aboutsummaryrefslogtreecommitdiffstats
path: root/manual/CHAPTER_Prog/stubnets.cc
blob: 566d24b18dfcc68741f2a73b4d437d392fd25791 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// This is free and unencumbered software released into the public domain.
//
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.

#include "kernel/yosys.h"
#include "kernel/sigtools.h"

#include <string>
#include <map>
#include <set>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

// this function is called for each module in the design
static void find_stub_nets(RTLIL::Design *design, RTLIL::Module *module, bool report_bits)
{
	// use a SigMap to convert nets to a unique representation
	SigMap sigmap(module);

	// count how many times a single-bit signal is used
	std::map<RTLIL::SigBit, int> bit_usage_count;

	// count output lines for this module (needed only for summary output at the end)
	int line_count = 0;

	log("Looking for stub wires in module %s:\n", RTLIL::id2cstr(module->name));

	// For all ports on all cells
	for (auto &cell_iter : module->cells_)
	for (auto &conn : cell_iter.second->connections())
	{
		// Get the signals on the port
		// (use sigmap to get a uniqe signal name)
		RTLIL::SigSpec sig = sigmap(conn.second);

		// add each bit to bit_usage_count, unless it is a constant
		for (auto &bit : sig)
			if (bit.wire != NULL)
				bit_usage_count[bit]++;
	}

	// for each wire in the module
	for (auto &wire_iter : module->wires_)
	{
		RTLIL::Wire *wire = wire_iter.second;

		// .. but only selected wires
		if (!design->selected(module, wire))
			continue;

		// add +1 usage if this wire actually is a port
		int usage_offset = wire->port_id > 0 ? 1 : 0;

		// we will record which bits of the (possibly multi-bit) wire are stub signals
		std::set<int> stub_bits;

		// get a signal description for this wire and split it into separate bits
		RTLIL::SigSpec sig = sigmap(wire);

		// for each bit (unless it is a constant):
		// check if it is used at least two times and add to stub_bits otherwise
		for (int i = 0; i < GetSize(sig); i++)
			if (sig[i].wire != NULL && (bit_usage_count[sig[i]] + usage_offset) < 2)
				stub_bits.insert(i);

		// continue if no stub bits found
		if (stub_bits.size() == 0)
			continue;

		// report stub bits and/or stub wires, don't report single bits
		// if called with report_bits set to false.
		if (GetSize(stub_bits) == GetSize(sig)) {
			log("  found stub wire: %s\n", RTLIL::id2cstr(wire->name));
		} else {
			if (!report_bits)
				continue;
			log("  found wire with stub bits: %s [", RTLIL::id2cstr(wire->name));
			for (int bit : stub_bits)
				log("%s%d", bit == *stub_bits.begin() ? "" : ", ", bit);
			log("]\n");
		}

		// we have outputted a line, increment summary counter
		line_count++;
	}

	// report summary
	if (report_bits)
		log("  found %d stub wires or wires with stub bits.\n", line_count);
	else
		log("  found %d stub wires.\n", line_count);
}

// each pass contains a singleton object that is derived from Pass
struct StubnetsPass : public Pass {
	StubnetsPass() : Pass("stubnets") { }
	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		// variables to mirror information from passed options
		bool report_bits = 0;

		log_header(design, "Executing STUBNETS pass (find stub nets).\n");

		// parse options
		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-report_bits") {
				report_bits = true;
				continue;
			}
			break;
		}

		// handle extra options (e.g. selection)
		extra_args(args, argidx, design);

		// call find_stub_nets() for each module that is either
		// selected as a whole or contains selected objects.
		for (auto &it : design->modules_)
			if (design->selected_module(it.first))
				find_stub_nets(design, it.second, report_bits);
	}
} StubnetsPass;

PRIVATE_NAMESPACE_END
href='#n779'>779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
--  Instantiation synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with GNAT.SHA1;

with Types; use Types;
with Types_Utils; use Types_Utils;
with Files_Map;
with Name_Table;
with Libraries;
with Hash; use Hash;
with Dyn_Tables;
with Interning;
with Synthesis; use Synthesis;

with Grt.Algos;

with Netlists; use Netlists;
with Netlists.Builders; use Netlists.Builders;
with Netlists.Cleanup;
with Netlists.Memories;
with Netlists.Expands;
with Netlists.Concats;

with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Errors;
with Vhdl.Ieee.Math_Real;
with Vhdl.Std_Package;

with Synth.Objtypes; use Synth.Objtypes;
with Synth.Values; use Synth.Values;
with Synth.Environment; use Synth.Environment;
with Synth.Stmts; use Synth.Stmts;
with Synth.Decls; use Synth.Decls;
with Synth.Expr; use Synth.Expr;
with Synth.Source; use Synth.Source;
with Synth.Debugger;
with Synth.Files_Operations;

package body Synth.Insts is
   Root_Instance : Synth_Instance_Acc;

   function Mode_To_Port_Kind (Mode : Iir_Mode) return Port_Kind is
   begin
      case Mode is
         when Iir_In_Mode =>
            return Port_In;
         when Iir_Buffer_Mode
           | Iir_Out_Mode =>
            return Port_Out;
         when Iir_Inout_Mode =>
            return Port_Inout;
         when Iir_Linkage_Mode
           | Iir_Unknown_Mode =>
            raise Synth_Error;
      end case;
   end Mode_To_Port_Kind;

   --  Parameters that define an instance.
   type Inst_Params is record
      --  Declaration: either the entity or the component.
      Decl : Node;
      --  Implementation: the architecture or Null_Node for black boxes.
      Arch : Node;
      --  Configuration (Null_Node for black boxes).
      Config : Node;
      --  Values of generics.
      Syn_Inst : Synth_Instance_Acc;
      --  Encoding if the instance name.
      Encoding : Name_Encoding;
   end record;

   type Inst_Object is record
      Decl : Node;
      Arch : Node;
      Config : Node;
      Syn_Inst : Synth_Instance_Acc;
      M : Module;
      --  Encoding if the instance name.
      Encoding : Name_Encoding;
   end record;

   function Hash (Params : Inst_Params) return Hash_Value_Type
   is
      Res : Hash_Value_Type;
   begin
      Res := Hash_Value_Type (Params.Decl);
      Res := Res xor Hash_Value_Type (Params.Arch);
      Res := Res xor Hash_Value_Type (Params.Config);
      --  TODO: hash generics
      return Res;
   end Hash;

   function Equal (Obj : Inst_Object; Params : Inst_Params) return Boolean
   is
      Inter : Node;
   begin
      if Obj.Decl /= Params.Decl
        or else Obj.Arch /= Params.Arch
        or else Obj.Config /= Params.Config
      then
         return False;
      end if;
      Inter := Get_Generic_Chain (Params.Decl);
      while Inter /= Null_Node loop
         if not Is_Equal (Get_Value (Obj.Syn_Inst, Inter),
                          Get_Value (Params.Syn_Inst, Inter))
         then
            return False;
         end if;
         Inter := Get_Chain (Inter);
      end loop;

