1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
|
\section{Yosys by example -- Advanced Synthesis}
\begin{frame}
\sectionpage
\end{frame}
\begin{frame}{Overview}
This section contains 4 subsections:
\begin{itemize}
\item Using selections
\item Advanced uses of techmap
\item Coarse-grain synthesis
\item Automatic design changes
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Using selections}
\begin{frame}
\subsectionpage
\subsectionpagesuffix
\end{frame}
\subsubsection{Simple selections}
\begin{frame}[fragile]{\subsubsecname}
Most Yosys commands make use of the ``selection framework'' of Yosys. It can be used
to apply commands only to part of the design. For example:
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
delete # will delete the whole design, but
delete foobar # will only delete the module foobar.
\end{lstlisting}
\bigskip
The {\tt select} command can be used to create a selection for subsequent
commands. For example:
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select foobar # select the module foobar
delete # delete selected objects
select -clear # reset selection (select whole design)
\end{lstlisting}
\end{frame}
\subsubsection{Selection by object name}
\begin{frame}[fragile]{\subsubsecname}
The easiest way to select objects is by object name. This is usually only done
in synthesis scripts that are hand-tailored for a specific design.
\bigskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select foobar # select module foobar
select foo* # select all modules whose names start with foo
select foo*/bar* # select all objects matching bar* from modules matching foo*
select */clk # select objects named clk from all modules
\end{lstlisting}
\end{frame}
\subsubsection{Module and design context}
\begin{frame}[fragile]{\subsubsecname}
Commands can be executed in {\it module\/} or {\it design\/} context. Until now all
commands have been executed in design context. The {\tt cd} command can be used
to switch to module context.
\bigskip
In module context all commands only effect the active module. Objects in the module
are selected without the {\tt <module\_name>/} prefix. For example:
\bigskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
cd foo # switch to module foo
delete bar # delete object foo/bar
cd mycpu # switch to module mycpu
dump reg_* # print details on all objects whose names start with reg_
cd .. # switch back to design
\end{lstlisting}
\bigskip
Note: Most synthesis scripts never switch to module context. But it is a very powerful
tool for interactive design investigation.
\end{frame}
\subsubsection{Selecting by object property or type}
\begin{frame}[fragile]{\subsubsecname}
Special patterns can be used to select by object property or type. For example:
\bigskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select w:reg_* # select all wires whose names start with reg_
select a:foobar # select all objects with the attribute foobar set
select a:foobar=42 # select all objects with the attribute foobar set to 42
select A:blabla # select all modules with the attribute blabla set
select foo/t:$add # select all $add cells from the module foo
\end{lstlisting}
\bigskip
A complete list of this pattern expressions can be found in the command
reference to the {\tt select} command.
\end{frame}
\subsubsection{Combining selection}
\begin{frame}[fragile]{\subsubsecname}
When more than one selection expression is used in one statement, then they are
pushed on a stack. The final elements on the stack are combined into a union:
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select t:$dff r:WIDTH>1 # all cells of type $dff and/or with a parameter WIDTH > 1
\end{lstlisting}
\bigskip
Special \%-commands can be used to combine the elements on the stack:
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select t:$dff r:WIDTH>1 %i # all cells of type $dff *AND* with a parameter WIDTH > 1
\end{lstlisting}
\medskip
\begin{block}{Examples for {\tt \%}-codes (see {\tt help select} for full list)}
{\tt \%u} \dotfill union of top two elements on stack -- pop 2, push 1 \\
{\tt \%d} \dotfill difference of top two elements on stack -- pop 2, push 1 \\
{\tt \%i} \dotfill intersection of top two elements on stack -- pop 2, push 1 \\
{\tt \%n} \dotfill inverse of top element on stack -- pop 1, push 1 \\
\end{block}
\end{frame}
\subsubsection{Expanding selections}
\begin{frame}[fragile]{\subsubsecname}
Selections of cells and wires can be expanded along connections using {\tt \%}-codes
for selecting input cones ({\tt \%ci}), output cones ({\tt \%co}), or both ({\tt \%x}).
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
# select all wires that are inputs to $add cells
select t:$add %ci w:* %i
\end{lstlisting}
\bigskip
Additional constraints such as port names can be specified.
