead of $lut cells
-wideports
Merge ports that match the pattern 'name[int]' into a single
multi-bit port 'name'.
\end{lstlisting}
\section{read\_ilang -- read modules from ilang file}
\label{cmd:read_ilang}
\begin{lstlisting}[numbers=left,frame=single]
read_ilang [filename]
Load modules from an ilang file to the current design. (ilang is a text
representation of a design in yosys's internal format.)
-nooverwrite
ignore re-definitions of modules. (the default behavior is to
create an error message if the existing module is not a blackbox
module, and overwrite the existing module if it is a blackbox module.)
-overwrite
overwrite existing modules with the same name
-lib
only create empty blackbox modules
\end{lstlisting}
\section{read\_json -- read JSON file}
\label{cmd:read_json}
\begin{lstlisting}[numbers=left,frame=single]
read_json [filename]
Load modules from a JSON file into the current design See "help write_json"
for a description of the file format.
\end{lstlisting}
\section{read\_liberty -- read cells from liberty file}
\label{cmd:read_liberty}
\begin{lstlisting}[numbers=left,frame=single]
read_liberty [filename]
Read cells from liberty file as modules into current design.
-lib
only create empty blackbox modules
-nooverwrite
ignore re-definitions of modules. (the default behavior is to
create an error message if the existing module is not a blackbox
module, and overwrite the existing module if it is a blackbox module.)
-overwrite
overwrite existing modules with the same name
-ignore_miss_func
ignore cells with missing function specification of outputs
-ignore_miss_dir
ignore cells with a missing or invalid direction
specification on a pin
-ignore_miss_data_latch
ignore latches with missing data and/or enable pins
-setattr <attribute_name>
set the specified attribute (to the value 1) on all loaded modules
\end{lstlisting}
\section{read\_verilog -- read modules from Verilog file}
\label{cmd:read_verilog}
\begin{lstlisting}[numbers=left,frame=single]
read_verilog [options] [filename]
Load modules from a Verilog file to the current design. A large subset of
Verilog-2005 is supported.
-sv
enable support for SystemVerilog features. (only a small subset
of SystemVerilog is supported)
-formal
enable support for SystemVerilog assertions and some Yosys extensions
replace the implicit -D SYNTHESIS with -D FORMAL
-noassert
ignore assert() statements
-noassume
ignore assume() statements
-norestrict
ignore restrict() statements
-assume-asserts
treat all assert() statements like assume() statements
-assert-assumes
treat all assume() statements like assert() statements
-debug
alias for -dump_ast1 -dump_ast2 -dump_vlog1 -dump_vlog2 -yydebug
-dump_ast1
dump abstract syntax tree (before simplification)
-dump_ast2
dump abstract syntax tree (after simplification)
-no_dump_ptr
do not include hex memory addresses in dump (easier to diff dumps)
-dump_vlog1
dump ast as Verilog code (before simplification)
-dump_vlog2
dump ast as Verilog code (after simplification)
-dump_rtlil
dump generated RTLIL netlist
-yydebug
enable parser debug output
-nolatches
usually latches are synthesized into logic loops
this option prohibits this and sets the output to 'x'
in what would be the latches hold condition
this behavior can also be achieved by setting the
'nolatches' attribute on the respective module or
always block.
-nomem2reg
under certain conditions memories are converted to registers
early during simplification to ensure correct handling of
complex corner cases. this option disables this behavior.
this can also be achieved by setting the 'nomem2reg'
attribute on the respective module or register.
This is potentially dangerous. Usually the front-end has good
reasons for converting an array to a list of registers.
Prohibiting this step will likely result in incorrect synthesis
results.
-mem2reg
always convert memories to registers. this can also be
achieved by setting the 'mem2reg' attribute on the respective
module or register.
-nomeminit
do not infer $meminit cells and instead convert initialized
memories to registers directly in the front-end.
-ppdump
dump Verilog code after pre-processor
-nopp
do not run the pre-processor
-nodpi
disable DPI-C support
-noblackbox
do not automatically add a (* blackbox *) attribute to an
empty module.
-lib
only create empty blackbox modules. This implies -DBLACKBOX.
modules with the (* whitebox *) attribute will be preserved.
(* lib_whitebox *) will be treated like (* whitebox *).
-nowb
delete (* whitebox *) and (* lib_whitebox *) attributes from
all modules.
-specify
parse and import specify blocks
-noopt
don't perform basic optimizations (such as const folding) in the
high-level front-end.
-icells
interpret cell types starting with '$' as internal cell types
-pwires
add a wire for each module parameter
-nooverwrite
ignore re-definitions of modules. (the default behavior is to
create an error message if the existing module is not a black box
module, and overwrite the existing module otherwise.)
-overwrite
overwrite existing modules with the same name
-defer
only read the abstract syntax tree and defer actual compilation
to a later 'hierarchy' command. Useful in cases where the default
parameters of modules yield invalid or not synthesizable code.
-noautowire
make the default of `default_nettype be "none" instead of "wire".
-setattr <attribute_name>
set the specified attribute (to the value 1) on all loaded modules
-Dname[=definition]
define the preprocessor symbol 'name' and set its optional value
'definition'
-Idir
add 'dir' to the directories which are used when searching include
files
The command 'verilog_defaults' can be used to register default options for
subsequent calls to 'read_verilog'.
Note that the Verilog frontend does a pretty good job of processing valid
verilog input, but has not very good error reporting. It generally is
recommended to use a simulator (for example Icarus Verilog) for checking
the syntax of the code, rather than to rely on read_verilog for that.
Depending on if read_verilog is run in -formal mode, either the macro
SYNTHESIS or FORMAL is defined automatically. In addition, read_verilog
always defines the macro YOSYS.
See the Yosys README file for a list of non-standard Verilog features
supported by the Yosys Verilog front-end.
\end{lstlisting}
\section{rename -- rename object in the design}
\label{cmd:rename}
\begin{lstlisting}[numbers=left,frame=single]
rename old_name new_name
Rename the specified object. Note that selection patterns are not supported
by this command.
rename -output old_name new_name
Like above, but also make the wire an output. This will fail if the object is
not a wire.
rename -src [selection]
Assign names auto-generated from the src attribute to all selected wires and
cells with private names.
rename -wire [selection]
Assign auto-generated names based on the wires they drive to all selected
cells with private names. Ignores cells driving privatly named wires.
rename -enumerate [-pattern <pattern>] [selection]
Assign short auto-generated names to all selected wires and cells with private
names. The -pattern option can be used to set the pattern for the new names.
The character % in the pattern is replaced with a integer number. The default
pattern is '_%_'.
rename -hide [selection]
Assign private names (the ones with $-prefix) to all selected wires and cells
with public names. This ignores all selected ports.
rename -top new_name
Rename top module.
\end{lstlisting}
\section{rmports -- remove module ports with no connections}
\label{cmd:rmports}
\begin{lstlisting}[numbers=left,frame=single]
rmports [selection]
This pass identifies ports in the selected modules which are not used or
driven and removes them.
\end{lstlisting}
\section{sat -- solve a SAT problem in the circuit}
\label{cmd:sat}
\begin{lstlisting}[numbers=left,frame=single]
sat [options] [selection]
This command solves a SAT problem defined over the currently selected circuit
and additional constraints passed as parameters.
-all
show all solutions to the problem (this can grow exponentially, use
-max <N> instead to get <N> solutions)
-max <N>
like -all, but limit number of solutions to <N>
-enable_undef
enable modeling of undef value (aka 'x-bits')
this option is implied by -set-def, -set-undef et. cetera
-max_undef
maximize the number of undef bits in solutions, giving a better
picture of which input bits are actually vital to the solution.
-set <signal> <value>
set the specified signal to the specified value.
-set-def <signal>
add a constraint that all bits of the given signal must be defined
-set-any-undef <signal>
add a constraint that at least one bit of the given signal is undefined
-set-all-undef <signal>
add a constraint that all bits of the given signal are undefined
-set-def-inputs
add -set-def constraints for all module inputs
-show <signal>
show the model for the specified signal. if no -show option is
passed then a set of signals to be shown is automatically selected.
-show-inputs, -show-outputs, -show-ports
add all module (input/output) ports to the list of shown signals
-show-regs, -show-public, -show-all
show all registers, show signals with 'public' names, show all signals
-ignore_div_by_zero
ignore all solutions that involve a division by zero
-ignore_unknown_cells
ignore all cells that can not be matched to a SAT model
The following options can be used to set up a sequential problem:
-seq <N>
set up a sequential problem with <N> time steps. The steps will
be numbered from 1 to N.
note: for large <N> it can be significantly faster to use
-tempinduct-baseonly -maxsteps <N> instead of -seq <N>.
-set-at <N> <signal> <value>
-unset-at <N> <signal>
set or unset the specified signal to the specified value in the
given timestep. this has priority over a -set for the same signal.
-set-assumes
set all assumptions provided via $assume cells
-set-def-at <N> <signal>
-set-any-undef-at <N> <signal>
-set-all-undef-at <N> <signal>
add undef constraints in the given timestep.
-set-init <signal> <value>
set the initial value for the register driving the signal to the value
-set-init-undef
set all initial states (not set using -set-init) to undef
-set-init-def
do not force a value for the initial state but do not allow undef
-set-init-zero
set all initial states (not set using -set-init) to zero
-dump_vcd <vcd-file-name>
dump SAT model (counter example in proof) to VCD file
-dump_json <json-file-name>
dump SAT model (counter example in proof) to a WaveJSON file.
-dump_cnf <cnf-file-name>
dump CNF of SAT problem (in DIMACS format). in temporal induction
proofs this is the CNF of the first induction step.
The following additional options can be used to set up a proof. If also -seq
is passed, a temporal induction proof is performed.
-tempinduct
Perform a temporal induction proof. In a temporal induction proof it is
proven that the condition holds forever after the number of time steps
specified using -seq.
-tempinduct-def
Perform a temporal induction proof. Assume an initial state with all
registers set to defined values for the induction step.
-tempinduct-baseonly
Run only the basecase half of temporal induction (requires -maxsteps)
-tempinduct-inductonly
Run only the induction half of temporal induction
-tempinduct-skip <N>
Skip the first <N> steps of the induction proof.
note: this will assume that the base case holds for <N> steps.
this must be proven independently with "-tempinduct-baseonly
-maxsteps <N>". Use -initsteps if you just want to set a
minimal induction length.
-prove <signal> <value>
Attempt to proof that <signal> is always <value>.
-prove-x <signal> <value>
Like -prove, but an undef (x) bit in the lhs matches any value on
the right hand side. Useful for equivalence checking.
-prove-asserts
Prove that all asserts in the design hold.
-prove-skip <N>
Do not enforce the prove-condition for the first <N> time steps.
-maxsteps <N>
Set a maximum length for the induction.
-initsteps <N>
Set initial length for the induction.
This will speed up the search of the right induction length
for deep induction proofs.
-stepsize <N>
Increase the size of the induction proof in steps of <N>.
This will speed up the search of the right induction length
for deep induction proofs.
-timeout <N>
Maximum number of seconds a single SAT instance may take.
-verify
Return an error and stop the synthesis script if the proof fails.
-verify-no-timeout
Like -verify but do not return an error for timeouts.
-falsify
Return an error and stop the synthesis script if the proof succeeds.
-falsify-no-timeout
Like -falsify but do not return an error for timeouts.
\end{lstlisting}
\section{scatter -- add additional intermediate nets}
\label{cmd:scatter}
\begin{lstlisting}[numbers=left,frame=single]
scatter [selection]
This command adds additional intermediate nets on all cell ports. This is used
for testing the correct use of the SigMap helper in passes. If you don't know
what this means: don't worry -- you only need this pass when testing your own
extensions to Yosys.
Use the opt_clean command to get rid of the additional nets.
\end{lstlisting}
\section{scc -- detect strongly connected components (logic loops)}
\label{cmd:scc}
\begin{lstlisting}[numbers=left,frame=single]
scc [options] [selection]
This command identifies strongly connected components (aka logic loops) in the
design.
-expect <num>
expect to find exactly <num> SSCs. A different number of SSCs will
produce an error.
-max_depth <num>
limit to loops not longer than the specified number of cells. This
can e.g. be useful in identifying small local loops in a module that
implements one large SCC.
-nofeedback
do not count cells that have their output fed back into one of their
inputs as single-cell scc.
-all_cell_types
Usually this command only considers internal non-memory cells. With
this option set, all cells are considered. For unknown cells all ports
are assumed to be bidirectional 'inout' ports.
-set_attr <name> <value>
set the specified attribute on all cells that are part of a logic
loop. the special token {} in the value is replaced with a unique
identifier for the logic loop.
-select
replace the current selection with a selection of all cells and wires
that are part of a found logic loop
\end{lstlisting}
\section{scratchpad -- get/set values in the scratchpad}
\label{cmd:scratchpad}
\begin{lstlisting}[numbers=left,frame=single]
scratchpad [options]
This pass allows to read and modify values from the scratchpad of the current
design. Options:
-get <identifier>
print the value saved in the scratchpad under the given identifier.