      Inter := Get_Port_Chain (Params.Decl);
      while Inter /= Null_Node loop
         if not Is_Fully_Constrained_Type (Get_Type (Inter)) then
            if not Are_Types_Equal (Get_Value (Obj.Syn_Inst, Inter).Typ,
                                    Get_Value (Params.Syn_Inst, Inter).Typ)
            then
               return False;
            end if;
         end if;
         Inter := Get_Chain (Inter);
      end loop;

      return True;
   end Equal;

   procedure Hash_Uns64 (C : in out GNAT.SHA1.Context; Val : Uns64)
   is
      V : Uns64;
      S : String (1 .. 8);
   begin
      --  Store to S using little endianness.
      V := Val;
      for I in S'Range loop
         S (I) := Character'Val (V and 16#ff#);
         V := Shift_Right (V, 8);
      end loop;

      GNAT.SHA1.Update (C, S);
   end Hash_Uns64;

   procedure Hash_Memory (C : in out GNAT.SHA1.Context;
                          M : Memory_Ptr;
                          Typ : Type_Acc)
   is
      S : String (1 .. Natural (Typ.Sz));
      for S'Address use M (0)'Address;
      pragma Import (Ada, S);
   begin
      GNAT.SHA1.Update (C, S);
   end Hash_Memory;

   procedure Hash_Bound (C : in out GNAT.SHA1.Context; B : Bound_Type) is
   begin
      Hash_Uns64 (C, Iir_Direction'Pos (B.Dir));
      Hash_Uns64 (C, To_Uns64 (Int64 (B.Left)));
      Hash_Uns64 (C, To_Uns64 (Int64 (B.Right)));
   end Hash_Bound;

   procedure Hash_Bounds (C : in out GNAT.SHA1.Context; Typ : Type_Acc) is
   begin
      case Typ.Kind is
         when Type_Vector =>
            Hash_Bound (C, Typ.Vbound);
         when Type_Array =>
            for I in Typ.Abounds.D'Range loop
               Hash_Bound (C, Typ.Abounds.D (I));
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Hash_Bounds;

   procedure Hash_Const (C : in out GNAT.SHA1.Context;
                         Val : Value_Acc;
                         Typ : Type_Acc) is
   begin
      case Val.Kind is
         when Value_Memory =>
            Hash_Memory (C, Val.Mem, Typ);
         when Value_Const =>
            Hash_Const (C, Val.C_Val, Typ);
         when Value_Alias =>
            if Val.A_Off /= (0, 0) then
               raise Internal_Error;
            end if;
            Hash_Const (C, Val.A_Obj, Typ);
         when Value_Net
           | Value_Wire
           | Value_File =>
            raise Internal_Error;
      end case;
   end Hash_Const;

   function Get_Source_Identifier (Decl : Node) return Name_Id
   is
      use Files_Map;
      use Name_Table;
      Loc : constant Location_Type := Get_Location (Decl);
      Len : constant Natural := Get_Name_Length (Get_Identifier (Decl));
      subtype Ident_Str is String (1 .. Len);
      File : Source_File_Entry;
      Pos : Source_Ptr;
      Buf : File_Buffer_Acc;
   begin
      Location_To_File_Pos (Loc, File, Pos);
      Buf := Get_File_Source (File);
      return Get_Identifier
        (Ident_Str (Buf (Pos .. Pos + Source_Ptr (Len - 1))));
   end Get_Source_Identifier;

   function Create_Module_Name (Params : Inst_Params) return Sname
   is
      use GNAT.SHA1;
      Decl : constant Node := Params.Decl;
      Id : constant Name_Id := Get_Identifier (Decl);
      Generics : constant Node := Get_Generic_Chain (Decl);
      Ports : constant Node := Get_Port_Chain (Decl);
      Ctxt : GNAT.SHA1.Context;
      Has_Hash : Boolean;

      --  Create a buffer, store the entity name.
      --  For each generic:
      --  * write the value for integers.
      --  * write the identifier for enumerated type with only non-extended
      --    identifiers.
      --  * hash all other values
      --  Append the hash if any.
      use Name_Table;
      Id_Len : constant Natural := Get_Name_Length (Id);
      Str_Len : constant Natural := Id_Len + 512;
      pragma Assert (GNAT.SHA1.Hash_Length = 20);
      Str : String (1 .. Str_Len + 41);
      Len : Natural;

      Gen_Decl : Node;
      Gen : Valtyp;
   begin
      Len := Id_Len;
      Str (1 .. Len) := Get_Name_Ptr (Id) (1 .. Len);

      Has_Hash := False;

      case Params.Encoding is
         when Name_Hash =>
            Ctxt := GNAT.SHA1.Initial_Context;

            Gen_Decl := Generics;
            while Gen_Decl /= Null_Node loop
               Gen := Get_Value (Params.Syn_Inst, Gen_Decl);
               Strip_Const (Gen);
               case Gen.Typ.Kind is
                  when Type_Discrete =>
                     declare
                        S : constant String :=
                          Uns64'Image (To_Uns64 (Read_Discrete (Gen)));
                     begin
                        if Len + S'Length > Str_Len then
                           Has_Hash := True;
                           Hash_Const (Ctxt, Gen.Val, Gen.Typ);
                        else
                           Str (Len + 1 .. Len + S'Length) := S;
                           pragma Assert (Str (Len + 1) = ' ');
                           Str (Len + 1) := '_';  --  Overwrite the space.
                           Len := Len + S'Length;
                        end if;
                     end;
                  when others =>
                     Has_Hash := True;
                     Hash_Const (Ctxt, Gen.Val, Gen.Typ);
               end case;
               Gen_Decl := Get_Chain (Gen_Decl);
            end loop;

            declare
               Port_Decl : Node;
               Port_Typ : Type_Acc;
            begin
               Port_Decl := Ports;
               while Port_Decl /= Null_Node loop
                  if not Is_Fully_Constrained_Type (Get_Type (Port_Decl)) then
                     Port_Typ := Get_Value (Params.Syn_Inst, Port_Decl).Typ;
                     Has_Hash := True;
                     Hash_Bounds (Ctxt, Port_Typ);
                  end if;
                  Port_Decl := Get_Chain (Port_Decl);
               end loop;
            end;
            if not Has_Hash and then Generics = Null_Node then
               --  Simple case: same name.
               --  TODO: what about two entities with the same identifier but
               --   declared in two different libraries ?
               --  TODO: what about extended identifiers ?
               return New_Sname_User (Id, No_Sname);
            end if;

            if Has_Hash then
               Str (Len + 1) := '_';
               Len := Len + 1;
               Str (Len + 1 .. Len + 40) := GNAT.SHA1.Digest (Ctxt);
               Len := Len + 40;
            end if;

         when Name_Asis
           | Name_Parameters =>
            return New_Sname_User (Get_Source_Identifier (Decl), No_Sname);

         when Name_Index =>
            --  TODO.
            raise Internal_Error;
      end case;


      return New_Sname_User (Get_Identifier (Str (1 .. Len)), No_Sname);
   end Create_Module_Name;