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
# select all wires that connect a "Q" output with a "D" input
select c:* %co:+[Q] w:* %i c:* %ci:+[D] w:* %i %i
# select the multiplexer tree that drives the signal 'state'
select state %ci*:+$mux,$pmux[A,B,Y]
\end{lstlisting}
\bigskip
See {\tt help select} for full documentation of this expressions.
\end{frame}
\subsubsection{Incremental selection}
\begin{frame}[fragile]{\subsubsecname}
Sometimes a selection can most easily be described by a series of add/delete operations.
The commands {\tt select -add} and {\tt select -del} respectively add or remove objects
from the current selection instead of overwriting it.
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select -none # start with an empty selection
select -add reg_* # select a bunch of objects
select -del reg_42 # but not this one
select -add state %ci # and add mor stuff
\end{lstlisting}
\bigskip
Within a select expression the token {\tt \%} can be used to push the previous selection
on the stack.
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select t:$add t:$sub # select all $add and $sub cells
select % %ci % %d # select only the input wires to those cells
\end{lstlisting}
\end{frame}
\subsubsection{Creating selection variables}
\begin{frame}[fragile]{\subsubsecname}
Selections can be stored under a name with the {\tt select -set <name>}
command. The stored selections can be used in later select expressions
using the syntax {\tt @<name>}.
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
select -set cone_a state_a %ci*:-$dff # set @cone_a to the input cone of state_a
select -set cone_b state_b %ci*:-$dff # set @cone_b to the input cone of state_b
select @cone_a @cone_b %i # select the objects that are in both cones
\end{lstlisting}
\bigskip
Remember that select expressions can also be used directly as arguments to most
commands. Some commands also except a single select argument to some options.
In those cases selection variables must be used to capture more complex selections.
\medskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
dump @cone_a @cone_b
select -set cone_ab @cone_a @cone_b %i
show -color red @cone_ab -color magenta @cone_a -color blue @cone_b
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]{\subsubsecname{} -- Example}
\begin{columns}
\column[t]{4cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/select.v}
\column[t]{7cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExAdv/select.ys}
\end{columns}
\hfil\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/select.pdf}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Advanced uses of techmap}
\begin{frame}
\subsectionpage
\subsectionpagesuffix
\end{frame}
\subsubsection{Introduction to techmap}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item
The {\tt techmap} command replaces cells in the design with implementations given
as Verilog code (called ``map files''). It can replace Yosys' internal cell
types (such as {\tt \$or}) as well as user-defined cell types.
\medskip\item
Verilog parameters are used extensively to customize the internal cell types.
\medskip\item
Additional special parameters are used by techmap to communicate meta-data to the
map files.
\medskip\item
Special wires are used to instruct techmap how to handle a module in the map file.
\medskip\item
Generate blocks and recursion are powerful tools for writing map files.
\end{itemize}
\end{frame}
\begin{frame}[t]{\subsubsecname{} -- Example 1/2}
\vskip-0.2cm
To map the Verilog OR-reduction operator to 3-input OR gates:
\vskip-0.2cm
\begin{columns}
\column[t]{0.35\linewidth}
\lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=24]{PRESENTATION_ExAdv/red_or3x1_map.v}
\column[t]{0.65\linewidth}
\lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=25]{PRESENTATION_ExAdv/red_or3x1_map.v}
\end{columns}
\end{frame}
\begin{frame}[t]{\subsubsecname{} -- Example 2/2}
\vbox to 0cm{
\hfil\includegraphics[width=10cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/red_or3x1.pdf}
\vss
}
\begin{columns}
\column[t]{6cm}
\column[t]{4cm}
\vskip-0.6cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, firstline=4, lastline=4, frame=single]{PRESENTATION_ExAdv/red_or3x1_test.ys}
\vskip-0.2cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/red_or3x1_test.v}
\end{columns}
\end{frame}
\subsubsection{Conditional techmap}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item In some cases only cells with certain properties should be substituted.
\medskip
\item The special wire {\tt \_TECHMAP\_FAIL\_} can be used to disable a module
in the map file for a certain set of parameters.
\medskip
\item The wire {\tt \_TECHMAP\_FAIL\_} must be set to a constant value. If it
is non-zero then the module is disabled for this set of parameters.