-set <identifier> <value>
save the given value in the scratchpad under the given identifier.
-unset <identifier>
remove the entry for the given identifier from the scratchpad.
-copy <identifier_from> <identifier_to>
copy the value of the first identifier to the second identifier.
-assert <identifier> <value>
assert that the entry for the given identifier is set to the given value.
-assert-set <identifier>
assert that the entry for the given identifier exists.
-assert-unset <identifier>
assert that the entry for the given identifier does not exist.
The identifier may not contain whitespace. By convention, it is usually prefixed
by the name of the pass that uses it, e.g. 'opt.did_something'. If the value
contains whitespace, it must be enclosed in double quotes.
\end{lstlisting}
\section{script -- execute commands from file or wire}
\label{cmd:script}
\begin{lstlisting}[numbers=left,frame=single]
script <filename> [<from_label>:<to_label>]
script -scriptwire [selection]
This command executes the yosys commands in the specified file (default
behaviour), or commands embedded in the constant text value connected to the
selected wires.
In the default (file) case, the 2nd argument can be used to only execute the
section of the file between the specified labels. An empty from label is
synonymous with the beginning of the file and an empty to label is synonymous
with the end of the file.
If only one label is specified (without ':') then only the block
marked with that label (until the next label) is executed.
In "-scriptwire" mode, the commands on the selected wire(s) will be executed
in the scope of (and thus, relative to) the wires' owning module(s). This
'-module' mode can be exited by using the 'cd' command.
\end{lstlisting}
\section{select -- modify and view the list of selected objects}
\label{cmd:select}
\begin{lstlisting}[numbers=left,frame=single]
select [ -add | -del | -set <name> ] {-read <filename> | <selection>}
select [ <assert_option> ] {-read <filename> | <selection>}
select [ -list | -write <filename> | -count | -clear ]
select -module <modname>
Most commands use the list of currently selected objects to determine which part
of the design to operate on. This command can be used to modify and view this
list of selected objects.
Note that many commands support an optional [selection] argument that can be
used to override the global selection for the command. The syntax of this
optional argument is identical to the syntax of the <selection> argument
described here.
-add, -del
add or remove the given objects to the current selection.
without this options the current selection is replaced.
-set <name>
do not modify the current selection. instead save the new selection
under the given name (see @<name> below). to save the current selection,
use "select -set <name> %"
-assert-none
do not modify the current selection. instead assert that the given
selection is empty. i.e. produce an error if any object matching the
selection is found.
-assert-any
do not modify the current selection. instead assert that the given
selection is non-empty. i.e. produce an error if no object matching
the selection is found.
-assert-count N
do not modify the current selection. instead assert that the given
selection contains exactly N objects.
-assert-max N
do not modify the current selection. instead assert that the given
selection contains less than or exactly N objects.
-assert-min N
do not modify the current selection. instead assert that the given
selection contains at least N objects.
-list
list all objects in the current selection
-write <filename>
like -list but write the output to the specified file
-read <filename>
read the specified file (written by -write)
-count
count all objects in the current selection
-clear
clear the current selection. this effectively selects the whole
design. it also resets the selected module (see -module). use the
command 'select *' to select everything but stay in the current module.
-none
create an empty selection. the current module is unchanged.
-module <modname>
limit the current scope to the specified module.
the difference between this and simply selecting the module
is that all object names are interpreted relative to this
module after this command until the selection is cleared again.
When this command is called without an argument, the current selection
is displayed in a compact form (i.e. only the module name when a whole module
is selected).
The <selection> argument itself is a series of commands for a simple stack
machine. Each element on the stack represents a set of selected objects.
After this commands have been executed, the union of all remaining sets
on the stack is computed and used as selection for the command.
Pushing (selecting) object when not in -module mode:
<mod_pattern>
select the specified module(s)
<mod_pattern>/<obj_pattern>
select the specified object(s) from the module(s)
Pushing (selecting) object when in -module mode:
<obj_pattern>
select the specified object(s) from the current module
A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
matching module names, or one of the following:
A:<pattern>, A:<pattern>=<pattern>
all modules with an attribute matching the given pattern
in addition to = also <, <=, >=, and > are supported
N:<pattern>
all modules with a name matching the given pattern
(i.e. 'N:' is optional as it is the default matching rule)
An <obj_pattern> can be an object name, wildcard expression, or one of
the following:
w:<pattern>
all wires with a name matching the given wildcard pattern
i:<pattern>, o:<pattern>, x:<pattern>
all inputs (i:), outputs (o:) or any ports (x:) with matching names
s:<size>, s:<min>:<max>
all wires with a matching width
m:<pattern>
all memories with a name matching the given pattern
c:<pattern>
all cells with a name matching the given pattern
t:<pattern>
all cells with a type matching the given pattern
p:<pattern>
all processes with a name matching the given pattern
a:<pattern>
all objects with an attribute name matching the given pattern
a:<pattern>=<pattern>
all objects with a matching attribute name-value-pair.
in addition to = also <, <=, >=, and > are supported
r:<pattern>, r:<pattern>=<pattern>
cells with matching parameters. also with <, <=, >= and >.
n:<pattern>
all objects with a name matching the given pattern
(i.e. 'n:' is optional as it is the default matching rule)
@<name>
push the selection saved prior with 'select -set <name> ...'
The following actions can be performed on the top sets on the stack:
%
push a copy of the current selection to the stack
%%
replace the stack with a union of all elements on it
%n
replace top set with its invert
%u
replace the two top sets on the stack with their union
%i
replace the two top sets on the stack with their intersection
%d
pop the top set from the stack and subtract it from the new top
%D
like %d but swap the roles of two top sets on the stack
%c
create a copy of the top set from the stack and push it
%x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
expand top set <num1> num times according to the specified rules.
(i.e. select all cells connected to selected wires and select all
wires connected to selected cells) The rules specify which cell
ports to use for this. the syntax for a rule is a '-' for exclusion
and a '+' for inclusion, followed by an optional comma separated
list of cell types followed by an optional comma separated list of
cell ports in square brackets. a rule can also be just a cell or wire
name that limits the expansion (is included but does not go beyond).
select at most <num2> objects. a warning message is printed when this
limit is reached. When '*' is used instead of <num1> then the process
is repeated until no further object are selected.
%ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
%co[<num1>|*][.<num2>][:<rule>[:<rule>..]]
similar to %x, but only select input (%ci) or output cones (%co)
%xe[...] %cie[...] %coe
like %x, %ci, and %co but only consider combinatorial cells
%a
expand top set by selecting all wires that are (at least in part)
aliases for selected wires.
%s
expand top set by adding all modules that implement cells in selected
modules
%m
expand top set by selecting all modules that contain selected objects
%M
select modules that implement selected cells
%C
select cells that implement selected modules
%R[<num>]
select <num> random objects from top selection (default 1)
Example: the following command selects all wires that are connected to a
'GATE' input of a 'SWITCH' cell:
select */t:SWITCH %x:+[GATE] */t:SWITCH %d
\end{lstlisting}
\section{setattr -- set/unset attributes on objects}
\label{cmd:setattr}
\begin{lstlisting}[numbers=left,frame=single]
setattr [ -mod ] [ -set name value | -unset name ]... [selection]
Set/unset the given attributes on the selected objects. String values must be
passed in double quotes (").
When called with -mod, this command will set and unset attributes on modules
instead of objects within modules.
\end{lstlisting}
\section{setparam -- set/unset parameters on objects}
\label{cmd:setparam}
\begin{lstlisting}[numbers=left,frame=single]
setparam [ -type cell_type ] [ -set name value | -unset name ]... [selection]
Set/unset the given parameters on the selected cells. String values must be
passed in double quotes (").
The -type option can be used to change the cell type of the selected cells.
\end{lstlisting}
\section{setundef -- replace undef values with defined constants}
\label{cmd:setundef}
\begin{lstlisting}[numbers=left,frame=single]
setundef [options] [selection]
This command replaces undef (x) constants with defined (0/1) constants.
-undriven
also set undriven nets to constant values
-expose
also expose undriven nets as inputs (use with -undriven)
-zero
replace with bits cleared (0)
-one
replace with bits set (1)
-undef
replace with undef (x) bits, may be used with -undriven
-anyseq
replace with $anyseq drivers (for formal)
-anyconst
replace with $anyconst drivers (for formal)
-random <seed>
replace with random bits using the specified integer as seed
value for the random number generator.
-init
also create/update init values for flip-flops
-params
replace undef in cell parameters
\end{lstlisting}
\section{sf2\_iobs -- SF2: insert IO buffers}
\label{cmd:sf2_iobs}
\begin{lstlisting}[numbers=left,frame=single]
sf2_iobs [options] [selection]
Add SF2 I/O buffers and global buffers to top module as needed.
-clkbuf
Insert PAD->global_net clock buffers
\end{lstlisting}
\section{share -- perform sat-based resource sharing}
\label{cmd:share}
\begin{lstlisting}[numbers=left,frame=single]
share [options] [selection]
This pass merges shareable resources into a single resource. A SAT solver
is used to determine if two resources are share-able.
-force
Per default the selection of cells that is considered for sharing is
narrowed using a list of cell types. With this option all selected
cells are considered for resource sharing.
IMPORTANT NOTE: If the -all option is used then no cells with internal
state must be selected!
-aggressive
Per default some heuristics are used to reduce the number of cells
considered for resource sharing to only large resources. This options
turns this heuristics off, resulting in much more cells being considered
for resource sharing.
-fast
Only consider the simple part of the control logic in SAT solving, resulting
in much easier SAT problems at the cost of maybe missing some opportunities
for resource sharing.
-limit N
Only perform the first N merges, then stop. This is useful for debugging.
\end{lstlisting}
\section{shell -- enter interactive command mode}
\label{cmd:shell}
\begin{lstlisting}[numbers=left,frame=single]
shell
This command enters the interactive command mode. This can be useful
in a script to interrupt the script at a certain point and allow for
interactive inspection or manual synthesis of the design at this point.
The command prompt of the interactive shell indicates the current
selection (see 'help select'):
yosys>
the entire design is selected
yosys*>
only part of the design is selected
yosys [modname]>
the entire module 'modname' is selected using 'select -module modname'
yosys [modname]*>
only part of current module 'modname' is selected
When in interactive shell, some errors (e.g. invalid command arguments)
do not terminate yosys but return to the command prompt.
This command is the default action if nothing else has been specified
on the command line.
Press Ctrl-D or type 'exit' to leave the interactive shell.
\end{lstlisting}
\section{show -- generate schematics using graphviz}
\label{cmd:show}
\begin{lstlisting}[numbers=left,frame=single]
show [options] [selection]
Create a graphviz DOT file for the selected part of the design and compile it
to a graphics file (usually SVG or PostScript).
-viewer <viewer>
Run the specified command with the graphics file as parameter.
On Windows, this pauses yosys until the viewer exits.
-format <format>
Generate a graphics file in the specified format. Use 'dot' to just
generate a .dot file, or other <format> strings such as 'svg' or 'ps'
to generate files in other formats (this calls the 'dot' command).
-lib <verilog_or_ilang_file>
Use the specified library file for determining whether cell ports are
inputs or outputs. This option can be used multiple times to specify
more than one library.
note: in most cases it is better to load the library before calling
show with 'read_verilog -lib <filename>'. it is also possible to
load liberty files with 'read_liberty -lib <filename>'.
-prefix <prefix>
generate <prefix>.* instead of ~/.yosys_show.*
-color <color> <object>
assign the specified color to the specified object. The object can be
a single selection wildcard expressions or a saved set of objects in
the @<name> syntax (see "help select" for details).
-label <text> <object>
assign the specified label text to the specified object. The object can
be a single selection wildcard expressions or a saved set of objects in
the @<name> syntax (see "help select" for details).
-colors <seed>
Randomly assign colors to the wires. The integer argument is the seed
for the random number generator. Change the seed value if the colored
graph still is ambiguous. A seed of zero deactivates the coloring.
-colorattr <attribute_name>
Use the specified attribute to assign colors. A unique color is
assigned to each unique value of this attribute.
-width
annotate buses with a label indicating the width of the bus.
-signed
mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
cell parameter) with an asterisk next to the port name.
-stretch
stretch the graph so all inputs are on the left side and all outputs
(including inout ports) are on the right side.
-pause
wait for the use to press enter to before returning
-enum
enumerate objects with internal ($-prefixed) names
-long
do not abbreviate objects with internal ($-prefixed) names
-notitle
do not add the module name as graph title to the dot file
-nobg
don't run viewer in the background, IE wait for the viewer tool to
exit before returning
When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic (POSIX systems only).
The generated output files are '~/.yosys_show.dot' and '~/.yosys_show.<format>',
unless another prefix is specified using -prefix <prefix>.
Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched each time
the 'show' command is executed.