   --  Create the name of an interface.
   function Create_Inter_Name (Decl : Node; Enc : Name_Encoding) return Sname
   is
      Id : Name_Id;
   begin
      case Enc is
         when Name_Asis
           | Name_Parameters =>
            Id := Get_Source_Identifier (Decl);
         when others =>
            Id := Get_Identifier (Decl);
      end case;

      return New_Sname_User (Id, No_Sname);
   end Create_Inter_Name;

   function Build (Params : Inst_Params) return Inst_Object
   is
      Decl : constant Node := Params.Decl;
      Arch : constant Node := Params.Arch;
      Imp : Node;
      Syn_Inst : Synth_Instance_Acc;
      Inter : Node;
      Inter_Type : Node;
      Inter_Typ : Type_Acc;
      Nbr_Inputs : Port_Nbr;
      Nbr_Outputs : Port_Nbr;
      Nbr_Params : Param_Nbr;
      Cur_Module : Module;
      Val : Valtyp;
      Id : Module_Id;
   begin
      if Get_Kind (Params.Decl) = Iir_Kind_Component_Declaration then
         pragma Assert (Params.Arch = Null_Node);
         pragma Assert (Params.Config = Null_Node);
         Imp := Params.Decl;
      else
         pragma Assert
           (Get_Kind (Params.Config) = Iir_Kind_Block_Configuration);
         Imp := Params.Arch;
      end if;

      --  Create the instance.
      Syn_Inst := Make_Instance (Root_Instance, Imp, No_Sname);

      --  Copy values for generics.
      Inter := Get_Generic_Chain (Decl);
      Nbr_Params := 0;
      while Inter /= Null_Node loop
         --  Bounds or range of the type.
         Inter_Type := Get_Subtype_Indication (Inter);
         if Inter_Type /= Null_Node then
            case Get_Kind (Inter_Type) is
               when Iir_Kind_Array_Subtype_Definition
                 | Iir_Kind_Integer_Subtype_Definition =>
                  Create_Subtype_Object
                    (Syn_Inst, Inter_Type,
                     Get_Subtype_Object (Params.Syn_Inst, Inter_Type));
               when others =>
                  null;
            end case;
            Nbr_Params := Nbr_Params + 1;
         end if;

         --  Object.
         Create_Object (Syn_Inst, Inter, Get_Value (Params.Syn_Inst, Inter));
         Inter := Get_Chain (Inter);
      end loop;

      --  Allocate values and count inputs and outputs
      Inter := Get_Port_Chain (Decl);
      Nbr_Inputs := 0;
      Nbr_Outputs := 0;
      while Is_Valid (Inter) loop
         --  Elaborate the type...
         Synth_Declaration_Type (Syn_Inst, Inter);
         Inter_Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Inter));
         if not Is_Bounded_Type (Inter_Typ) then
            --  ... but get it from the template (so that unbounded types
            --  are bounded).
            Inter_Typ := Get_Value (Params.Syn_Inst, Inter).Typ;
         end if;
         case Mode_To_Port_Kind (Get_Mode (Inter)) is
            when Port_In =>
               Val := Create_Value_Net (No_Net, Inter_Typ);
               Nbr_Inputs := Nbr_Inputs + 1;
            when Port_Out
              | Port_Inout =>
               Val := Create_Value_Wire (No_Wire_Id, Inter_Typ);
               Nbr_Outputs := Nbr_Outputs + 1;
         end case;
         Create_Object (Syn_Inst, Inter, Val);
         Inter := Get_Chain (Inter);
      end loop;

      --  Declare module.
      --  Build it now because it may be referenced for instantiations before
      --  being synthetized.
      if Params.Encoding = Name_Parameters
        and then Nbr_Params > 0
      then
         Id := Id_User_Parameters;
      else
         Id := Id_User_None;
         Nbr_Params := 0;
      end if;
      Cur_Module := New_User_Module (Get_Top_Module (Root_Instance),
                                     Create_Module_Name (Params), Id,
                                     Nbr_Inputs, Nbr_Outputs, Nbr_Params);

      if Id = Id_User_Parameters then
         declare
            use Vhdl.Std_Package;
            Descs : Param_Desc_Array (1 .. Nbr_Params);
            Ptype : Param_Type;
         begin
            Inter := Get_Generic_Chain (Decl);
            Nbr_Params := 0;
            while Inter /= Null_Node loop
               --  Bounds or range of the type.
               Inter_Type := Get_Type (Inter);
               Inter_Type := Get_Base_Type (Inter_Type);
               if Inter_Type = String_Type_Definition then
                  Ptype := Param_Pval_String;
               elsif Inter_Type = Time_Type_Definition then
                  Ptype := Param_Pval_Time_Ps;
               else
                  case Get_Kind (Inter_Type) is
                     when Iir_Kind_Integer_Type_Definition =>
                        Ptype := Param_Pval_Integer;
                     when Iir_Kind_Floating_Type_Definition =>
                        Ptype := Param_Pval_Real;
                     when others =>
                        Ptype := Param_Pval_Vector;
                  end case;
               end if;
               Nbr_Params := Nbr_Params + 1;
               Descs (Nbr_Params) :=
                 (Name => Create_Inter_Name (Inter, Params.Encoding),
                  Typ => Ptype);
               Inter := Get_Chain (Inter);
            end loop;
            Set_Params_Desc (Cur_Module, Descs);
         end;
      end if;

      --  Add ports to module.
      declare
         Inports : Port_Desc_Array (1 .. Nbr_Inputs);
         Outports : Port_Desc_Array (1 .. Nbr_Outputs);
         Pkind : Port_Kind;
         Desc : Port_Desc;
         Vt : Valtyp;
      begin
         Inter := Get_Port_Chain (Decl);
         Nbr_Inputs := 0;
         Nbr_Outputs := 0;
         while Is_Valid (Inter) loop
            Pkind := Mode_To_Port_Kind (Get_Mode (Inter));
            Vt := Get_Value (Syn_Inst, Inter);

            Desc := (Name => Create_Inter_Name (Inter, Params.Encoding),
                     Is_Inout => Pkind = Port_Inout,
                     W => Get_Type_Width (Vt.Typ));

            case Pkind is
               when Port_In =>
                  Nbr_Inputs := Nbr_Inputs + 1;
                  Inports (Nbr_Inputs) := Desc;
               when Port_Out
                 | Port_Inout =>
                  Nbr_Outputs := Nbr_Outputs + 1;
                  Outports (Nbr_Outputs) := Desc;
            end case;
            Inter := Get_Chain (Inter);
         end loop;
         pragma Assert (Nbr_Inputs = Inports'Last);
         pragma Assert (Nbr_Outputs = Outports'Last);
         Set_Ports_Desc (Cur_Module, Inports, Outports);
      end;

      return Inst_Object'(Decl => Decl,
                          Arch => Arch,
                          Config => Params.Config,
                          Syn_Inst => Syn_Inst,
                          M => Cur_Module,
                          Encoding => Params.Encoding);
   end Build;

   package Insts_Interning is new Interning
     (Params_Type => Inst_Params,
      Object_Type => Inst_Object,
      Hash => Hash,
      Build => Build,
      Equal => Equal);