\medskip
\item Example use-cases:
\begin{itemize}
\item coarse-grain cell types that only operate on certain bit widths
\item memory resources for different memory geometries (width, depth, ports, etc.)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[t]{\subsubsecname{} -- Example}
\vbox to 0cm{
\vskip-0.5cm
\hfill\includegraphics[width=6cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/sym_mul.pdf}
\vss
}
\vskip-0.5cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/sym_mul_map.v}
\begin{columns}
\column[t]{6cm}
\vskip-0.5cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/sym_mul_test.v}
\column[t]{4cm}
\vskip-0.5cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=4]{PRESENTATION_ExAdv/sym_mul_test.ys}
\end{columns}
\end{frame}
\subsubsection{Scripting in map modules}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item The special wires {\tt \_TECHMAP\_DO\_*} can be used to run Yosys scripts
in the context of the replacement module.
\medskip
\item The wire that comes first in alphabetical oder is interpreted as string (must
be connected to constants) that is executed as script. Then the wire is removed. Repeat.
\medskip
\item You can even call techmap recursively!
\medskip
\item Example use-cases:
\begin{itemize}
\item Using always blocks in map module: call {\tt proc}
\item Perform expensive optimizations (such as {\tt freduce}) on cells where
this is known to work well.
\item Interacting with custom commands.
\end{itemize}
\end{itemize}
\scriptsize
PROTIP: Commands such as {\tt shell}, {\tt show -pause}, and {\tt dump} can be use
in the {\tt \_TECHMAP\_DO\_*} scripts for debugging map modules.
\end{frame}
\begin{frame}[t]{\subsubsecname{} -- Example}
\vbox to 0cm{
\vskip4.2cm
\hskip0.5cm\includegraphics[width=10cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/mymul.pdf}
\vss
}
\vskip-0.6cm
\begin{columns}
\column[t]{6cm}
\vskip-0.6cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/mymul_map.v}
\column[t]{4.2cm}
\vskip-0.6cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/mymul_test.v}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/mymul_test.ys}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, frame=single, language=ys, firstline=7, lastline=12]{PRESENTATION_ExAdv/mymul_test.ys}
\end{columns}
\end{frame}
\subsubsection{Handling constant inputs}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item The special parameters {\tt \_TECHMAP\_CONSTMSK\_\it <port-name>\tt \_} and
{\tt \_TECHMAP\_CONSTVAL\_\it <port-name>\tt \_} can be used to handle constant
input values to cells.
\medskip
\item The former contains 1-bits for all constant input bits on the port.
\medskip
\item The latter contains the constant bits or undef (x) for non-constant bits.
\medskip
\item Example use-cases:
\begin{itemize}
\item Converting arithmetic (for example multiply to shift)
\item Identify constant addresses or enable bits in memory interfaces.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[t]{\subsubsecname{} -- Example}
\vbox to 0cm{
\vskip5.2cm
\hskip6.5cm\includegraphics[width=5cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/mulshift.pdf}
\vss
}
\vskip-0.6cm
\begin{columns}
\column[t]{6cm}
\vskip-0.4cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/mulshift_map.v}
\column[t]{4.2cm}
\vskip-0.6cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/mulshift_test.v}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/mulshift_test.ys}
\end{columns}
\end{frame}
\subsubsection{Handling shorted inputs}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item The special parameters {\tt \_TECHMAP\_BITS\_CONNMAP\_} and
{\tt \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_} can be used to handle shorted inputs.
\medskip
\item Each bit of the port correlates to an {\tt \_TECHMAP\_BITS\_CONNMAP\_} bits wide
number in {\tt \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_}.
\medskip
\item Each unique signal bit is assigned its own number. Identical fields in the {\tt
\_TECHMAP\_CONNMAP\_\it <port-name>\tt \_} parameters mean shorted signal bits.
\medskip
\item The numbers 0-3 are reserved for {\tt 0}, {\tt 1}, {\tt x}, and {\tt z} respectively.
\medskip
\item Example use-cases:
\begin{itemize}
\item Detecting shared clock or control signals in memory interfaces.
\item In some cases this can be used for for optimization.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[t]{\subsubsecname{} -- Example}
\vbox to 0cm{
\vskip4.5cm
\hskip6.5cm\includegraphics[width=5cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/addshift.pdf}
\vss
}
\vskip-0.6cm
\begin{columns}
\column[t]{6cm}
\vskip-0.4cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/addshift_map.v}
\column[t]{4.2cm}
\vskip-0.6cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/addshift_test.v}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/addshift_test.ys}
\end{columns}
\end{frame}
\subsubsection{Notes on using techmap}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item Don't use positional cell parameters in map modules.