\end{lstlisting}
\section{shregmap -- map shift registers}
\label{cmd:shregmap}
\begin{lstlisting}[numbers=left,frame=single]
shregmap [options] [selection]
This pass converts chains of $_DFF_[NP]_ gates to target specific shift register
primitives. The generated shift register will be of type $__SHREG_DFF_[NP]_ and
will use the same interface as the original $_DFF_*_ cells. The cell parameter
'DEPTH' will contain the depth of the shift register. Use a target-specific
'techmap' map file to convert those cells to the actual target cells.
-minlen N
minimum length of shift register (default = 2)
(this is the length after -keep_before and -keep_after)
-maxlen N
maximum length of shift register (default = no limit)
larger chains will be mapped to multiple shift register instances
-keep_before N
number of DFFs to keep before the shift register (default = 0)
-keep_after N
number of DFFs to keep after the shift register (default = 0)
-clkpol pos|neg|any
limit match to only positive or negative edge clocks. (default = any)
-enpol pos|neg|none|any_or_none|any
limit match to FFs with the specified enable polarity. (default = none)
-match <cell_type>[:<d_port_name>:<q_port_name>]
match the specified cells instead of $_DFF_N_ and $_DFF_P_. If
':<d_port_name>:<q_port_name>' is omitted then 'D' and 'Q' is used
by default. E.g. the option '-clkpol pos' is just an alias for
'-match $_DFF_P_', which is an alias for '-match $_DFF_P_:D:Q'.
-params
instead of encoding the clock and enable polarity in the cell name by
deriving from the original cell name, simply name all generated cells
$__SHREG_ and use CLKPOL and ENPOL parameters. An ENPOL value of 2 is
used to denote cells without enable input. The ENPOL parameter is
omitted when '-enpol none' (or no -enpol option) is passed.
-zinit
assume the shift register is automatically zero-initialized, so it
becomes legal to merge zero initialized FFs into the shift register.
-init
map initialized registers to the shift reg, add an INIT parameter to
generated cells with the initialization value. (first bit to shift out
in LSB position)
-tech greenpak4
map to greenpak4 shift registers.
\end{lstlisting}
\section{sim -- simulate the circuit}
\label{cmd:sim}
\begin{lstlisting}[numbers=left,frame=single]
sim [options] [top-level]
This command simulates the circuit using the given top-level module.
-vcd <filename>
write the simulation results to the given VCD file
-clock <portname>
name of top-level clock input
-clockn <portname>
name of top-level clock input (inverse polarity)
-reset <portname>
name of top-level reset input (active high)
-resetn <portname>
name of top-level inverted reset input (active low)
-rstlen <integer>
number of cycles reset should stay active (default: 1)
-zinit
zero-initialize all uninitialized regs and memories
-n <integer>
number of cycles to simulate (default: 20)
-a
include all nets in VCD output, not just those with public names
-w
writeback mode: use final simulation state as new init state
-d
enable debug output
\end{lstlisting}
\section{simplemap -- mapping simple coarse-grain cells}
\label{cmd:simplemap}
\begin{lstlisting}[numbers=left,frame=single]
simplemap [selection]
This pass maps a small selection of simple coarse-grain cells to yosys gate
primitives. The following internal cell types are mapped by this pass:
$not, $pos, $and, $or, $xor, $xnor
$reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
$logic_not, $logic_and, $logic_or, $mux, $tribuf
$sr, $ff, $dff, $dffsr, $adff, $dlatch
\end{lstlisting}
\section{splice -- create explicit splicing cells}
\label{cmd:splice}
\begin{lstlisting}[numbers=left,frame=single]
splice [options] [selection]
This command adds $slice and $concat cells to the design to make the splicing
of multi-bit signals explicit. This for example is useful for coarse grain
synthesis, where dedicated hardware is needed to splice signals.
-sel_by_cell
only select the cell ports to rewire by the cell. if the selection
contains a cell, than all cell inputs are rewired, if necessary.
-sel_by_wire
only select the cell ports to rewire by the wire. if the selection
contains a wire, than all cell ports driven by this wire are wired,
if necessary.
-sel_any_bit
it is sufficient if the driver of any bit of a cell port is selected.
by default all bits must be selected.
-wires
also add $slice and $concat cells to drive otherwise unused wires.
-no_outputs
do not rewire selected module outputs.
-port <name>
only rewire cell ports with the specified name. can be used multiple
times. implies -no_output.
-no_port <name>
do not rewire cell ports with the specified name. can be used multiple
times. can not be combined with -port <name>.
By default selected output wires and all cell ports of selected cells driven
by selected wires are rewired.
\end{lstlisting}
\section{splitnets -- split up multi-bit nets}
\label{cmd:splitnets}
\begin{lstlisting}[numbers=left,frame=single]
splitnets [options] [selection]
This command splits multi-bit nets into single-bit nets.
-format char1[char2[char3]]
the first char is inserted between the net name and the bit index, the
second char is appended to the netname. e.g. -format () creates net
names like 'mysignal(42)'. the 3rd character is the range separation
character when creating multi-bit wires. the default is '[]:'.
-ports
also split module ports. per default only internal signals are split.
-driver
don't blindly split nets in individual bits. instead look at the driver
and split nets so that no driver drives only part of a net.
\end{lstlisting}
\section{stat -- print some statistics}
\label{cmd:stat}
\begin{lstlisting}[numbers=left,frame=single]
stat [options] [selection]
Print some statistics (number of objects) on the selected portion of the
design.
-top <module>
print design hierarchy with this module as top. if the design is fully
selected and a module has the 'top' attribute set, this module is used
default value for this option.
-liberty <liberty_file>
use cell area information from the provided liberty file
-tech <technology>
print area estemate for the specified technology. Currently supported
values for <technology>: xilinx, cmos
-width
annotate internal cell types with their word width.
e.g. $add_8 for an 8 bit wide $add cell.
\end{lstlisting}
\section{submod -- moving part of a module to a new submodule}
\label{cmd:submod}
\begin{lstlisting}[numbers=left,frame=single]
submod [options] [selection]
This pass identifies all cells with the 'submod' attribute and moves them to
a newly created module. The value of the attribute is used as name for the
cell that replaces the group of cells with the same attribute value.
This pass can be used to create a design hierarchy in flat design. This can
be useful for analyzing or reverse-engineering a design.
This pass only operates on completely selected modules with no processes
or memories.
-copy
by default the cells are 'moved' from the source module and the source
module will use an instance of the new module after this command is
finished. call with -copy to not modify the source module.
-name <name>
don't use the 'submod' attribute but instead use the selection. only
objects from one module might be selected. the value of the -name option
is used as the value of the 'submod' attribute instead.
-hidden
instead of creating submodule ports with public names, create ports with
private names so that a subsequent 'flatten; clean' call will restore the
original module with original public names.
\end{lstlisting}
\section{supercover -- add hi/lo cover cells for each wire bit}
\label{cmd:supercover}
\begin{lstlisting}[numbers=left,frame=single]
supercover [options] [selection]
This command adds two cover cells for each bit of each selected wire, one
checking for a hi signal level and one checking for lo level.
\end{lstlisting}
\section{synth -- generic synthesis script}
\label{cmd:synth}
\begin{lstlisting}[numbers=left,frame=single]
synth [options]
This command runs the default synthesis script. This command does not operate
on partly selected designs.
-top <module>
use the specified module as top module (default='top')
-auto-top
automatically determine the top of the design hierarchy
-flatten
flatten the design before synthesis. this will pass '-auto-top' to
'hierarchy' if no top module is specified.
-encfile <file>
passed to 'fsm_recode' via 'fsm'
-lut <k>
perform synthesis for a k-LUT architecture.
-nofsm
do not run FSM optimization
-noabc
do not run abc (as if yosys was compiled without ABC support)
-noalumacc
do not run 'alumacc' pass. i.e. keep arithmetic operators in
their direct form ($add, $sub, etc.).
-nordff
passed to 'memory'. prohibits merging of FFs into memory read ports
-noshare
do not run SAT-based resource sharing
-run <from_label>[:<to_label>]
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-abc9
use new ABC9 flow (EXPERIMENTAL)
-flowmap
use FlowMap LUT techmapping instead of ABC
The following commands are executed by this synthesis command:
begin:
hierarchy -check [-top <top> | -auto-top]
coarse:
proc
flatten (if -flatten)
opt_expr
opt_clean
check
opt
wreduce
peepopt
opt_clean
techmap -map +/cmp2lut.v -map +/cmp2lcu.v (if -lut)
alumacc (unless -noalumacc)
share (unless -noshare)
opt
fsm (unless -nofsm)
opt -fast
memory -nomap
opt_clean
fine:
opt -fast -full
memory_map
opt -full
techmap
techmap -map +/gate2lut.v (if -noabc and -lut)
clean; opt_lut (if -noabc and -lut)
flowmap -maxlut K (if -flowmap and -lut)
opt -fast
abc -fast (unless -noabc, unless -lut)
abc -fast -lut k (unless -noabc, if -lut)
opt -fast (unless -noabc)
check:
hierarchy -check
stat
check
\end{lstlisting}
\section{synth\_achronix -- synthesis for Acrhonix Speedster22i FPGAs.}
\label{cmd:synth_achronix}
\begin{lstlisting}[numbers=left,frame=single]
synth_achronix [options]
This command runs synthesis for Achronix Speedster eFPGAs. This work is still experimental.
-top <module>
use the specified module as top module (default='top')
-vout <file>
write the design to the specified Verilog netlist file. writing of an
output file is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
The following commands are executed by this synthesis command:
begin:
read_verilog -sv -lib +/achronix/speedster22i/cells_sim.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout
coarse:
synth -run coarse
fine:
opt -fast -mux_undef -undriven -fine -full
memory_map
opt -undriven -fine
dff2dffe -direct-match $_DFF_*
opt -fine
techmap -map +/techmap.v
opt -full
clean -purge
setundef -undriven -zero
abc -markgroups -dff -D 1 (only if -retime)
map_luts:
abc -lut 4
clean
map_cells:
iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I
techmap -map +/achronix/speedster22i/cells_map.v
clean -purge
check:
hierarchy -check
stat
check -noinit
vout:
write_verilog -nodec -attr2comment -defparam -renameprefix syn_ <file-name>
\end{lstlisting}
\section{synth\_anlogic -- synthesis for Anlogic FPGAs}
\label{cmd:synth_anlogic}
\begin{lstlisting}[numbers=left,frame=single]
synth_anlogic [options]
This command runs synthesis for Anlogic FPGAs.
-top <module>
use the specified module as top module
-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
-nolutram
do not use EG_LOGIC_DRAM16X4 cells in output netlist
The following commands are executed by this synthesis command:
begin:
read_verilog -lib +/anlogic/cells_sim.v +/anlogic/eagle_bb.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout
coarse:
synth -run coarse
map_lutram: (skip if -nolutram)
memory_bram -rules +/anlogic/lutrams.txt
techmap -map +/anlogic/lutrams_map.v
setundef -zero -params t:EG_LOGIC_DRAM16X4
map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
map_gates:
techmap -map +/techmap.v -map +/anlogic/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
map_ffs:
techmap -D NO_LUT -map +/anlogic/cells_map.v
dffinit -strinit SET RESET -ff AL_MAP_SEQ q REGSET -noreinit
opt_expr -mux_undef
simplemap
map_luts:
abc -lut 4:6
clean
map_cells:
techmap -map +/anlogic/cells_map.v
clean
map_anlogic:
anlogic_fixcarry
anlogic_eqn
check:
hierarchy -check
stat
check -noinit
edif:
write_edif <file-name>
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_coolrunner2 -- synthesis for Xilinx Coolrunner-II CPLDs}
\label{cmd:synth_coolrunner2}
\begin{lstlisting}[numbers=left,frame=single]
synth_coolrunner2 [options]
This command runs synthesis for Coolrunner-II CPLDs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.
-top <module>
use the specified module as top module (default='top')
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
The following commands are executed by this synthesis command:
begin:
read_verilog -lib +/coolrunner2/cells_sim.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
coarse:
synth -run coarse
fine:
extract_counter -dir up -allow_arst no
techmap -map +/coolrunner2/cells_counter_map.v
clean
opt -fast -full
techmap -map +/techmap.v -map +/coolrunner2/cells_latch.v
opt -fast
dfflibmap -prepare -liberty +/coolrunner2/xc2_dff.lib
map_tff:
abc -g AND,XOR
clean
extract -map +/coolrunner2/tff_extract.v
map_pla:
abc -sop -I 40 -P 56
clean
map_cells:
dfflibmap -liberty +/coolrunner2/xc2_dff.lib
dffinit -ff FDCP Q INIT
dffinit -ff FDCP_N Q INIT
dffinit -ff FTCP Q INIT
dffinit -ff FTCP_N Q INIT
dffinit -ff LDCP Q INIT
dffinit -ff LDCP_N Q INIT
coolrunner2_sop
clean
iopadmap -bits -inpad IBUF O:I -outpad IOBUFE I:IO -inoutpad IOBUFE O:IO -toutpad IOBUFE E:I:IO -tinoutpad IOBUFE E:O:I:IO
attrmvcp -attr src -attr LOC t:IOBUFE n:*
attrmvcp -attr src -attr LOC -driven t:IBUF n:*
coolrunner2_fixup
splitnets
clean
check:
hierarchy -check
stat
check -noinit
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_easic -- synthesis for eASIC platform}
\label{cmd:synth_easic}
\begin{lstlisting}[numbers=left,frame=single]
synth_easic [options]
This command runs synthesis for eASIC platform.