   procedure Synth_Individual_Prefix (Syn_Inst : Synth_Instance_Acc;
                                      Inter_Inst : Synth_Instance_Acc;
                                      Formal : Node;
                                      Off : out Uns32;
                                      Typ : out Type_Acc) is
   begin
      case Get_Kind (Formal) is
         when Iir_Kind_Interface_Signal_Declaration =>
            Off := 0;
            Typ := Get_Subtype_Object (Inter_Inst, Get_Type (Formal));
         when Iir_Kind_Simple_Name =>
            Synth_Individual_Prefix
              (Syn_Inst, Inter_Inst, Get_Named_Entity (Formal), Off, Typ);
         when Iir_Kind_Selected_Element =>
            declare
               Idx : constant Iir_Index32 :=
                 Get_Element_Position (Get_Named_Entity (Formal));
            begin
               Synth_Individual_Prefix
                 (Syn_Inst, Inter_Inst, Get_Prefix (Formal), Off, Typ);
               Off := Off + Typ.Rec.E (Idx + 1).Boff;
               Typ := Typ.Rec.E (Idx + 1).Typ;
            end;
         when Iir_Kind_Indexed_Name =>
            declare
               Voff : Net;
               Arr_Off : Value_Offsets;
            begin
               Synth_Individual_Prefix
                 (Syn_Inst, Inter_Inst, Get_Prefix (Formal), Off, Typ);
               Synth_Indexed_Name (Syn_Inst, Formal, Typ, Voff, Arr_Off);
               if Voff /= No_Net then
                  raise Internal_Error;
               end if;
               Off := Off + Arr_Off.Net_Off;
               Typ := Get_Array_Element (Typ);
            end;
         when Iir_Kind_Slice_Name =>
            declare
               Pfx_Bnd : Bound_Type;
               El_Typ : Type_Acc;
               Res_Bnd : Bound_Type;
               Sl_Voff : Net;
               Sl_Off : Value_Offsets;
            begin
               Synth_Individual_Prefix
                 (Syn_Inst, Inter_Inst, Get_Prefix (Formal), Off, Typ);

               Get_Onedimensional_Array_Bounds (Typ, Pfx_Bnd, El_Typ);
               Synth_Slice_Suffix (Syn_Inst, Formal, Pfx_Bnd, El_Typ,
                                   Res_Bnd, Sl_Voff, Sl_Off);
               if Sl_Voff /= No_Net then
                  raise Internal_Error;
               end if;
               Off := Off + Sl_Off.Net_Off;
               Typ := Create_Onedimensional_Array_Subtype (Typ, Res_Bnd);
            end;
         when others =>
            Vhdl.Errors.Error_Kind ("synth_individual_prefix", Formal);
      end case;
   end Synth_Individual_Prefix;

   type Value_Offset_Record is record
      Off : Uns32;
      Val : Valtyp;
   end record;

   package Value_Offset_Tables is new Dyn_Tables
     (Table_Component_Type => Value_Offset_Record,
      Table_Index_Type => Natural,
      Table_Low_Bound => 1);

   procedure Sort_Value_Offset (Els : Value_Offset_Tables.Instance)
   is
      function Lt (Op1, Op2 : Natural) return Boolean is
      begin
         return Els.Table (Op1).Off < Els.Table (Op2).Off;
      end Lt;

      procedure Swap (From : Natural; To : Natural)
      is
         T : constant Value_Offset_Record := Els.Table (From);
      begin
         Els.Table (From) := Els.Table (To);
         Els.Table (To) := T;
      end Swap;

      procedure Heap_Sort is new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Heap_Sort (Value_Offset_Tables.Last (Els));
   end Sort_Value_Offset;

   function Synth_Individual_Input_Assoc (Syn_Inst : Synth_Instance_Acc;
                                          Assoc : Node;
                                          Inter_Inst : Synth_Instance_Acc)
                                         return Net
   is
      use Netlists.Concats;
      Iassoc : Node;
      V : Valtyp;
      Off : Uns32;
      Typ : Type_Acc;
      Els : Value_Offset_Tables.Instance;
      Concat : Concat_Type;
      N_Off : Uns32;
      N : Net;
   begin
      Value_Offset_Tables.Init (Els, 16);

      Iassoc := Get_Chain (Assoc);
      while Iassoc /= Null_Node
        and then not Get_Whole_Association_Flag (Iassoc)
      loop
         --  For each individual assoc:
         --   1. compute type and offset
         Synth_Individual_Prefix
           (Syn_Inst, Inter_Inst, Get_Formal (Iassoc), Off, Typ);

         --   2. synth expression
         V := Synth_Expression_With_Type (Syn_Inst, Get_Actual (Iassoc), Typ);

         --   3. save in a table
         Value_Offset_Tables.Append (Els, (Off, V));

         Iassoc := Get_Chain (Iassoc);
      end loop;

      --  Then:
      --   1. sort table by offset
      Sort_Value_Offset (Els);

      --   2. concat
      N_Off := 0;
      for I in Value_Offset_Tables.First .. Value_Offset_Tables.Last (Els)
      loop
         pragma Assert (N_Off = Els.Table (I).Off);
         V := Els.Table (I).Val;
         N_Off := N_Off + V.Typ.W;
         Append (Concat, Get_Net (V));
      end loop;
      Value_Offset_Tables.Free (Els);

      --   3. connect
      Build (Get_Build (Syn_Inst), Concat, N);
      return N;
   end Synth_Individual_Input_Assoc;

   function Synth_Input_Assoc (Syn_Inst : Synth_Instance_Acc;
                               Assoc : Node;
                               Inter_Inst : Synth_Instance_Acc;
                               Inter : Node)
                              return Net
   is
      Actual : Node;
      Formal_Typ : Type_Acc;
      Act_Inst : Synth_Instance_Acc;
      Act : Valtyp;
   begin
      case Iir_Kinds_Association_Element_Parameters (Get_Kind (Assoc)) is
         when Iir_Kind_Association_Element_Open =>
            Actual := Get_Default_Value (Inter);
            Act_Inst := Inter_Inst;
         when Iir_Kind_Association_Element_By_Expression =>
            Actual := Get_Actual (Assoc);
            if Get_Kind (Actual) = Iir_Kind_Reference_Name then
               --  Skip inserted anonymous signal declaration.
               --  FIXME: simply do not insert it ?
               Actual := Get_Named_Entity (Actual);
               pragma Assert
                 (Get_Kind (Actual) = Iir_Kind_Anonymous_Signal_Declaration);
               Actual := Get_Expression (Actual);
            end if;
            Act_Inst := Syn_Inst;
         when Iir_Kind_Association_Element_By_Individual =>
            return Synth_Individual_Input_Assoc (Syn_Inst, Assoc, Inter_Inst);
      end case;

      Formal_Typ := Get_Subtype_Object (Inter_Inst, Get_Type (Inter));

      Act := Synth_Expression_With_Type (Act_Inst, Actual, Formal_Typ);
      return Get_Net (Act);
   end Synth_Input_Assoc;

   procedure Synth_Individual_Output_Assoc (Outp : Net;
                                            Syn_Inst : Synth_Instance_Acc;
                                            Assoc : Node;
                                            Inter_Inst : Synth_Instance_Acc)
   is
      Iassoc : Node;
      V : Valtyp;
      Off : Uns32;
      Typ : Type_Acc;
      O : Net;
      Port : Net;
   begin
      Port := Builders.Build_Port (Get_Build (Syn_Inst), Outp);

      Iassoc := Get_Chain (Assoc);
      while Iassoc /= Null_Node
        and then not Get_Whole_Association_Flag (Iassoc)
      loop
         --  For each individual assoc:
         --   1. compute type and offset
         Synth_Individual_Prefix
           (Syn_Inst, Inter_Inst, Get_Formal (Iassoc), Off, Typ);

         --   2. Extract the value.
         O := Build_Extract (Get_Build (Syn_Inst), Port, Off, Typ.W);
         V := Create_Value_Net (O, Typ);