\medskip
\item Don't try to implement basic logic optimization with techmap. \\
{\small (So the OR-reduce using OR3X1 cells map was actually a bad example.)}
\medskip
\item You can use the {\tt \$\_\,\_}-prefix for internal cell types to avoid
collisions with the user-namespace. But always use two underscores or the
internal consistency checker will trigger on this cells.
\medskip
\item Techmap has two major use cases:
\begin{itemize}
\item Creating good logic-level representation of arithmetic functions. \\
This also means using dedicated hardware resources such as half- and full-adder
cells in ASICS or dedicated carry logic in FPGAs.
\smallskip
\item Mapping of coarse-grain resources such as block memory or DSP cells.
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Coarse-grain synthesis}
\begin{frame}
\subsectionpage
\subsectionpagesuffix
\end{frame}
\subsubsection{Intro to coarse-grain synthesis}
\begin{frame}[fragile]{\subsubsecname}
In coarse-grain synthesis the target architecture has cells of the same
complexity or larger complexity than the internal RTL representation.
For example:
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]
wire [15:0] a, b;
wire [31:0] c, y;
assign y = a * b + c;
\end{lstlisting}
This circuit contains two cells in the RTL representation: one multiplier and
one adder. In some architectures this circuit can be implemented using
a single circuit element, for example an FPGA DSP core. Coarse grain synthesis
is this mapping of groups of circuit elements to larger components.
\bigskip
Fine-grain synthesis would be matching the circuit elements to smaller
components, such as LUTs, gates, or half- and full-adders.
\end{frame}
\subsubsection{The extract pass}
\begin{frame}{\subsubsecname}
\begin{itemize}
\item Like the {\tt techmap} pass, the {\tt extract} pass is called with
a map file. It compares the circuits inside the modules of the map file
with the design and looks for sub-circuits in the design that match any
of the modules in the map file.
\bigskip
\item If a match is found, the {\tt extract} pass will replace the matching
subcircuit with an instance of the module from the map file.
\bigskip
\item In a way the {\tt extract} pass is the inverse of the techmap pass.
\end{itemize}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- Example 1/2}
\vbox to 0cm{
\vskip2cm
\begin{tikzpicture}
\node at (0,0) {\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_00a.pdf}};
\node at (3,-3) {\includegraphics[width=8cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_00b.pdf}};
\draw[yshift=0.2cm,thick,-latex] (1,-1) -- (2,-2);
\end{tikzpicture}
\vss}
\vskip-1.2cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/macc_simple_xmap.v}
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys]
read_verilog macc_simple_test.v
hierarchy -check -top test
extract -map macc_simple_xmap.v;;
\end{lstlisting}
\end{columns}
\end{frame}
\begin{frame}[fragile]{\subsubsecname{} -- Example 2/2}
\hfil\begin{tabular}{cc}
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test_01.v}}} &
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test_02.v}}} \\
$\downarrow$ & $\downarrow$ \\
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_01a.pdf}} &
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_02a.pdf}} \\
$\downarrow$ & $\downarrow$ \\
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_01b.pdf}} &
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_02b.pdf}} \\
\end{tabular}
\end{frame}
\subsubsection{The wrap-extract-unwrap method}
\begin{frame}{\subsubsecname}
\scriptsize
Often a coarse-grain element has a constant bit-width, but can be used to
implement operations with a smaller bit-width. For example, a 18x25-bit multiplier
can also be used to implement 16x20-bit multiplication.
\bigskip
A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:
\begin{itemize}
\item {\bf wrap} \\
Identify candidate-cells in the circuit and wrap them in a cell with a constant
wider bit-width using {\tt techmap}. The wrappers use the same parameters as the original cell, so
the information about the original width of the ports is preserved. \\
Then use the {\tt connwrappers} command to connect up the bit-extended in- and
outputs of the wrapper cells.
\item {\bf extract} \\
Now all operations are encoded using the same bit-width as the coarse grain element. The {\tt
extract} command can be used to replace circuits with cells of the target architecture.
\item {\bf unwrap} \\
The remaining wrapper cell can be unwrapped using {\tt techmap}.