-top <module>
use the specified module as top module
-vlog <file>
write the design to the specified structural Verilog file. writing of
an output file is omitted if this parameter is not specified.
-etools <path>
set path to the eTools installation. (default=/opt/eTools)
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
The following commands are executed by this synthesis command:
begin:
read_liberty -lib <etools_phys_clk_lib>
read_liberty -lib <etools_logic_lut_lib>
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
coarse:
synth -run coarse
fine:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
techmap
opt -fast
abc -dff -D 1 (only if -retime)
opt_clean (only if -retime)
map:
dfflibmap -liberty <etools_phys_clk_lib>
abc -liberty <etools_logic_lut_lib>
opt_clean
check:
hierarchy -check
stat
check -noinit
vlog:
write_verilog -noexpr -attr2comment <file-name>
\end{lstlisting}
\section{synth\_ecp5 -- synthesis for ECP5 FPGAs}
\label{cmd:synth_ecp5}
\begin{lstlisting}[numbers=left,frame=single]
synth_ecp5 [options]
This command runs synthesis for ECP5 FPGAs.
-top <module>
use the specified module as top module
-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.
-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
-noccu2
do not use CCU2 cells in output netlist
-nodffe
do not use flipflops with CE in output netlist
-nobram
do not use block RAM cells in output netlist
-nolutram
do not use LUT RAM cells in output netlist
-nowidelut
do not use PFU muxes to implement LUTs larger than LUT4s
-asyncprld
use async PRLD mode to implement DLATCH and DFFSR (EXPERIMENTAL)
-abc2
run two passes of 'abc' for slightly improved logic density
-abc9
use new ABC9 flow (EXPERIMENTAL)
-vpr
generate an output netlist (and BLIF file) suitable for VPR
(this feature is experimental and incomplete)
-nodsp
do not map multipliers to MULT18X18D
The following commands are executed by this synthesis command:
begin:
read_verilog -lib -specify +/ecp5/cells_sim.v +/ecp5/cells_bb.v
hierarchy -check -top <top>
coarse:
proc
flatten
tribuf -logic
deminout
opt_expr
opt_clean
check
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
techmap -map +/mul2dsp.v -map +/ecp5/dsp_map.v -D DSP_A_MAXWIDTH=18 -D DSP_B_MAXWIDTH=18 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=$__MUL18X18 (unless -nodsp)
chtype -set $mul t:$__soft_mul (unless -nodsp)
alumacc
opt
fsm
opt -fast
memory -nomap
opt_clean
map_bram: (skip if -nobram)
memory_bram -rules +/ecp5/brams.txt
techmap -map +/ecp5/brams_map.v
map_lutram: (skip if -nolutram)
memory_bram -rules +/ecp5/lutrams.txt
techmap -map +/ecp5/lutrams_map.v
map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_romstyle=logic
opt -undriven -fine
map_gates:
techmap -map +/techmap.v -map +/ecp5/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
map_ffs:
dff2dffs
opt_clean
dff2dffe -direct-match $_DFF_* -direct-match $__DFFS_*
techmap -D NO_LUT [-D ASYNC_PRLD] -map +/ecp5/cells_map.v
opt_expr -undriven -mux_undef
simplemap
ecp5_ffinit
ecp5_gsr
attrmvcp -copy -attr syn_useioff
opt_clean
map_luts:
abc (only if -abc2)
techmap -map +/ecp5/latches_map.v
abc -lut 4:7 -dress
clean
map_cells:
techmap -map +/ecp5/cells_map.v (with -D NO_LUT in vpr mode)
opt_lut_ins -tech ecp5
clean
check:
autoname
hierarchy -check
stat
check -noinit
blif:
opt_clean -purge (vpr mode)
write_blif -attr -cname -conn -param <file-name> (vpr mode)
write_blif -gates -attr -param <file-name> (non-vpr mode)
edif:
write_edif <file-name>
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_efinix -- synthesis for Efinix FPGAs}
\label{cmd:synth_efinix}
\begin{lstlisting}[numbers=left,frame=single]
synth_efinix [options]
This command runs synthesis for Efinix FPGAs.
-top <module>
use the specified module as top module
-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
-nobram
do not use EFX_RAM_5K cells in output netlist
The following commands are executed by this synthesis command:
begin:
read_verilog -lib +/efinix/cells_sim.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout
coarse:
synth -run coarse
memory_bram -rules +/efinix/brams.txt
techmap -map +/efinix/brams_map.v
setundef -zero -params t:EFX_RAM_5K
map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
map_gates:
techmap -map +/techmap.v -map +/efinix/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
map_ffs:
techmap -D NO_LUT -map +/efinix/cells_map.v
dffinit -strinit SET RESET -ff AL_MAP_SEQ q REGSET -noreinit
opt_expr -mux_undef
simplemap
map_luts:
abc -lut 4
clean
map_cells:
techmap -map +/efinix/cells_map.v
clean
map_gbuf:
efinix_gbuf
efinix_fixcarry
clean
check:
hierarchy -check
stat
check -noinit
edif:
write_edif <file-name>
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_gowin -- synthesis for Gowin FPGAs}
\label{cmd:synth_gowin}
\begin{lstlisting}[numbers=left,frame=single]
synth_gowin [options]
This command runs synthesis for Gowin FPGAs. This work is experimental.
-top <module>
use the specified module as top module (default='top')
-vout <file>
write the design to the specified Verilog netlist file. writing of an
output file is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-nodffe
do not use flipflops with CE in output netlist
-nobram
do not use BRAM cells in output netlist
-nolutram
do not use distributed RAM cells in output netlist
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
-nowidelut
do not use muxes to implement LUTs larger than LUT4s
-noiopads
do not emit IOB at top level ports
The following commands are executed by this synthesis command:
begin:
read_verilog -lib +/gowin/cells_sim.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout
coarse:
synth -run coarse
map_bram: (skip if -nobram)
memory_bram -rules +/gowin/brams.txt
techmap -map +/gowin/brams_map.v
map_lutram: (skip if -nolutram)
memory_bram -rules +/gowin/lutrams.txt
techmap -map +/gowin/lutrams_map.v
determine_init
map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
map_gates:
techmap -map +/techmap.v -map +/gowin/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
splitnets
map_ffs:
dff2dffs -match-init
opt_clean
dff2dffe -direct-match $_DFF_* -direct-match $__DFFS_*
techmap -map +/gowin/cells_map.v
opt_expr -mux_undef
simplemap
map_luts:
abc -lut 4:8
clean
map_cells:
techmap -map +/gowin/cells_map.v
opt_lut_ins -tech gowin
setundef -undriven -params -zero
hilomap -singleton -hicell VCC V -locell GND G
iopadmap -bits -inpad IBUF O:I -outpad OBUF I:O -toutpad TBUF OEN:I:O -tinoutpad IOBUF OEN:O:I:IO (unless -noiopads)
clean
check:
hierarchy -check
stat
check -noinit
vout:
write_verilog -decimal -attr2comment -defparam -renameprefix gen <file-name>
\end{lstlisting}
\section{synth\_greenpak4 -- synthesis for GreenPAK4 FPGAs}
\label{cmd:synth_greenpak4}
\begin{lstlisting}[numbers=left,frame=single]
synth_greenpak4 [options]
This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.
-top <module>
use the specified module as top module (default='top')
-part <part>
synthesize for the specified part. Valid values are SLG46140V,
SLG46620V, and SLG46621V (default).
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
The following commands are executed by this synthesis command:
begin:
read_verilog -lib +/greenpak4/cells_sim.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
coarse:
synth -run coarse
fine:
extract_counter -pout GP_DCMP,GP_DAC -maxwidth 14
clean
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
techmap -map +/techmap.v -map +/greenpak4/cells_latch.v
dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
opt -fast
abc -dff -D 1 (only if -retime)
map_luts:
nlutmap -assert -luts 0,6,8,2 (for -part SLG46140V)
nlutmap -assert -luts 2,8,16,2 (for -part SLG46620V)
nlutmap -assert -luts 2,8,16,2 (for -part SLG46621V)
clean
map_cells:
shregmap -tech greenpak4
dfflibmap -liberty +/greenpak4/gp_dff.lib
dffinit -ff GP_DFF Q INIT
dffinit -ff GP_DFFR Q INIT
dffinit -ff GP_DFFS Q INIT
dffinit -ff GP_DFFSR Q INIT
iopadmap -bits -inpad GP_IBUF OUT:IN -outpad GP_OBUF IN:OUT -inoutpad GP_OBUF OUT:IN -toutpad GP_OBUFT OE:IN:OUT -tinoutpad GP_IOBUF OE:OUT:IN:IO
attrmvcp -attr src -attr LOC t:GP_OBUF t:GP_OBUFT t:GP_IOBUF n:*
attrmvcp -attr src -attr LOC -driven t:GP_IBUF n:*
techmap -map +/greenpak4/cells_map.v
greenpak4_dffinv
clean
check:
hierarchy -check
stat
check -noinit
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_ice40 -- synthesis for iCE40 FPGAs}
\label{cmd:synth_ice40}
\begin{lstlisting}[numbers=left,frame=single]
synth_ice40 [options]
This command runs synthesis for iCE40 FPGAs.
-device < hx | lp | u >
relevant only for '-abc9' flow, optimise timing for the specified device.
default: hx
-top <module>
use the specified module as top module
-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.
-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
-nocarry
do not use SB_CARRY cells in output netlist
-nodffe
do not use SB_DFFE* cells in output netlist
-dffe_min_ce_use <min_ce_use>
do not use SB_DFFE* cells if the resulting CE line would go to less
than min_ce_use SB_DFFE* in output netlist
-nobram
do not use SB_RAM40_4K* cells in output netlist
-dsp
use iCE40 UltraPlus DSP cells for large arithmetic
-noabc
use built-in Yosys LUT techmapping instead of abc
-abc2
run two passes of 'abc' for slightly improved logic density
-vpr
generate an output netlist (and BLIF file) suitable for VPR
(this feature is experimental and incomplete)
-abc9
use new ABC9 flow (EXPERIMENTAL)
-flowmap
use FlowMap LUT techmapping instead of abc (EXPERIMENTAL)
The following commands are executed by this synthesis command:
begin:
read_verilog -D ICE40_HX -lib -specify +/ice40/cells_sim.v
hierarchy -check -top <top>
proc
flatten: (unless -noflatten)
flatten
tribuf -logic
deminout
coarse:
opt_expr
opt_clean
check
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
memory_dff
wreduce t:$mul
techmap -map +/mul2dsp.v -map +/ice40/dsp_map.v -D DSP_A_MAXWIDTH=16 -D DSP_B_MAXWIDTH=16 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_Y_MINWIDTH=11 -D DSP_NAME=$__MUL16X16 (if -dsp)
select a:mul2dsp (if -dsp)
setattr -unset mul2dsp (if -dsp)
opt_expr -fine (if -dsp)
wreduce (if -dsp)
select -clear (if -dsp)
ice40_dsp (if -dsp)
chtype -set $mul t:$__soft_mul (if -dsp)
alumacc
opt
fsm
opt -fast
memory -nomap
opt_clean
map_bram: (skip if -nobram)
memory_bram -rules +/ice40/brams.txt
techmap -map +/ice40/brams_map.v
ice40_braminit
map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_romstyle=logic
opt -undriven -fine
map_gates:
ice40_wrapcarry
techmap -map +/techmap.v -map +/ice40/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
ice40_opt
map_ffs:
dff2dffe -direct-match $_DFF_*
techmap -D NO_LUT -D NO_ADDER -map +/ice40/cells_map.v
opt_expr -mux_undef
simplemap
ice40_ffinit
ice40_ffssr
ice40_opt -full
map_luts:
abc (only if -abc2)
ice40_opt (only if -abc2)
techmap -map +/ice40/latches_map.v
simplemap (if -noabc or -flowmap)
techmap -map +/gate2lut.v -D LUT_WIDTH=4 (only if -noabc)
flowmap -maxlut 4 (only if -flowmap)
abc -dress -lut 4 (skip if -noabc)
ice40_wrapcarry -unwrap
techmap -D NO_LUT -map +/ice40/cells_map.v
clean
opt_lut -dlogic SB_CARRY:I0=2:I1=1:CI=0
map_cells:
techmap -map +/ice40/cells_map.v (with -D NO_LUT in vpr mode)
clean
check:
autoname
hierarchy -check
stat
check -noinit
blif:
opt_clean -purge (vpr mode)
write_blif -attr -cname -conn -param <file-name> (vpr mode)
write_blif -gates -attr -param <file-name> (non-vpr mode)
edif:
write_edif <file-name>
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_intel -- synthesis for Intel (Altera) FPGAs.}
\label{cmd:synth_intel}
\begin{lstlisting}[numbers=left,frame=single]
synth_intel [options]
This command runs synthesis for Intel FPGAs.