         --   3. Assign.
         Synth_Assignment (Syn_Inst, Get_Actual (Iassoc), V, Iassoc);

         Iassoc := Get_Chain (Iassoc);
      end loop;
   end Synth_Individual_Output_Assoc;

   procedure Synth_Output_Assoc (Outp : Net;
                                 Syn_Inst : Synth_Instance_Acc;
                                 Assoc : Node;
                                 Inter_Inst : Synth_Instance_Acc;
                                 Inter : Node)
   is
      Actual : Node;
      Formal_Typ : Type_Acc;
      Port : Net;
      O : Valtyp;
   begin
      case Get_Kind (Assoc) is
         when Iir_Kind_Association_Element_Open =>
            --  Not connected.
            return;
         when Iir_Kind_Association_Element_By_Expression =>
            Actual := Get_Actual (Assoc);
         when others =>
            Synth_Individual_Output_Assoc
              (Outp, Syn_Inst, Assoc, Inter_Inst);
            return;
      end case;

      Formal_Typ := Get_Value (Inter_Inst, Inter).Typ;

      --  Create a port gate (so that is has a name).
      Port := Builders.Build_Port (Get_Build (Syn_Inst), Outp);
      O := Create_Value_Net (Port, Formal_Typ);
      --  Assign the port output to the actual (a net).
      Synth_Assignment (Syn_Inst, Actual, O, Assoc);
   end Synth_Output_Assoc;

   --  Subprogram used for instantiation (direct or by component).
   --  PORTS_ASSOC belong to SYN_INST.
   procedure Synth_Instantiate_Module (Syn_Inst : Synth_Instance_Acc;
                                       Inst : Instance;
                                       Inst_Obj : Inst_Object;
                                       Ports_Assoc : Node)
   is
      --  Instantiate the module
      --  Elaborate ports + map aspect for the inputs (component then entity)
      --  Elaborate ports + map aspect for the outputs (entity then component)

      Assoc : Node;
      Assoc_Inter : Node;
      Inter : Node;
      Nbr_Inputs : Port_Nbr;
      Nbr_Outputs : Port_Nbr;
   begin
      Assoc := Ports_Assoc;
      Assoc_Inter := Get_Port_Chain (Inst_Obj.Decl);
      Nbr_Inputs := 0;
      Nbr_Outputs := 0;
      while Is_Valid (Assoc) loop
         if Get_Whole_Association_Flag (Assoc) then
            Inter := Get_Association_Interface (Assoc, Assoc_Inter);

            case Mode_To_Port_Kind (Get_Mode (Inter)) is
               when Port_In =>
                  --  Connect the net to the input.
                  Connect (Get_Input (Inst, Nbr_Inputs),
                           Synth_Input_Assoc
                             (Syn_Inst, Assoc, Inst_Obj.Syn_Inst, Inter));
                  Nbr_Inputs := Nbr_Inputs + 1;
               when Port_Out
                 | Port_Inout =>
                  Synth_Output_Assoc
                    (Get_Output (Inst, Nbr_Outputs),
                     Syn_Inst, Assoc, Inst_Obj.Syn_Inst, Inter);
                  Nbr_Outputs := Nbr_Outputs + 1;
            end case;
         end if;
         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;

      if Inst_Obj.Encoding = Name_Parameters then
         declare
            Inter : Node;
            Vt : Valtyp;
            Vec : Logvec_Array_Acc;
            Len : Uns32;
            Off : Uns32;
            Has_Zx : Boolean;
            Pv : Pval;
            Idx : Param_Idx;
         begin
            Idx := 0;
            Inter := Get_Generic_Chain (Inst_Obj.Decl);
            while Inter /= Null_Node loop
               Vt := Get_Value (Inst_Obj.Syn_Inst, Inter);
               Len := (Vt.Typ.W + 31) / 32;
               pragma Assert (Len > 0);
               Vec := new Logvec_Array'(0 .. Digit_Index (Len - 1) => (0, 0));
               Off := 0;
               Has_Zx := False;
               Value2logvec
                 (Get_Memtyp (Vt), 0, Vt.Typ.W, Vec.all, Off, Has_Zx);
               pragma Assert (Off = Vt.Typ.W);
               if Has_Zx then
                  Pv := Create_Pval4 (Vt.Typ.W);
               else
                  Pv := Create_Pval2 (Vt.Typ.W);
               end if;
               for I in 0 .. Len - 1 loop
                  Write_Pval (Pv, I, Vec (Digit_Index (I)));
               end loop;
               Set_Param_Pval (Inst, Idx, Pv);

               Inter := Get_Chain (Inter);
               Idx := Idx + 1;
            end loop;
         end;
      end if;
   end Synth_Instantiate_Module;

   function Synth_Port_Association_Type (Sub_Inst : Synth_Instance_Acc;
                                         Syn_Inst : Synth_Instance_Acc;
                                         Inter : Node;
                                         Assoc : Node) return Type_Acc is
   begin
      if not Is_Fully_Constrained_Type (Get_Type (Inter)) then
         --  TODO
         --  Find the association for this interface
         --  * if individual assoc: get type
         --  * if whole assoc: get type from object.
         if Assoc = Null_Node then
            raise Internal_Error;
         end if;
         case Get_Kind (Assoc) is
            when Iir_Kind_Association_Element_By_Expression =>
               return Synth_Type_Of_Object (Syn_Inst, Get_Actual (Assoc));
            when others =>
               raise Internal_Error;
         end case;
      else
         Synth_Declaration_Type (Sub_Inst, Inter);
         return Get_Subtype_Object (Sub_Inst, Get_Type (Inter));
      end if;
   end Synth_Port_Association_Type;

   procedure Synth_Ports_Association_Type (Sub_Inst : Synth_Instance_Acc;
                                           Syn_Inst : Synth_Instance_Acc;
                                           Inter_Chain : Node;
                                           Assoc_Chain : Node)
   is
      Inter : Node;
      Assoc : Node;
      Assoc_Inter : Node;
      Val : Valtyp;
      Inter_Typ : Type_Acc;
   begin
      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);
         if Get_Whole_Association_Flag (Assoc) then
            Inter_Typ :=  Synth_Port_Association_Type
              (Sub_Inst, Syn_Inst, Inter, Assoc);
            case Mode_To_Port_Kind (Get_Mode (Inter)) is
               when Port_In =>
                  Val := Create_Value_Net (No_Net, Inter_Typ);
               when Port_Out
                 | Port_Inout =>
                  Val := Create_Value_Wire (No_Wire_Id, Inter_Typ);
            end case;
            Create_Object (Sub_Inst, Inter, Val);
         end if;
         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
   end Synth_Ports_Association_Type;

   procedure Synth_Direct_Instantiation_Statement
     (Syn_Inst : Synth_Instance_Acc;
      Stmt : Node;
      Ent : Node;
      Arch : Node;
      Config : Node)
   is
      Sub_Inst : Synth_Instance_Acc;
      Inst_Obj : Inst_Object;
      Inst : Instance;
      Enc : Name_Encoding;
   begin
      --  Elaborate generic + map aspect
      Sub_Inst := Make_Instance
        (Syn_Inst, Ent, New_Sname_User (Get_Identifier (Ent), No_Sname));

      Synth_Generics_Association (Sub_Inst, Syn_Inst,
                                  Get_Generic_Chain (Ent),
                                  Get_Generic_Map_Aspect_Chain (Stmt));

      --  Elaborate port types.
      Synth_Ports_Association_Type (Sub_Inst, Syn_Inst,
                                    Get_Port_Chain (Ent),
                                    Get_Port_Map_Aspect_Chain (Stmt));

      if Arch /= Null_Node then
         --  For whiteboxes: append parameters or/and hash.
         Enc := Name_Hash;
      else
         --  For blackboxes: define the parameters.
         Enc := Name_Parameters;
      end if;

      --  Search if corresponding module has already been used.
      --  If not create a new module
      --   * create a name from the generics and the library
      --   * create inputs/outputs
      --   * add it to the list of module to be synthesized.
      Inst_Obj := Insts_Interning.Get ((Decl => Ent,
                                        Arch => Arch,
                                        Config => Config,
                                        Syn_Inst => Sub_Inst,
                                        Encoding => Enc));

      --  TODO: free sub_inst.