\end{itemize}
\bigskip
The following sides detail an example that shows how to map MACC operations of
arbitrary size to MACC cells with a 18x25-bit multiplier and a 48-bit adder (such as
the Xilinx DSP48 cells).
\end{frame}
\subsubsection{Example: DSP48\_MACC}
\begin{frame}[t, fragile]{\subsubsecname{} -- 1/13}
Preconditioning: {\tt macc\_xilinx\_swap\_map.v} \\
Make sure {\tt A} is the smaller port on all multipliers
\begin{columns}
\column{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=15]{PRESENTATION_ExAdv/macc_xilinx_swap_map.v}
\column{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=16]{PRESENTATION_ExAdv/macc_xilinx_swap_map.v}
\end{columns}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 2/13}
Wrapping multipliers: {\tt macc\_xilinx\_wrap\_map.v}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=23]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=24, lastline=46]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
\end{columns}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 3/13}
Wrapping adders: {\tt macc\_xilinx\_wrap\_map.v}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=48, lastline=67]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=68, lastline=89]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
\end{columns}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 4/13}
Extract: {\tt macc\_xilinx\_xmap.v}
\lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=1, lastline=17]{PRESENTATION_ExAdv/macc_xilinx_xmap.v}
.. simply use the same wrapping commands on this module as on the design to create a template for the {\tt extract} command.
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 5/13}
Unwrapping multipliers: {\tt macc\_xilinx\_unwrap\_map.v}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=1, lastline=17]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=18, lastline=30]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
\end{columns}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 6/13}
Unwrapping adders: {\tt macc\_xilinx\_unwrap\_map.v}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=32, lastline=48]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=49, lastline=61]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
\end{columns}
\end{frame}
\begin{frame}[fragile]{\subsubsecname{} -- 7/13}
\hfil\begin{tabular}{cc}
{\tt test1} & {\tt test2} \\
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, firstline=1, lastline=6, language=verilog]{PRESENTATION_ExAdv/macc_xilinx_test.v}}} &
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, firstline=8, lastline=13, language=verilog]{PRESENTATION_ExAdv/macc_xilinx_test.v}}} \\
$\downarrow$ & $\downarrow$ \\
\end{tabular}
\vskip-0.5cm
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
read_verilog macc_xilinx_test.v
hierarchy -check
\end{lstlisting}
\vskip-0.5cm
\hfil\begin{tabular}{cc}
$\downarrow$ & $\downarrow$ \\
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1a.pdf}} &
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2a.pdf}} \\
\end{tabular}
\end{frame}
\begin{frame}[fragile]{\subsubsecname{} -- 8/13}
\hfil\begin{tabular}{cc}
{\tt test1} & {\tt test2} \\
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1a.pdf}} &
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2a.pdf}} \\
$\downarrow$ & $\downarrow$ \\
\end{tabular}
\vskip-0.2cm
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
techmap -map macc_xilinx_swap_map.v ;;
\end{lstlisting}
\vskip-0.2cm
\hfil\begin{tabular}{cc}
$\downarrow$ & $\downarrow$ \\
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1b.pdf}} &
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2b.pdf}} \\
\end{tabular}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 9/13}
Wrapping in {\tt test1}:
\begin{columns}
\column[t]{5cm}
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1b.pdf}}\vss}
\column[t]{6cm}
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
techmap -map macc_xilinx_wrap_map.v
connwrappers -unsigned $__mul_wrapper \
Y Y_WIDTH \
-unsigned $__add_wrapper \
Y Y_WIDTH ;;
\end{lstlisting}
\end{columns}
\vskip1cm
\hfil\includegraphics[width=\linewidth,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1c.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 10/13}
Wrapping in {\tt test2}:
\begin{columns}
\column[t]{5cm}
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2b.pdf}}\vss}
\column[t]{6cm}
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
techmap -map macc_xilinx_wrap_map.v
connwrappers -unsigned $__mul_wrapper \
Y Y_WIDTH \