-family <max10 | arria10gx | cyclone10lp | cyclonev | cycloneiv | cycloneive>
generate the synthesis netlist for the specified family.
MAX10 is the default target if no family argument specified.
For Cyclone IV GX devices, use cycloneiv argument; for Cyclone IV E, use cycloneive.
Cyclone V and Arria 10 GX devices are experimental.
-top <module>
use the specified module as top module (default='top')
-vqm <file>
write the design to the specified Verilog Quartus Mapping File. Writing of an
output file is omitted if this parameter is not specified.
Note that this backend has not been tested and is likely incompatible
with recent versions of Quartus.
-vpr <file>
write BLIF files for VPR flow experiments. The synthesized BLIF output file is not
compatible with the Quartus flow. Writing of an
output file is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-iopads
use IO pad cells in output netlist
-nobram
do not use block RAM cells in output netlist
-noflatten
do not flatten design before synthesis
-retime
run 'abc' with '-dff -D 1' options
The following commands are executed by this synthesis command:
begin:
family:
read_verilog -sv -lib +/intel/max10/cells_sim.v
read_verilog -sv -lib +/intel/common/m9k_bb.v
read_verilog -sv -lib +/intel/common/altpll_bb.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout
coarse:
synth -run coarse
map_bram: (skip if -nobram)
memory_bram -rules +/intel/common/brams_m9k.txt (if applicable for family)
techmap -map +/intel/common/brams_map_m9k.v (if applicable for family)
map_ffram:
opt -fast -mux_undef -undriven -fine -full
memory_map
opt -undriven -fine
dff2dffe -direct-match $_DFF_*
opt -fine
techmap -map +/techmap.v
opt -full
clean -purge
setundef -undriven -zero
abc -markgroups -dff -D 1 (only if -retime)
map_luts:
abc -lut 4
clean
map_cells:
iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I (if -iopads)
techmap -map +/intel/max10/cells_map.v
dffinit -highlow -ff dffeas q power_up
clean -purge
check:
hierarchy -check
stat
check -noinit
vqm:
write_verilog -attr2comment -defparam -nohex -decimal -renameprefix syn_ <file-name>
vpr:
opt_clean -purge
write_blif <file-name>
WARNING: THE 'synth_intel' COMMAND IS EXPERIMENTAL.
\end{lstlisting}
\section{synth\_sf2 -- synthesis for SmartFusion2 and IGLOO2 FPGAs}
\label{cmd:synth_sf2}
\begin{lstlisting}[numbers=left,frame=single]
synth_sf2 [options]
This command runs synthesis for SmartFusion2 and IGLOO2 FPGAs.
-top <module>
use the specified module as top module
-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.
-vlog <file>
write the design to the specified Verilog file. writing of an output file
is omitted if this parameter is not specified.
-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-noflatten
do not flatten design before synthesis
-noiobs
run synthesis in "block mode", i.e. do not insert IO buffers
-clkbuf
insert direct PAD->global_net buffers
-retime
run 'abc' with '-dff -D 1' options
The following commands are executed by this synthesis command:
begin:
read_verilog -lib +/sf2/cells_sim.v
hierarchy -check -top <top>
flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout
coarse:
synth -run coarse
fine:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
techmap -map +/techmap.v -map +/sf2/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
map_ffs:
techmap -D NO_LUT -map +/sf2/cells_map.v
opt_expr -mux_undef
simplemap
map_luts:
abc -lut 4
clean
map_cells:
techmap -map +/sf2/cells_map.v
clean
map_iobs:
sf2_iobs [-clkbuf] (unless -noiobs)
clean
check:
hierarchy -check
stat
check -noinit
edif:
write_edif -gndvccy <file-name>
vlog:
write_verilog <file-name>
json:
write_json <file-name>
\end{lstlisting}
\section{synth\_xilinx -- synthesis for Xilinx FPGAs}
\label{cmd:synth_xilinx}
\begin{lstlisting}[numbers=left,frame=single]
synth_xilinx [options]
This command runs synthesis for Xilinx FPGAs. This command does not operate on
partly selected designs. At the moment this command creates netlists that are
compatible with 7-Series Xilinx devices.
-top <module>
use the specified module as top module
-family <family>
run synthesis for the specified Xilinx architecture
generate the synthesis netlist for the specified family.
supported values:
- xcup: Ultrascale Plus
- xcu: Ultrascale
- xc7: Series 7 (default)
- xc6s: Spartan 6
- xc6v: Virtex 6
- xc5v: Virtex 5 (EXPERIMENTAL)
- xc4v: Virtex 4 (EXPERIMENTAL)
- xc3sda: Spartan 3A DSP (EXPERIMENTAL)
- xc3sa: Spartan 3A (EXPERIMENTAL)
- xc3se: Spartan 3E (EXPERIMENTAL)
- xc3s: Spartan 3 (EXPERIMENTAL)
- xc2vp: Virtex 2 Pro (EXPERIMENTAL)
- xc2v: Virtex 2 (EXPERIMENTAL)
- xcve: Virtex E, Spartan 2E (EXPERIMENTAL)
- xcv: Virtex, Spartan 2 (EXPERIMENTAL)
-edif <file>
write the design to the specified edif file. writing of an output file
is omitted if this parameter is not specified.
-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.
-vpr
generate an output netlist (and BLIF file) suitable for VPR
(this feature is experimental and incomplete)
-ise
generate an output netlist suitable for ISE
-nobram
do not use block RAM cells in output netlist
-nolutram
do not use distributed RAM cells in output netlist
-nosrl
do not use distributed SRL cells in output netlist
-nocarry
do not use XORCY/MUXCY/CARRY4 cells in output netlist
-nowidelut
do not use MUXF[5-9] resources to implement LUTs larger than native for the target
-nodsp
do not use DSP48*s to implement multipliers and associated logic
-noiopad
disable I/O buffer insertion (useful for hierarchical or
out-of-context flows)
-noclkbuf
disable automatic clock buffer insertion
-uram
infer URAM288s for large memories (xcup only)
-widemux <int>
enable inference of hard multiplexer resources (MUXF[78]) for muxes at or
above this number of inputs (minimum value 2, recommended value >= 5).
default: 0 (no inference)
-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.
-flatten
flatten design before synthesis
-dff
run 'abc'/'abc9' with -dff option
-retime
run 'abc' with '-D 1' option to enable flip-flop retiming.
implies -dff.
-abc9
use new ABC9 flow (EXPERIMENTAL)
The following commands are executed by this synthesis command:
begin:
read_verilog -lib -specify +/xilinx/cells_sim.v
read_verilog -lib +/xilinx/cells_xtra.v
hierarchy -check -auto-top
prepare:
proc
flatten (with '-flatten')
tribuf -logic
deminout
opt_expr
opt_clean
check
opt
wreduce [-keepdc] (option for '-widemux')
peepopt
opt_clean
muxpack ('-widemux' only)
pmux2shiftx (skip if '-nosrl' and '-widemux=0')
clean (skip if '-nosrl' and '-widemux=0')
map_dsp: (skip if '-nodsp')
memory_dff
techmap -map +/mul2dsp.v -map +/xilinx/{family}_dsp_map.v {options}
select a:mul2dsp
setattr -unset mul2dsp
opt_expr -fine
wreduce
select -clear
xilinx_dsp -family <family>
chtype -set $mul t:$__soft_mul
coarse:
techmap -map +/cmp2lut.v -map +/cmp2lcu.v -D LUT_WIDTH=[46]
alumacc
share
opt
fsm
opt -fast
memory -nomap
opt_clean
map_uram: (only if '-uram')
memory_bram -rules +/xilinx/{family}_urams.txt
techmap -map +/xilinx/{family}_urams_map.v
map_bram: (skip if '-nobram')
memory_bram -rules +/xilinx/{family}_brams.txt
techmap -map +/xilinx/{family}_brams_map.v
map_lutram: (skip if '-nolutram')
memory_bram -rules +/xilinx/lut[46]_lutrams.txt
techmap -map +/xilinx/lutrams_map.v
map_ffram:
simplemap t:$dff t:$adff t:$mux
dff2dffs [-match-init] (-match-init for xc6s only)
opt -fast -full
memory_map
fine:
dff2dffe -direct-match $_DFF_* -direct-match $__DFFS_*
muxcover <internal options> ('-widemux' only)
opt -full
xilinx_srl -variable -minlen 3 (skip if '-nosrl')
techmap -map +/techmap.v -D LUT_SIZE=[46] [-map +/xilinx/mux_map.v] -map +/xilinx/arith_map.v
opt -fast
map_cells:
iopadmap -bits -outpad OBUF I:O -inpad IBUF O:I -toutpad $__XILINX_TOUTPAD OE:I:O -tinoutpad $__XILINX_TINOUTPAD OE:O:I:IO A:top (skip if '-noiopad')
techmap -map +/techmap.v -map +/xilinx/cells_map.v
clean
map_ffs:
techmap -map +/xilinx/{family}_ff_map.v ('-abc9' only)
map_luts:
opt_expr -mux_undef
abc -luts 2:2,3,6:5[,10,20] [-dff] [-D 1] (option for 'nowidelut', '-dff', '-retime')
clean
xilinx_srl -fixed -minlen 3 (skip if '-nosrl')
techmap -map +/xilinx/lut_map.v -map +/xilinx/cells_map.v -map +/xilinx/{family}_ff_map.v -D LUT_WIDTH=[46]
xilinx_dffopt [-lut4]
opt_lut_ins -tech xilinx
finalize:
clkbufmap -buf BUFG O:I (skip if '-noclkbuf')
extractinv -inv INV O:I (only if '-ise')
clean
check:
hierarchy -check
stat -tech xilinx
check -noinit
edif:
write_edif -pvector bra
blif:
write_blif
\end{lstlisting}
\section{tcl -- execute a TCL script file}
\label{cmd:tcl}
\begin{lstlisting}[numbers=left,frame=single]
tcl <filename> [args]
This command executes the tcl commands in the specified file.
Use 'yosys cmd' to run the yosys command 'cmd' from tcl.
The tcl command 'yosys -import' can be used to import all yosys
commands directly as tcl commands to the tcl shell. Yosys commands
'proc' and 'rename' are wrapped to tcl commands 'procs' and 'renames'
in order to avoid a name collision with the built in commands.
If any arguments are specified, these arguments are provided to the script via
the standard $argc and $argv variables.
\end{lstlisting}
\section{techmap -- generic technology mapper}
\label{cmd:techmap}
\begin{lstlisting}[numbers=left,frame=single]
techmap [-map filename] [selection]
This pass implements a very simple technology mapper that replaces cells in
the design with implementations given in form of a Verilog or ilang source
file.
-map filename
the library of cell implementations to be used.
without this parameter a builtin library is used that
transforms the internal RTL cells to the internal gate
library.
-map %<design-name>
like -map above, but with an in-memory design instead of a file.
-extern
load the cell implementations as separate modules into the design
instead of inlining them.
-max_iter <number>
only run the specified number of iterations on each module.
default: unlimited
-recursive
instead of the iterative breadth-first algorithm use a recursive
depth-first algorithm. both methods should yield equivalent results,
but may differ in performance.
-autoproc
Automatically call "proc" on implementations that contain processes.
-wb
Ignore the 'whitebox' attribute on cell implementations.
-assert
this option will cause techmap to exit with an error if it can't map
a selected cell. only cell types that end on an underscore are accepted
as final cell types by this mode.
-D <define>, -I <incdir>
this options are passed as-is to the Verilog frontend for loading the
map file. Note that the Verilog frontend is also called with the
'-nooverwrite' option set.
When a module in the map file has the 'techmap_celltype' attribute set, it will
match cells with a type that match the text value of this attribute. Otherwise
the module name will be used to match the cell.
When a module in the map file has the 'techmap_simplemap' attribute set, techmap
will use 'simplemap' (see 'help simplemap') to map cells matching the module.
When a module in the map file has the 'techmap_maccmap' attribute set, techmap
will use 'maccmap' (see 'help maccmap') to map cells matching the module.
When a module in the map file has the 'techmap_wrap' attribute set, techmap
will create a wrapper for the cell and then run the command string that the
attribute is set to on the wrapper module.
When a port on a module in the map file has the 'techmap_autopurge' attribute
set, and that port is not connected in the instantiation that is mapped, then
then a cell port connected only to such wires will be omitted in the mapped
version of the circuit.
All wires in the modules from the map file matching the pattern _TECHMAP_*
or *._TECHMAP_* are special wires that are used to pass instructions from
the mapping module to the techmap command. At the moment the following special
wires are supported:
_TECHMAP_FAIL_
When this wire is set to a non-zero constant value, techmap will not
use this module and instead try the next module with a matching
'techmap_celltype' attribute.