      Inst := New_Instance
        (Get_Instance_Module (Syn_Inst),
         Inst_Obj.M,
         New_Sname_User (Get_Identifier (Stmt), Get_Sname (Syn_Inst)));
      Set_Location (Inst, Stmt);

      Synth_Instantiate_Module
        (Syn_Inst, Inst, Inst_Obj, Get_Port_Map_Aspect_Chain (Stmt));
   end Synth_Direct_Instantiation_Statement;

   procedure Synth_Design_Instantiation_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Aspect : constant Iir := Get_Instantiated_Unit (Stmt);
      Arch : Node;
      Ent : Node;
      Config : Node;
   begin
      --  Load configured entity + architecture
      case Iir_Kinds_Entity_Aspect (Get_Kind (Aspect)) is
         when Iir_Kind_Entity_Aspect_Entity =>
            Arch := Get_Architecture (Aspect);
            if Arch = Null_Node then
               Arch := Libraries.Get_Latest_Architecture (Get_Entity (Aspect));
            else
               Arch := Strip_Denoting_Name (Arch);
            end if;
            Config := Get_Library_Unit
              (Get_Default_Configuration_Declaration (Arch));
         when Iir_Kind_Entity_Aspect_Configuration =>
            Config := Get_Configuration (Aspect);
            Arch := Get_Block_Specification (Get_Block_Configuration (Config));
         when Iir_Kind_Entity_Aspect_Open =>
            return;
      end case;
      Config := Get_Block_Configuration (Config);
      Ent := Get_Entity (Arch);

      Synth_Direct_Instantiation_Statement
        (Syn_Inst, Stmt, Ent, Arch, Config);
   end Synth_Design_Instantiation_Statement;

   procedure Synth_Blackbox_Instantiation_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Comp : constant Node :=
        Get_Named_Entity (Get_Instantiated_Unit (Stmt));
   begin
      Synth_Direct_Instantiation_Statement
        (Syn_Inst, Stmt, Comp, Null_Node, Null_Node);
   end Synth_Blackbox_Instantiation_Statement;

   procedure Create_Component_Wire
     (Ctxt : Context_Acc; Inter : Node; Val : Valtyp; Pfx_Name : Sname)
   is
      Value : Net;
      W : Width;
   begin
      case Val.Val.Kind is
         when Value_Wire =>
            --  Create a gate for the output, so that it could be read.
            Val.Val.W := Alloc_Wire (Wire_Output, Inter);
            W := Get_Type_Width (Val.Typ);
            Value := Build_Signal
              (Ctxt, New_Internal_Name (Ctxt, Pfx_Name), W);
            Set_Wire_Gate (Val.Val.W, Value);
         when others =>
            raise Internal_Error;
      end case;
   end Create_Component_Wire;

   procedure Synth_Component_Instantiation_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Component : constant Node :=
        Get_Named_Entity (Get_Instantiated_Unit (Stmt));
      Config : constant Node := Get_Component_Configuration (Stmt);
      Bind : constant Node := Get_Binding_Indication (Config);
      Aspect : constant Node := Get_Entity_Aspect (Bind);
      Comp_Inst : Synth_Instance_Acc;

      Ent : Node;
      Arch : Node;
      Sub_Config : Node;
      Sub_Inst : Synth_Instance_Acc;
      Inst_Obj : Inst_Object;
      Inst : Instance;
      Inst_Name : Sname;
   begin
      pragma Assert (Get_Component_Configuration (Stmt) /= Null_Node);
      pragma Assert (Get_Kind (Aspect) = Iir_Kind_Entity_Aspect_Entity);

      Inst_Name := New_Sname_User (Get_Identifier (Stmt),
                                   Get_Sname (Syn_Inst));

      --  Create the sub-instance for the component
      --  Elaborate generic + map aspect
      Comp_Inst := Make_Instance
        (Syn_Inst, Component,
         New_Sname_User (Get_Identifier (Component), No_Sname));

      Synth_Generics_Association (Comp_Inst, Syn_Inst,
                                  Get_Generic_Chain (Component),
                                  Get_Generic_Map_Aspect_Chain (Stmt));

      --  Create objects for the inputs and the outputs of the component,
      --  assign inputs (that's nets) and create wires for outputs.
      declare
         Assoc : Node;
         Assoc_Inter : Node;
         Inter : Node;
         Inter_Typ : Type_Acc;
         Val : Valtyp;
         N : Net;
      begin
         Assoc := Get_Port_Map_Aspect_Chain (Stmt);
         Assoc_Inter := Get_Port_Chain (Component);
         while Is_Valid (Assoc) loop
            if Get_Whole_Association_Flag (Assoc) then
               Inter := Get_Association_Interface (Assoc, Assoc_Inter);

               Inter_Typ := Synth_Port_Association_Type
                 (Comp_Inst, Syn_Inst, Inter, Assoc);

               case Mode_To_Port_Kind (Get_Mode (Inter)) is
                  when Port_In =>
                     N := Synth_Input_Assoc
                       (Syn_Inst, Assoc, Comp_Inst, Inter);
                     Val := Create_Value_Net (N, Inter_Typ);
                  when Port_Out
                    | Port_Inout =>
                     Val := Create_Value_Wire (No_Wire_Id, Inter_Typ);
                     Create_Component_Wire
                       (Get_Build (Syn_Inst), Assoc_Inter, Val, Inst_Name);
               end case;
               Create_Object (Comp_Inst, Assoc_Inter, Val);
            end if;
            Next_Association_Interface (Assoc, Assoc_Inter);
         end loop;
      end;

      --  Extract entity/architecture instantiated by the component.
      case Get_Kind (Aspect) is
         when Iir_Kind_Entity_Aspect_Entity =>
            Ent := Get_Entity (Aspect);
            Arch := Get_Architecture (Aspect);
         when others =>
            Vhdl.Errors.Error_Kind
              ("Synth_Component_Instantiation_Statement(2)", Aspect);
      end case;

      if Arch = Null_Node then
         Arch := Libraries.Get_Latest_Architecture (Ent);
      else
         Arch := Get_Named_Entity (Arch);
      end if;
      Sub_Config := Get_Library_Unit
        (Get_Default_Configuration_Declaration (Arch));
      Sub_Config := Get_Block_Configuration (Sub_Config);

      --  Elaborate generic + map aspect for the entity instance.
      Sub_Inst := Make_Instance
        (Comp_Inst, Ent, New_Sname_User (Get_Identifier (Ent), No_Sname));
      Synth_Generics_Association (Sub_Inst, Comp_Inst,
                                  Get_Generic_Chain (Ent),
                                  Get_Generic_Map_Aspect_Chain (Bind));

      Synth_Ports_Association_Type (Sub_Inst, Comp_Inst,
                                    Get_Port_Chain (Ent),
                                    Get_Port_Map_Aspect_Chain (Bind));

      --  Search if corresponding module has already been used.
      --  If not create a new module
      --   * create a name from the generics and the library
      --   * create inputs/outputs
      --   * add it to the list of module to be synthesized.
      Inst_Obj := Insts_Interning.Get ((Decl => Ent,
                                        Arch => Arch,
                                        Config => Sub_Config,
                                        Syn_Inst => Sub_Inst,
                                        Encoding => Name_Hash));

      --  TODO: free sub_inst.