-unsigned $__add_wrapper \
Y Y_WIDTH ;;
\end{lstlisting}
\end{columns}
\vskip1cm
\hfil\includegraphics[width=\linewidth,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2c.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 11/13}
Extract in {\tt test1}:
\begin{columns}
\column[t]{4.5cm}
\vbox to 0cm{
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
design -push
read_verilog macc_xilinx_xmap.v
techmap -map macc_xilinx_swap_map.v
techmap -map macc_xilinx_wrap_map.v;;
design -save __macc_xilinx_xmap
design -pop
\end{lstlisting}
\vss}
\column[t]{5.5cm}
\vskip-1cm
\begin{lstlisting}[linewidth=5.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
extract -constports -ignore_parameters \
-map %__macc_xilinx_xmap \
-swap $__add_wrapper A,B ;;
\end{lstlisting}
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1c.pdf}}\vss}
\end{columns}
\vskip2cm
\hfil\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1d.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 12/13}
Extract in {\tt test2}:
\begin{columns}
\column[t]{4.5cm}
\vbox to 0cm{
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
design -push
read_verilog macc_xilinx_xmap.v
techmap -map macc_xilinx_swap_map.v
techmap -map macc_xilinx_wrap_map.v;;
design -save __macc_xilinx_xmap
design -pop
\end{lstlisting}
\vss}
\column[t]{5.5cm}
\vskip-1cm
\begin{lstlisting}[linewidth=5.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
extract -constports -ignore_parameters \
-map %__macc_xilinx_xmap \
-swap $__add_wrapper A,B ;;
\end{lstlisting}
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2c.pdf}}\vss}
\end{columns}
\vskip2cm
\hfil\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2d.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsubsecname{} -- 13/13}
Unwrap in {\tt test2}:
\hfil\begin{tikzpicture}
\node at (0,0) {\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2d.pdf}};
\node at (0,-4) {\includegraphics[width=8cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2e.pdf}};
\node at (1,-1.7) {\begin{lstlisting}[linewidth=5.5cm, frame=single, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
techmap -map macc_xilinx_unwrap_map.v ;;
\end{lstlisting}};
\draw[-latex] (4,-0.7) .. controls (5,-1.7) .. (4,-2.7);
\end{tikzpicture}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Automatic design changes}
\begin{frame}
\subsectionpage
\subsectionpagesuffix
\end{frame}
\subsubsection{Changing the design from Yosys}
\begin{frame}{\subsubsecname}
Yosys commands can be used to change the design in memory. Examples of this are:
\begin{itemize}
\item {\bf Changes in design hierarchy} \\
Commands such as {\tt flatten} and {\tt submod} can be used to change the design hierarchy, i.e.
flatten the hierarchy or moving parts of a module to a submodule. This has applications in synthesis
scripts as well as in reverse engineering and analysis.
\item {\bf Behavioral changes} \\
Commands such as {\tt techmap} can be used to make behavioral changes to the design, for example
changing asynchronous resets to synchronous resets. This has applications in design space exploration
(evaluation of various architectures for one circuit).
\end{itemize}
\end{frame}
\subsubsection{Example: Async reset to sync reset}
\begin{frame}[t, fragile]{\subsubsecname}
The following techmap map file replaces all positive-edge async reset flip-flops with
positive-edge sync reset flip-flops. The code is taken from the example Yosys script
for ASIC synthesis of the Amber ARMv2 CPU.
\begin{columns}
\column[t]{6cm}
\vbox to 0cm{
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog]
(* techmap_celltype = "$adff" *)
module adff2dff (CLK, ARST, D, Q);
parameter WIDTH = 1;
parameter CLK_POLARITY = 1;
parameter ARST_POLARITY = 1;
parameter ARST_VALUE = 0;
input CLK, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire [1023:0] _TECHMAP_DO_ = "proc";
wire _TECHMAP_FAIL_ = !CLK_POLARITY || !ARST_POLARITY;
\end{lstlisting}
\vss}
\column[t]{4cm}
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog]
// ..continued..
always @(posedge CLK)
if (ARST)
Q <= ARST_VALUE;
else
<= D;
endmodule
\end{lstlisting}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Summary}
\begin{frame}{\subsecname}
\begin{itemize}
\item A lot can be achieved in Yosys just with the standard set of commands.
\item The commands {\tt techmap} and {\tt extract} can be used to prototype many complex synthesis tasks.
\end{itemize}
\bigskip
\bigskip
\begin{center}
Questions?
\end{center}
\bigskip
\bigskip
\begin{center}
\url{https://yosyshq.net/yosys/}
\end{center}
\end{frame}
|