When such a wire exists but does not have a constant value after all
_TECHMAP_DO_* commands have been executed, an error is generated.
_TECHMAP_DO_*
This wires are evaluated in alphabetical order. The constant text value
of this wire is a yosys command (or sequence of commands) that is run
by techmap on the module. A common use case is to run 'proc' on modules
that are written using always-statements.
When such a wire has a non-constant value at the time it is to be
evaluated, an error is produced. That means it is possible for such a
wire to start out as non-constant and evaluate to a constant value
during processing of other _TECHMAP_DO_* commands.
A _TECHMAP_DO_* command may start with the special token 'CONSTMAP; '.
in this case techmap will create a copy for each distinct configuration
of constant inputs and shorted inputs at this point and import the
constant and connected bits into the map module. All further commands
are executed in this copy. This is a very convenient way of creating
optimized specializations of techmap modules without using the special
parameters described below.
A _TECHMAP_DO_* command may start with the special token 'RECURSION; '.
then techmap will recursively replace the cells in the module with their
implementation. This is not affected by the -max_iter option.
It is possible to combine both prefixes to 'RECURSION; CONSTMAP; '.
_TECHMAP_REMOVEINIT_<port-name>_
When this wire is set to a constant value, the init attribute of the wire(s)
connected to this port will be consumed. This wire must have the same
width as the given port, and for every bit that is set to 1 in the value,
the corresponding init attribute bit will be changed to 1'bx. If all
bits of an init attribute are left as x, it will be removed.
In addition to this special wires, techmap also supports special parameters in
modules in the map file:
_TECHMAP_CELLTYPE_
When a parameter with this name exists, it will be set to the type name
of the cell that matches the module.
_TECHMAP_CONSTMSK_<port-name>_
_TECHMAP_CONSTVAL_<port-name>_
When this pair of parameters is available in a module for a port, then
former has a 1-bit for each constant input bit and the latter has the
value for this bit. The unused bits of the latter are set to undef (x).
_TECHMAP_WIREINIT_<port-name>_
When a parameter with this name exists, it will be set to the initial
value of the wire(s) connected to the given port, as specified by the init
attribute. If the attribute doesn't exist, x will be filled for the
missing bits. To remove the init attribute bits used, use the
_TECHMAP_REMOVEINIT_*_ wires.
_TECHMAP_BITS_CONNMAP_
_TECHMAP_CONNMAP_<port-name>_
For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
This can be used to detect shorted inputs.
When a module in the map file has a parameter where the according cell in the
design has a port, the module from the map file is only used if the port in
the design is connected to a constant value. The parameter is then set to the
constant value.
A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
and attributes of the cell that is being replaced.
A cell with a name of the form `_TECHMAP_REPLACE_.<suffix>` in the map file will
be named thus but with the `_TECHMAP_REPLACE_' prefix substituted with the name
of the cell being replaced.
Similarly, a wire named in the form `_TECHMAP_REPLACE_.<suffix>` will cause a
new wire alias to be created and named as above but with the `_TECHMAP_REPLACE_'
prefix also substituted.
See 'help extract' for a pass that does the opposite thing.
See 'help flatten' for a pass that does flatten the design (which is
essentially techmap but using the design itself as map library).
\end{lstlisting}
\section{tee -- redirect command output to file}
\label{cmd:tee}
\begin{lstlisting}[numbers=left,frame=single]
tee [-q] [-o logfile|-a logfile] cmd
Execute the specified command, optionally writing the commands output to the
specified logfile(s).
-q
Do not print output to the normal destination (console and/or log file).
-o logfile
Write output to this file, truncate if exists.
-a logfile
Write output to this file, append if exists.
+INT, -INT
Add/subtract INT from the -v setting for this command.
\end{lstlisting}
\section{test\_abcloop -- automatically test handling of loops in abc command}
\label{cmd:test_abcloop}
\begin{lstlisting}[numbers=left,frame=single]
test_abcloop [options]
Test handling of logic loops in ABC.
-n {integer}
create this number of circuits and test them (default = 100).
-s {positive_integer}
use this value as rng seed value (default = unix time).
\end{lstlisting}
\section{test\_autotb -- generate simple test benches}
\label{cmd:test_autotb}
\begin{lstlisting}[numbers=left,frame=single]
test_autotb [options] [filename]
Automatically create primitive Verilog test benches for all modules in the
design. The generated testbenches toggle the input pins of the module in
a semi-random manner and dumps the resulting output signals.
This can be used to check the synthesis results for simple circuits by
comparing the testbench output for the input files and the synthesis results.
The backend automatically detects clock signals. Additionally a signal can
be forced to be interpreted as clock signal by setting the attribute
'gentb_clock' on the signal.
The attribute 'gentb_constant' can be used to force a signal to a constant
value after initialization. This can e.g. be used to force a reset signal
low in order to explore more inner states in a state machine.
The attribute 'gentb_skip' can be attached to modules to suppress testbench
generation.
-n <int>
number of iterations the test bench should run (default = 1000)
-seed <int>
seed used for pseudo-random number generation (default = 0).
a value of 0 will cause an arbitrary seed to be chosen, based on
the current system time.
\end{lstlisting}
\section{test\_cell -- automatically test the implementation of a cell type}
\label{cmd:test_cell}
\begin{lstlisting}[numbers=left,frame=single]
test_cell [options] {cell-types}
Tests the internal implementation of the given cell type (for example '$add')
by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..
Run with 'all' instead of a cell type to run the test on all supported
cell types. Use for example 'all /$add' for all cell types except $add.
-n {integer}
create this number of cell instances and test them (default = 100).
-s {positive_integer}
use this value as rng seed value (default = unix time).
-f {ilang_file}
don't generate circuits. instead load the specified ilang file.
-w {filename_prefix}
don't test anything. just generate the circuits and write them
to ilang files with the specified prefix
-map {filename}
pass this option to techmap.
-simlib
use "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc"
-aigmap
instead of calling "techmap", call "aigmap"
-muxdiv
when creating test benches with dividers, create an additional mux
to mask out the division-by-zero case
-script {script_file}
instead of calling "techmap", call "script {script_file}".
-const
set some input bits to random constant values
-nosat
do not check SAT model or run SAT equivalence checking
-noeval
do not check const-eval models
-edges
test cell edges db creator against sat-based implementation
-v
print additional debug information to the console
-vlog {filename}
create a Verilog test bench to test simlib and write_verilog
\end{lstlisting}
\section{test\_pmgen -- test pass for pmgen}
\label{cmd:test_pmgen}
\begin{lstlisting}[numbers=left,frame=single]
test_pmgen -reduce_chain [options] [selection]
Demo for recursive pmgen patterns. Map chains of AND/OR/XOR to $reduce_*.
test_pmgen -reduce_tree [options] [selection]
Demo for recursive pmgen patterns. Map trees of AND/OR/XOR to $reduce_*.
test_pmgen -eqpmux [options] [selection]
Demo for recursive pmgen patterns. Optimize EQ/NE/PMUX circuits.
test_pmgen -generate [options] <pattern_name>
Create modules that match the specified pattern.
\end{lstlisting}
\section{torder -- print cells in topological order}
\label{cmd:torder}
\begin{lstlisting}[numbers=left,frame=single]
torder [options] [selection]
This command prints the selected cells in topological order.
-stop <cell_type> <cell_port>
do not use the specified cell port in topological sorting
-noautostop
by default Q outputs of internal FF cells and memory read port outputs
are not used in topological sorting. this option deactivates that.
\end{lstlisting}
\section{trace -- redirect command output to file}
\label{cmd:trace}
\begin{lstlisting}[numbers=left,frame=single]
trace cmd
Execute the specified command, logging all changes the command performs on
the design in real time.
\end{lstlisting}
\section{tribuf -- infer tri-state buffers}
\label{cmd:tribuf}
\begin{lstlisting}[numbers=left,frame=single]
tribuf [options] [selection]
This pass transforms $mux cells with 'z' inputs to tristate buffers.
-merge
merge multiple tri-state buffers driving the same net
into a single buffer.
-logic
convert tri-state buffers that do not drive output ports
to non-tristate logic. this option implies -merge.
\end{lstlisting}
\section{uniquify -- create unique copies of modules}
\label{cmd:uniquify}
\begin{lstlisting}[numbers=left,frame=single]
uniquify [selection]
By default, a module that is instantiated by several other modules is only
kept once in the design. This preserves the original modularity of the design
and reduces the overall size of the design in memory. But it prevents certain
optimizations and other operations on the design. This pass creates unique
modules for all selected cells. The created modules are marked with the
'unique' attribute.
This commands only operates on modules that by themself have the 'unique'
attribute set (the 'top' module is unique implicitly).
\end{lstlisting}
\section{verific -- load Verilog and VHDL designs using Verific}
\label{cmd:verific}
\begin{lstlisting}[numbers=left,frame=single]
verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv} <verilog-file>..
Load the specified Verilog/SystemVerilog files into Verific.
All files specified in one call to this command are one compilation unit.
Files passed to different calls to this command are treated as belonging to
different compilation units.
Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.
The macros SYNTHESIS and VERIFIC are defined implicitly.
verific -formal <verilog-file>..
Like -sv, but define FORMAL instead of SYNTHESIS.
verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl} <vhdl-file>..
Load the specified VHDL files into Verific.
verific [-work <libname>] {-sv|-vhdl|...} <hdl-file>
Load the specified Verilog/SystemVerilog/VHDL file into the specified library.
(default library when -work is not present: "work")
verific [-L <libname>] {-sv|-vhdl|...} <hdl-file>
Look up external definitions in the specified library.
(-L may be used more than once)
verific -vlog-incdir <directory>..
Add Verilog include directories.
verific -vlog-libdir <directory>..
Add Verilog library directories. Verific will search in this directories to
find undefined modules.
verific -vlog-define <macro>[=<value>]..
Add Verilog defines.
verific -vlog-undef <macro>..
Remove Verilog defines previously set with -vlog-define.
verific -set-error <msg_id>..
verific -set-warning <msg_id>..
verific -set-info <msg_id>..
verific -set-ignore <msg_id>..
Set message severity. <msg_id> is the string in square brackets when a message
is printed, such as VERI-1209.
verific -import [options] <top-module>..
Elaborate the design for the specified top modules, import to Yosys and
reset the internal state of Verific.
Import options:
-all
Elaborate all modules, not just the hierarchy below the given top
modules. With this option the list of modules to import is optional.
-gates
Create a gate-level netlist.
-flatten
Flatten the design in Verific before importing.
-extnets
Resolve references to external nets by adding module ports as needed.
-autocover
Generate automatic cover statements for all asserts
-fullinit
Keep all register initializations, even those for non-FF registers.
-chparam name value
Elaborate the specified top modules (all modules when -all given) using
this parameter value. Modules on which this parameter does not exist will
cause Verific to produce a VERI-1928 or VHDL-1676 message. This option
can be specified multiple times to override multiple parameters.
String values must be passed in double quotes (").
-v, -vv
Verbose log messages. (-vv is even more verbose than -v.)
The following additional import options are useful for debugging the Verific
bindings (for Yosys and/or Verific developers):
-k
Keep going after an unsupported verific primitive is found. The
unsupported primitive is added as blockbox module to the design.
This will also add all SVA related cells to the design parallel to
the checker logic inferred by it.
-V
Import Verific netlist as-is without translating to Yosys cell types.
-nosva
Ignore SVA properties, do not infer checker logic.
-L <int>
Maximum number of ctrl bits for SVA checker FSMs (default=16).
-n
Keep all Verific names on instances and nets. By default only
user-declared names are preserved.
-d <dump_file>
Dump the Verific netlist as a verilog file.
Use YosysHQ Tabby CAD Suite if you need Yosys+Verific.
https://www.yosyshq.com/\n");
Contact office@yosyshq.com for free evaluation
binaries of YosysHQ Tabby CAD Suite.
\end{lstlisting}
\section{verilog\_defaults -- set default options for read\_verilog}
\label{cmd:verilog_defaults}
\begin{lstlisting}[numbers=left,frame=single]
verilog_defaults -add [options]
Add the specified options to the list of default options to read_verilog.
verilog_defaults -clear
Clear the list of Verilog default options.
verilog_defaults -push
verilog_defaults -pop
Push or pop the list of default options to a stack. Note that -push does
not imply -clear.
\end{lstlisting}
\section{verilog\_defines -- define and undefine verilog defines}
\label{cmd:verilog_defines}
\begin{lstlisting}[numbers=left,frame=single]
verilog_defines [options]
Define and undefine verilog preprocessor macros.
-Dname[=definition]
define the preprocessor symbol 'name' and set its optional value
'definition'
-Uname[=definition]
undefine the preprocessor symbol 'name'
-reset
clear list of defined preprocessor symbols
-list
list currently defined preprocessor symbols
\end{lstlisting}
\section{wbflip -- flip the whitebox attribute}
\label{cmd:wbflip}
\begin{lstlisting}[numbers=left,frame=single]
wbflip [selection]
Flip the whitebox attribute on selected cells. I.e. if it's set, unset it, and
vice-versa. Blackbox cells are not effected by this command.