      Inst := New_Instance (Get_Instance_Module (Syn_Inst),
                            Inst_Obj.M, Inst_Name);

      Synth_Instantiate_Module
        (Comp_Inst, Inst, Inst_Obj, Get_Port_Map_Aspect_Chain (Bind));

      --  Connect out from component to instance.
      --  Instantiate the module
      --  Elaborate ports + map aspect for the inputs (component then entity)
      --  Elaborate ports + map aspect for the outputs (entity then component)
      declare
         Assoc : Node;
         Assoc_Inter : Node;
         Inter : Node;
         Port : Net;
         O : Valtyp;
         Nbr_Outputs : Port_Nbr;
      begin
         Assoc := Get_Port_Map_Aspect_Chain (Stmt);
         Assoc_Inter := Get_Port_Chain (Component);
         Nbr_Outputs := 0;
         while Is_Valid (Assoc) loop
            if Get_Whole_Association_Flag (Assoc) then
               Inter := Get_Association_Interface (Assoc, Assoc_Inter);

               if Mode_To_Port_Kind (Get_Mode (Inter)) = Port_Out then
                  O := Get_Value (Comp_Inst, Inter);
                  Port := Get_Net (O);
                  Synth_Output_Assoc (Port, Syn_Inst, Assoc, Comp_Inst, Inter);
                  Nbr_Outputs := Nbr_Outputs + 1;
               end if;
            end if;
            Next_Association_Interface (Assoc, Assoc_Inter);
         end loop;
      end;
   end Synth_Component_Instantiation_Statement;

   procedure Synth_Dependencies (Parent_Inst : Synth_Instance_Acc; Unit : Node)
   is
      Dep_List : constant Node_List := Get_Dependence_List (Unit);
      Dep_It : List_Iterator;
      Dep : Node;
      Dep_Unit : Node;
   begin
      Dep_It := List_Iterate (Dep_List);
      while Is_Valid (Dep_It) loop
         Dep := Get_Element (Dep_It);
         if Get_Kind (Dep) = Iir_Kind_Design_Unit
           and then not Get_Elab_Flag (Dep)
         then
            Set_Elab_Flag (Dep, True);
            Synth_Dependencies (Parent_Inst, Dep);
            Dep_Unit := Get_Library_Unit (Dep);
            case Iir_Kinds_Library_Unit (Get_Kind (Dep_Unit)) is
               when Iir_Kind_Entity_Declaration =>
                  null;
               when Iir_Kind_Configuration_Declaration =>
                  null;
               when Iir_Kind_Context_Declaration =>
                  null;
               when Iir_Kind_Package_Declaration =>
                  declare
                     Bod : constant Node := Get_Package_Body (Dep_Unit);
                     Bod_Unit : Node;
                  begin
                     Synth_Package_Declaration (Parent_Inst, Dep_Unit);
                     --  Do not try to elaborate math_real body: there are
                     --  functions with loop.  Currently, try create signals,
                     --  which is not possible during package elaboration.
                     if Bod /= Null_Node
                       and then Dep_Unit /= Vhdl.Ieee.Math_Real.Math_Real_Pkg
                     then
                        Bod_Unit := Get_Design_Unit (Bod);
                        Synth_Dependencies (Parent_Inst, Bod_Unit);
                        Synth_Package_Body (Parent_Inst, Dep_Unit, Bod);
                     end if;
                  end;
               when Iir_Kind_Package_Instantiation_Declaration =>
                  Synth_Package_Instantiation (Parent_Inst, Dep_Unit);
               when Iir_Kind_Package_Body =>
                  null;
               when Iir_Kind_Architecture_Body =>
                  null;
               when Iir_Kinds_Verification_Unit =>
                  null;
            end case;
         end if;
         Next (Dep_It);
      end loop;
   end Synth_Dependencies;

   procedure Synth_Top_Entity (Global_Instance : Synth_Instance_Acc;
                               Arch : Node;
                               Config : Node;
                               Encoding : Name_Encoding;
                               Inst : out Synth_Instance_Acc)
   is
      Entity : constant Node := Get_Entity (Arch);
      Syn_Inst : Synth_Instance_Acc;
      Inter : Node;
      Inter_Typ : Type_Acc;
      Inst_Obj : Inst_Object;
      Val : Valtyp;
   begin
      Root_Instance := Global_Instance;

      Insts_Interning.Init;

      if Flags.Flag_Debug_Init then
         Synth.Debugger.Debug_Init (Arch);
      end if;

      --  Dependencies first.
      Synth_Dependencies (Global_Instance, Get_Design_Unit (Entity));
      Synth_Dependencies (Global_Instance, Get_Design_Unit (Arch));

      Syn_Inst := Make_Instance
        (Global_Instance, Arch,
         New_Sname_User (Get_Identifier (Entity), No_Sname));

      --  Compute generics.
      Inter := Get_Generic_Chain (Entity);
      while Is_Valid (Inter) loop
         Synth_Declaration_Type (Syn_Inst, Inter);
         declare
            Val : Valtyp;
            Inter_Typ : Type_Acc;
         begin
            Inter_Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Inter));
            Val := Synth_Expression_With_Type
              (Syn_Inst, Get_Default_Value (Inter), Inter_Typ);
            pragma Assert (Is_Static (Val.Val));
            Create_Object (Syn_Inst, Inter, Val);
         end;
         Inter := Get_Chain (Inter);
      end loop;

      --  Elaborate port types.
      --  FIXME: what about unconstrained ports ?  Get the type from the
      --    association.
      Inter := Get_Port_Chain (Entity);
      while Is_Valid (Inter) loop
         if not Is_Fully_Constrained_Type (Get_Type (Inter)) then
            --  TODO
            raise Internal_Error;
         end if;
         Synth_Declaration_Type (Syn_Inst, Inter);
         Inter_Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Inter));
         case Mode_To_Port_Kind (Get_Mode (Inter)) is
            when Port_In =>
               Val := Create_Value_Net (No_Net, Inter_Typ);
            when Port_Out
              | Port_Inout =>
               Val := Create_Value_Wire (No_Wire_Id, Inter_Typ);
         end case;
         Create_Object (Syn_Inst, Inter, Val);
         Inter := Get_Chain (Inter);
      end loop;