\end{lstlisting}
\section{wreduce -- reduce the word size of operations if possible}
\label{cmd:wreduce}
\begin{lstlisting}[numbers=left,frame=single]
wreduce [options] [selection]
This command reduces the word size of operations. For example it will replace
the 32 bit adders in the following code with adders of more appropriate widths:
module test(input [3:0] a, b, c, output [7:0] y);
assign y = a + b + c + 1;
endmodule
Options:
-memx
Do not change the width of memory address ports. Use this options in
flows that use the 'memory_memx' pass.
-keepdc
Do not optimize explicit don't-care values.
\end{lstlisting}
\section{write\_aiger -- write design to AIGER file}
\label{cmd:write_aiger}
\begin{lstlisting}[numbers=left,frame=single]
write_aiger [options] [filename]
Write the current design to an AIGER file. The design must be flattened and
must not contain any cell types except $_AND_, $_NOT_, simple FF types,
$assert and $assume cells, and $initstate cells.
$assert and $assume cells are converted to AIGER bad state properties and
invariant constraints.
-ascii
write ASCII version of AIGER format
-zinit
convert FFs to zero-initialized FFs, adding additional inputs for
uninitialized FFs.
-miter
design outputs are AIGER bad state properties
-symbols
include a symbol table in the generated AIGER file
-map <filename>
write an extra file with port and latch symbols
-vmap <filename>
like -map, but more verbose
-I, -O, -B, -L
If the design contains no input/output/assert/flip-flop then create one
dummy input/output/bad_state-pin or latch to make the tools reading the
AIGER file happy.
\end{lstlisting}
\section{write\_blif -- write design to BLIF file}
\label{cmd:write_blif}
\begin{lstlisting}[numbers=left,frame=single]
write_blif [options] [filename]
Write the current design to an BLIF file.
-top top_module
set the specified module as design top module
-buf <cell-type> <in-port> <out-port>
use cells of type <cell-type> with the specified port names for buffers
-unbuf <cell-type> <in-port> <out-port>
replace buffer cells with the specified name and port names with
a .names statement that models a buffer
-true <cell-type> <out-port>
-false <cell-type> <out-port>
-undef <cell-type> <out-port>
use the specified cell types to drive nets that are constant 1, 0, or
undefined. when '-' is used as <cell-type>, then <out-port> specifies
the wire name to be used for the constant signal and no cell driving
that wire is generated. when '+' is used as <cell-type>, then <out-port>
specifies the wire name to be used for the constant signal and a .names
statement is generated to drive the wire.
-noalias
if a net name is aliasing another net name, then by default a net
without fanout is created that is driven by the other net. This option
suppresses the generation of this nets without fanout.
The following options can be useful when the generated file is not going to be
read by a BLIF parser but a custom tool. It is recommended to not name the output
file *.blif when any of this options is used.
-icells
do not translate Yosys's internal gates to generic BLIF logic
functions. Instead create .subckt or .gate lines for all cells.
-gates
print .gate instead of .subckt lines for all cells that are not
instantiations of other modules from this design.
-conn
do not generate buffers for connected wires. instead use the
non-standard .conn statement.
-attr
use the non-standard .attr statement to write cell attributes
-param
use the non-standard .param statement to write cell parameters
-cname
use the non-standard .cname statement to write cell names
-iname, -iattr
enable -cname and -attr functionality for .names statements
(the .cname and .attr statements will be included in the BLIF
output after the truth table for the .names statement)
-blackbox
write blackbox cells with .blackbox statement.
-impltf
do not write definitions for the $true, $false and $undef wires.
\end{lstlisting}
\section{write\_btor -- write design to BTOR file}
\label{cmd:write_btor}
\begin{lstlisting}[numbers=left,frame=single]
write_btor [options] [filename]
Write a BTOR description of the current design.
-v
Add comments and indentation to BTOR output file
-s
Output only a single bad property for all asserts
-c
Output cover properties using 'bad' statements instead of asserts
-i <filename>
Create additional info file with auxiliary information
\end{lstlisting}
\section{write\_cxxrtl -- convert design to C++ RTL simulation}
\label{cmd:write_cxxrtl}
\begin{lstlisting}[numbers=left,frame=single]
write_cxxrtl [options] [filename]
Write C++ code for simulating the design. The generated code requires a driver;
the following simple driver is provided as an example:
#include "top.cc"
int main() {
cxxrtl_design::p_top top;
while (1) {
top.p_clk.next = value<1> {1u};
top.step();
top.p_clk.next = value<1> {0u};
top.step();
}
}
The following options are supported by this backend:
-O <level>
set the optimization level. the default is -O5. higher optimization
levels dramatically decrease compile and run time, and highest level
possible for a design should be used.
-O0
no optimization.
-O1
elide internal wires if possible.
-O2
like -O1, and localize internal wires if possible.
-O3
like -O2, and elide public wires not marked (*keep*) if possible.
-O4
like -O3, and localize public wires not marked (*keep*) if possible.
-O5
like -O4, and run `splitnets -driver; opt_clean -purge` first.
\end{lstlisting}
\section{write\_edif -- write design to EDIF netlist file}
\label{cmd:write_edif}
\begin{lstlisting}[numbers=left,frame=single]
write_edif [options] [filename]
Write the current design to an EDIF netlist file.
-top top_module
set the specified module as design top module
-nogndvcc
do not create "GND" and "VCC" cells. (this will produce an error
if the design contains constant nets. use "hilomap" to map to custom
constant drivers first)
-gndvccy
create "GND" and "VCC" cells with "Y" outputs. (the default is "G"
for "GND" and "P" for "VCC".)
-attrprop
create EDIF properties for cell attributes
-pvector {par|bra|ang}
sets the delimiting character for module port rename clauses to
parentheses, square brackets, or angle brackets.
Unfortunately there are different "flavors" of the EDIF file format. This
command generates EDIF files for the Xilinx place&route tools. It might be
necessary to make small modifications to this command when a different tool
is targeted.
\end{lstlisting}
\section{write\_file -- write a text to a file}
\label{cmd:write_file}
\begin{lstlisting}[numbers=left,frame=single]
write_file [options] output_file [input_file]
Write the text from the input file to the output file.
-a
Append to output file (instead of overwriting)
Inside a script the input file can also can a here-document:
write_file hello.txt <<EOT
Hello World!
EOT
\end{lstlisting}
\section{write\_firrtl -- write design to a FIRRTL file}
\label{cmd:write_firrtl}
\begin{lstlisting}[numbers=left,frame=single]
write_firrtl [options] [filename]
Write a FIRRTL netlist of the current design.
The following commands are executed by this command:
pmuxtree
\end{lstlisting}
\section{write\_ilang -- write design to ilang file}
\label{cmd:write_ilang}
\begin{lstlisting}[numbers=left,frame=single]
write_ilang [filename]
Write the current design to an 'ilang' file. (ilang is a text representation
of a design in yosys's internal format.)
-selected
only write selected parts of the design.
\end{lstlisting}
\section{write\_intersynth -- write design to InterSynth netlist file}
\label{cmd:write_intersynth}
\begin{lstlisting}[numbers=left,frame=single]
write_intersynth [options] [filename]
Write the current design to an 'intersynth' netlist file. InterSynth is
a tool for Coarse-Grain Example-Driven Interconnect Synthesis.
-notypes
do not generate celltypes and conntypes commands. i.e. just output
the netlists. this is used for postsilicon synthesis.
-lib <verilog_or_ilang_file>
Use the specified library file for determining whether cell ports are
inputs or outputs. This option can be used multiple times to specify
more than one library.
-selected
only write selected modules. modules must be selected entirely or
not at all.
http://bygone.clairexen.net/intersynth/
\end{lstlisting}
\section{write\_json -- write design to a JSON file}
\label{cmd:write_json}
\begin{lstlisting}[numbers=left,frame=single]
write_json [options] [filename]
Write a JSON netlist of the current design.
-aig
include AIG models for the different gate types
-compat-int
emit 32-bit or smaller fully-defined parameter values directly
as JSON numbers (for compatibility with old parsers)
The general syntax of the JSON output created by this command is as follows:
{
"modules": {
<module_name>: {
"ports": {
<port_name>: <port_details>,
...
},
"cells": {
<cell_name>: <cell_details>,
...
},
"netnames": {
<net_name>: <net_details>,
...
}
}
},
"models": {
...
},
}
Where <port_details> is:
{
"direction": <"input" | "output" | "inout">,
"bits": <bit_vector>
}
And <cell_details> is:
{
"hide_name": <1 | 0>,
"type": <cell_type>,
"parameters": {
<parameter_name>: <parameter_value>,
...
},
"attributes": {
<attribute_name>: <attribute_value>,
...
},
"port_directions": {
<port_name>: <"input" | "output" | "inout">,
...
},
"connections": {
<port_name>: <bit_vector>,
...
},
}
And <net_details> is:
{
"hide_name": <1 | 0>,
"bits": <bit_vector>
}
The "hide_name" fields are set to 1 when the name of this cell or net is
automatically created and is likely not of interest for a regular user.
The "port_directions" section is only included for cells for which the
interface is known.
Module and cell ports and nets can be single bit wide or vectors of multiple
bits. Each individual signal bit is assigned a unique integer. The <bit_vector>
values referenced above are vectors of this integers. Signal bits that are
connected to a constant driver are denoted as string "0", "1", "x", or
"z" instead of a number.
Bit vectors (including integers) are written as string holding the binaryrepresentation of the value. Strings are written as strings, with an appendedblank in cases of strings of the form /[01xz]* */.
For example the following Verilog code:
module test(input x, y);
(* keep *) foo #(.P(42), .Q(1337))
foo_inst (.A({x, y}), .B({y, x}), .C({4'd10, {4{x}}}));
endmodule
Translates to the following JSON output:
{
"modules": {
"test": {
"ports": {
"x": {
"direction": "input",
"bits": [ 2 ]
},
"y": {
"direction": "input",
"bits": [ 3 ]
}
},
"cells": {
"foo_inst": {
"hide_name": 0,
"type": "foo",
"parameters": {
"Q": 1337,
"P": 42
},
"attributes": {
"keep": 1,
"src": "test.v:2"
},
"connections": {
"C": [ 2, 2, 2, 2, "0", "1", "0", "1" ],
"B": [ 2, 3 ],
"A": [ 3, 2 ]
}
}
},
"netnames": {
"y": {
"hide_name": 0,
"bits": [ 3 ],
"attributes": {
"src": "test.v:1"
}
},
"x": {
"hide_name": 0,
"bits": [ 2 ],
"attributes": {
"src": "test.v:1"
}
}
}
}
}
}
The models are given as And-Inverter-Graphs (AIGs) in the following form:
"models": {
<model_name>: [
/* 0 */ [ <node-spec> ],
/* 1 */ [ <node-spec> ],
/* 2 */ [ <node-spec> ],
...
],
...
},
The following node-types may be used:
[ "port", <portname>, <bitindex>, <out-list> ]
- the value of the specified input port bit
[ "nport", <portname>, <bitindex>, <out-list> ]
- the inverted value of the specified input port bit
[ "and", <node-index>, <node-index>, <out-list> ]
- the ANDed value of the specified nodes
[ "nand", <node-index>, <node-index>, <out-list> ]
- the inverted ANDed value of the specified nodes
[ "true", <out-list> ]
- the constant value 1
[ "false", <out-list> ]
- the constant value 0
All nodes appear in topological order. I.e. only nodes with smaller indices
are referenced by "and" and "nand" nodes.
The optional <out-list> at the end of a node specification is a list of
output portname and bitindex pairs, specifying the outputs driven by this node.
For example, the following is the model for a 3-input 3-output $reduce_and cell
inferred by the following code:
module test(input [2:0] in, output [2:0] out);
assign in = &out;
endmodule
"$reduce_and:3U:3": [
/* 0 */ [ "port", "A", 0 ],
/* 1 */ [ "port", "A", 1 ],
/* 2 */ [ "and", 0, 1 ],
/* 3 */ [ "port", "A", 2 ],
/* 4 */ [ "and", 2, 3, "Y", 0 ],
/* 5 */ [ "false", "Y", 1, "Y", 2 ]
]
Future version of Yosys might add support for additional fields in the JSON
format. A program processing this format must ignore all unknown fields.
\end{lstlisting}
\section{write\_simplec -- convert design to simple C code}
\label{cmd:write_simplec}
\begin{lstlisting}[numbers=left,frame=single]
write_simplec [options] [filename]
Write simple C code for simulating the design. The C code written can be used to
simulate the design in a C environment, but the purpose of this command is to
generate code that works well with C-based formal verification.
-verbose
this will print the recursive walk used to export the modules.
-i8, -i16, -i32, -i64
set the maximum integer bit width to use in the generated code.
THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}
\section{write\_smt2 -- write design to SMT-LIBv2 file}
\label{cmd:write_smt2}
\begin{lstlisting}[numbers=left,frame=single]
write_smt2 [options] [filename]
Write a SMT-LIBv2 [1] description of the current design. For a module with name
'<mod>' this will declare the sort '<mod>_s' (state of the module) and will
define and declare functions operating on that state.
The following SMT2 functions are generated for a module with name '<mod>'.
Some declarations/definitions are printed with a special comment. A prover
using the SMT2 files can use those comments to collect all relevant metadata
about the design.
; yosys-smt2-module <mod>
(declare-sort |<mod>_s| 0)
The sort representing a state of module <mod>.
(define-fun |<mod>_h| ((state |<mod>_s|)) Bool (...))
This function must be asserted for each state to establish the
design hierarchy.
; yosys-smt2-input <wirename> <width>
; yosys-smt2-output <wirename> <width>
; yosys-smt2-register <wirename> <width>
; yosys-smt2-wire <wirename> <width>
(define-fun |<mod>_n <wirename>| (|<mod>_s|) (_ BitVec <width>))
(define-fun |<mod>_n <wirename>| (|<mod>_s|) Bool)
For each port, register, and wire with the 'keep' attribute set an
accessor function is generated. Single-bit wires are returned as Bool,
multi-bit wires as BitVec.
; yosys-smt2-cell <submod> <instancename>
(declare-fun |<mod>_h <instancename>| (|<mod>_s|) |<submod>_s|)
There is a function like that for each hierarchical instance. It
returns the sort that represents the state of the sub-module that
implements the instance.
(declare-fun |<mod>_is| (|<mod>_s|) Bool)
This function must be asserted 'true' for initial states, and 'false'
otherwise.
(define-fun |<mod>_i| ((state |<mod>_s|)) Bool (...))
This function must be asserted 'true' for initial states. For
non-initial states it must be left unconstrained.
(define-fun |<mod>_t| ((state |<mod>_s|) (next_state |<mod>_s|)) Bool (...))
This function evaluates to 'true' if the states 'state' and
'next_state' form a valid state transition.
(define-fun |<mod>_a| ((state |<mod>_s|)) Bool (...))
This function evaluates to 'true' if all assertions hold in the state.
(define-fun |<mod>_u| ((state |<mod>_s|)) Bool (...))
This function evaluates to 'true' if all assumptions hold in the state.
; yosys-smt2-assert <id> <filename:linenum>
(define-fun |<mod>_a <id>| ((state |<mod>_s|)) Bool (...))
Each $assert cell is converted into one of this functions. The function
evaluates to 'true' if the assert statement holds in the state.
; yosys-smt2-assume <id> <filename:linenum>
(define-fun |<mod>_u <id>| ((state |<mod>_s|)) Bool (...))
Each $assume cell is converted into one of this functions. The function
evaluates to 'true' if the assume statement holds in the state.
; yosys-smt2-cover <id> <filename:linenum>
(define-fun |<mod>_c <id>| ((state |<mod>_s|)) Bool (...))
Each $cover cell is converted into one of this functions. The function
evaluates to 'true' if the cover statement is activated in the state.
Options:
-verbose
this will print the recursive walk used to export the modules.
-stbv
Use a BitVec sort to represent a state instead of an uninterpreted
sort. As a side-effect this will prevent use of arrays to model
memories.
-stdt
Use SMT-LIB 2.6 style datatypes to represent a state instead of an
uninterpreted sort.
-nobv
disable support for BitVec (FixedSizeBitVectors theory). without this
option multi-bit wires are represented using the BitVec sort and
support for coarse grain cells (incl. arithmetic) is enabled.
-nomem
disable support for memories (via ArraysEx theory). this option is
implied by -nobv. only $mem cells without merged registers in
read ports are supported. call "memory" with -nordff to make sure
that no registers are merged into $mem read ports. '<mod>_m' functions
will be generated for accessing the arrays that are used to represent
memories.
-wires
create '<mod>_n' functions for all public wires. by default only ports,
registers, and wires with the 'keep' attribute are exported.
-tpl <template_file>
use the given template file. the line containing only the token '%%'
is replaced with the regular output of this command.
[1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David
R. Cok's tutorial: http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf
---------------------------------------------------------------------------
Example:
Consider the following module (test.v). We want to prove that the output can
never transition from a non-zero value to a zero value.
module test(input clk, output reg [3:0] y);
always @(posedge clk)
y <= (y << 1) | ^y;
endmodule
For this proof we create the following template (test.tpl).
; we need QF_UFBV for this proof
(set-logic QF_UFBV)
; insert the auto-generated code here
%%
; declare two state variables s1 and s2
(declare-fun s1 () test_s)
(declare-fun s2 () test_s)
; state s2 is the successor of state s1
(assert (test_t s1 s2))
; we are looking for a model with y non-zero in s1
(assert (distinct (|test_n y| s1) #b0000))
; we are looking for a model with y zero in s2
(assert (= (|test_n y| s2) #b0000))
; is there such a model?
(check-sat)
The following yosys script will create a 'test.smt2' file for our proof:
read_verilog test.v
hierarchy -check; proc; opt; check -assert
write_smt2 -bv -tpl test.tpl test.smt2
Running 'cvc4 test.smt2' will print 'unsat' because y can never transition
from non-zero to zero in the test design.
\end{lstlisting}
\section{write\_smv -- write design to SMV file}
\label{cmd:write_smv}
\begin{lstlisting}[numbers=left,frame=single]
write_smv [options] [filename]
Write an SMV description of the current design.
-verbose
this will print the recursive walk used to export the modules.
-tpl <template_file>
use the given template file. the line containing only the token '%%'
is replaced with the regular output of this command.
THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}
\section{write\_spice -- write design to SPICE netlist file}
\label{cmd:write_spice}
\begin{lstlisting}[numbers=left,frame=single]
write_spice [options] [filename]
Write the current design to an SPICE netlist file.
-big_endian
generate multi-bit ports in MSB first order
(default is LSB first)
-neg net_name
set the net name for constant 0 (default: Vss)
-pos net_name
set the net name for constant 1 (default: Vdd)
-nc_prefix
prefix for not-connected nets (default: _NC)
-inames
include names of internal ($-prefixed) nets in outputs
(default is to use net numbers instead)
-top top_module
set the specified module as design top module
\end{lstlisting}
\section{write\_table -- write design as connectivity table}
\label{cmd:write_table}
\begin{lstlisting}[numbers=left,frame=single]
write_table [options] [filename]
Write the current design as connectivity table. The output is a tab-separated
ASCII table with the following columns:
module name
cell name
cell type
cell port
direction
signal
module inputs and outputs are output using cell type and port '-' and with
'pi' (primary input) or 'po' (primary output) or 'pio' as direction.
\end{lstlisting}
\section{write\_verilog -- write design to Verilog file}
\label{cmd:write_verilog}
\begin{lstlisting}[numbers=left,frame=single]
write_verilog [options] [filename]
Write the current design to a Verilog file.
-norename
without this option all internal object names (the ones with a dollar
instead of a backslash prefix) are changed to short names in the
format '_<number>_'.
-renameprefix <prefix>
insert this prefix in front of auto-generated instance names
-noattr
with this option no attributes are included in the output
-attr2comment
with this option attributes are included as comments in the output
-noexpr
without this option all internal cells are converted to Verilog
expressions.
-siminit
add initial statements with hierarchical refs to initialize FFs when
in -noexpr mode.
-nodec
32-bit constant values are by default dumped as decimal numbers,
not bit pattern. This option deactivates this feature and instead
will write out all constants in binary.
-decimal
dump 32-bit constants in decimal and without size and radix
-nohex
constant values that are compatible with hex output are usually
dumped as hex values. This option deactivates this feature and
instead will write out all constants in binary.
-nostr
Parameters and attributes that are specified as strings in the
original input will be output as strings by this back-end. This
deactivates this feature and instead will write string constants
as binary numbers.
-extmem
instead of initializing memories using assignments to individual
elements, use the '$readmemh' function to read initialization data
from a file. This data is written to a file named by appending
a sequential index to the Verilog filename and replacing the extension
with '.mem', e.g. 'write_verilog -extmem foo.v' writes 'foo-1.mem',
'foo-2.mem' and so on.
-defparam
use 'defparam' statements instead of the Verilog-2001 syntax for
cell parameters.
-blackboxes
usually modules with the 'blackbox' attribute are ignored. with
this option set only the modules with the 'blackbox' attribute
are written to the output file.
-selected
only write selected modules. modules must be selected entirely or
not at all.
-v
verbose output (print new names of all renamed wires and cells)
Note that RTLIL processes can't always be mapped directly to Verilog
always blocks. This frontend should only be used to export an RTLIL
netlist, i.e. after the "proc" pass has been used to convert all
processes to logic networks and registers. A warning is generated when
this command is called on a design with RTLIL processes.
\end{lstlisting}
\section{write\_xaiger -- write design to XAIGER file}
\label{cmd:write_xaiger}
\begin{lstlisting}[numbers=left,frame=single]
write_xaiger [options] [filename]
Write the top module (according to the (* top *) attribute or if only one module
is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, $_ABC9_FF_, ornon (* abc9_box_id *) cells will be converted into psuedo-inputs and
pseudo-outputs. Whitebox contents will be taken from the '<module-name>$holes'
module, if it exists.
-ascii
write ASCII version of AIGER format
-map <filename>
write an extra file with port and box symbols
\end{lstlisting}
\section{xilinx\_dffopt -- Xilinx: optimize FF control signal usage}
\label{cmd:xilinx_dffopt}
\begin{lstlisting}[numbers=left,frame=single]
xilinx_dffopt [options] [selection]
Converts hardware clock enable and set/reset signals on FFs to emulation
using LUTs, if doing so would improve area. Operates on post-techmap Xilinx
cells (LUT*, FD*).
-lut4
Assume a LUT4-based device (instead of a LUT6-based device).
\end{lstlisting}
\section{xilinx\_dsp -- Xilinx: pack resources into DSPs}
\label{cmd:xilinx_dsp}
\begin{lstlisting}[numbers=left,frame=single]
xilinx_dsp [options] [selection]
Pack input registers (A2, A1, B2, B1, C, D, AD; with optional enable/reset),
pipeline registers (M; with optional enable/reset), output registers (P; with
optional enable/reset), pre-adder and/or post-adder into Xilinx DSP resources.
Multiply-accumulate operations using the post-adder with feedback on the 'C'
input will be folded into the DSP. In this scenario only, the 'C' input can be
used to override the current accumulation result with a new value, which will
be added to the multiplier result to form the next accumulation result.
Use of the dedicated 'PCOUT' -> 'PCIN' cascade path is detected for 'P' -> 'C'
connections (optionally, where 'P' is right-shifted by 17-bits and used as an
input to the post-adder -- a pattern common for summing partial products to
implement wide multipliers). Limited support also exists for similar cascading
for A and B using '[AB]COUT' -> '[AB]CIN'. Currently, cascade chains are limited
to a maximum length of 20 cells, corresponding to the smallest Xilinx 7 Series
device.
This pass is a no-op if the scratchpad variable 'xilinx_dsp.multonly' is set
to 1.
Experimental feature: addition/subtractions less than 12 or 24 bits with the
'(* use_dsp="simd" *)' attribute attached to the output wire or attached to
the add/subtract operator will cause those operations to be implemented using
the 'SIMD' feature of DSPs.
Experimental feature: the presence of a `$ge' cell attached to the registered
P output implementing the operation "(P >= <power-of-2>)" will be transformed
into using the DSP48E1's pattern detector feature for overflow detection.
-family {xcup|xcu|xc7|xc6v|xc5v|xc4v|xc6s|xc3sda}
select the family to target
default: xc7
\end{lstlisting}
\section{xilinx\_srl -- Xilinx shift register extraction}
\label{cmd:xilinx_srl}
\begin{lstlisting}[numbers=left,frame=single]
xilinx_srl [options] [selection]
This pass converts chains of built-in flops (bit-level: $_DFF_[NP]_, $_DFFE_*
and word-level: $dff, $dffe) as well as Xilinx flops (FDRE, FDRE_1) into a
$__XILINX_SHREG cell. Chains must be of the same cell type, clock, clock polarity,
enable, and enable polarity (where relevant).
Flops with resets cannot be mapped to Xilinx devices and will not be inferred.
-minlen N
min length of shift register (default = 3)
-fixed
infer fixed-length shift registers.
-variable
infer variable-length shift registers (i.e. fixed-length shifts where
each element also fans-out to a $shiftx cell).
\end{lstlisting}
\section{zinit -- add inverters so all FF are zero-initialized}
\label{cmd:zinit}
\begin{lstlisting}[numbers=left,frame=single]
zinit [options] [selection]
Add inverters as needed to make all FFs zero-initialized.
-all
also add zero initialization to uninitialized FFs
\end{lstlisting}
|