      --  Search if corresponding module has already been used.
      --  If not create a new module
      --   * create a name from the generics and the library
      --   * create inputs/outputs
      --   * add it to the list of module to be synthesized.
      Inst_Obj := Insts_Interning.Get
        ((Decl => Entity,
          Arch => Arch,
          Config => Get_Block_Configuration (Config),
          Syn_Inst => Syn_Inst,
          Encoding => Encoding));
      Inst := Inst_Obj.Syn_Inst;
   end Synth_Top_Entity;

   procedure Create_Input_Wire (Self_Inst : Instance;
                                Idx : Port_Idx;
                                Val : Value_Acc) is
   begin
      pragma Assert (Val.Kind = Value_Net);
      Val.N := Get_Output (Self_Inst, Idx);
   end Create_Input_Wire;

   procedure Create_Output_Wire (Syn_Inst : Synth_Instance_Acc;
                                 Self_Inst : Instance;
                                 Inter : Node;
                                 Idx : Port_Idx;
                                 Val : Valtyp)
   is
      Default : constant Node := Get_Default_Value (Inter);
      Desc : constant Port_Desc :=
        Get_Output_Desc (Get_Module (Self_Inst), Idx);
      Inter_Typ : Type_Acc;
      Value : Net;
      Init : Valtyp;
      Inp : Input;
   begin
      pragma Assert (Val.Val.Kind = Value_Wire);

      --  Create a gate for the output, so that it could be read.
      Val.Val.W := Alloc_Wire (Wire_Output, Inter);
      --  pragma Assert (Desc.W = Get_Type_Width (Val.Typ));

      Inp := Get_Input (Self_Inst, Idx);

      if Desc.Is_Inout then
         if Default /= Null_Node then
            --  TODO: initialized inout.
            raise Internal_Error;
         end if;
         declare
            Io_Inst : Instance;
         begin
            Io_Inst := Builders.Build_Inout (Build_Context, Desc.W);
            --  Connect port1 of gate inout to the pin.
            Connect (Inp, Get_Output (Io_Inst, 1));
            --  And port0 of the gate will be use to read from the pin.
            Value := Get_Output (Io_Inst, 0);
         end;
      else
         if Default /= Null_Node then
            Inter_Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Inter));
            Init := Synth_Expression_With_Type
              (Syn_Inst, Default, Inter_Typ);
            Init := Synth_Subtype_Conversion
              (Init, Inter_Typ, False, Inter);
            Value := Builders.Build_Ioutput (Build_Context, Get_Net (Init));
         else
            Value := Builders.Build_Output (Build_Context, Desc.W);
         end if;
         Connect (Inp, Value);
      end if;
      Set_Location (Value, Inter);
      Set_Wire_Gate (Val.Val.W, Value);
   end Create_Output_Wire;

   procedure Apply_Block_Configuration (Cfg : Node; Blk : Node)
   is
      Item : Node;
   begin
      --  Be sure CFG applies to BLK.
      pragma Assert (Get_Block_From_Block_Specification
                       (Get_Block_Specification (Cfg)) = Blk);

      Clear_Instantiation_Configuration (Blk);

      Item := Get_Configuration_Item_Chain (Cfg);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Component_Configuration =>
               declare
                  List : constant Iir_Flist :=
                    Get_Instantiation_List (Item);
                  El : Node;
                  Inst : Node;
               begin
                  for I in Flist_First .. Flist_Last (List) loop
                     El := Get_Nth_Element (List, I);
                     Inst := Get_Named_Entity (El);
                     pragma Assert
                       (Get_Kind (Inst)
                          = Iir_Kind_Component_Instantiation_Statement);
                     pragma Assert
                       (Get_Component_Configuration (Inst) = Null_Node);
                     Set_Component_Configuration (Inst, Item);
                  end loop;
               end;
            when Iir_Kind_Block_Configuration =>
               declare
                  Sub_Blk : constant Node := Get_Block_From_Block_Specification
                    (Get_Block_Specification (Item));
               begin
                  case Get_Kind (Sub_Blk) is
                     when Iir_Kind_Generate_Statement_Body =>
                        -- Linked chain.
                        Set_Prev_Block_Configuration
                          (Item, Get_Generate_Block_Configuration (Sub_Blk));
                        Set_Generate_Block_Configuration (Sub_Blk, Item);
                     when Iir_Kind_Block_Statement =>
                        Set_Block_Block_Configuration (Sub_Blk, Item);
                     when others =>
                        Vhdl.Errors.Error_Kind
                          ("apply_block_configuration(blk)", Sub_Blk);
                  end case;
               end;
            when others =>
               Vhdl.Errors.Error_Kind ("apply_block_configuration", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;
   end Apply_Block_Configuration;

   procedure Synth_Verification_Units
     (Syn_Inst : Synth_Instance_Acc; Parent : Node)
   is
      Unit : Node;
   begin
      Unit := Get_Bound_Vunit_Chain (Parent);
      while Unit /= Null_Node loop
         Synth_Verification_Unit (Syn_Inst, Unit);
         Unit := Get_Bound_Vunit_Chain (Unit);
      end loop;
   end Synth_Verification_Units;

   procedure Synth_Instance (Inst : Inst_Object)
   is
      Entity : constant Node := Inst.Decl;
      Arch : constant Node := Inst.Arch;
      Syn_Inst : constant Synth_Instance_Acc := Inst.Syn_Inst;
      Self_Inst : Instance;
      Inter : Node;
      Vt : Valtyp;
      Nbr_Inputs : Port_Nbr;
      Nbr_Outputs : Port_Nbr;
   begin
      if Arch = Null_Node then
         --  Black box.
         return;
      end if;

      --  Save the current architecture, so that files can be open using a
      --  path relative to the architecture filename.
      Synth.Files_Operations.Set_Design_Unit (Arch);

      Synth_Dependencies (Root_Instance, Get_Design_Unit (Arch));

      Set_Instance_Module (Syn_Inst, Inst.M);
      Self_Inst := Get_Self_Instance (Inst.M);
      Set_Location (Self_Inst, Entity);

      --  Create wires for inputs and outputs.
      Inter := Get_Port_Chain (Entity);
      Nbr_Inputs := 0;
      Nbr_Outputs := 0;
      while Is_Valid (Inter) loop
         Vt := Get_Value (Syn_Inst, Inter);
         case Mode_To_Port_Kind (Get_Mode (Inter)) is
            when Port_In =>
               Create_Input_Wire (Self_Inst, Nbr_Inputs, Vt.Val);
               Nbr_Inputs := Nbr_Inputs + 1;
            when Port_Out
              | Port_Inout =>
               Create_Output_Wire
                 (Syn_Inst, Self_Inst, Inter, Nbr_Outputs, Vt);
               Nbr_Outputs := Nbr_Outputs + 1;
         end case;
         Inter := Get_Chain (Inter);
      end loop;

      --  Apply configuration.
      --  FIXME: what about inner block configuration ?
      pragma Assert (Get_Kind (Inst.Config) = Iir_Kind_Block_Configuration);
      Apply_Block_Configuration (Inst.Config, Arch);

      Synth_Declarations (Syn_Inst, Get_Declaration_Chain (Entity));
      if not Is_Error (Syn_Inst) then
         Synth_Concurrent_Statements
           (Syn_Inst, Get_Concurrent_Statement_Chain (Entity));
      end if;

      if not Is_Error (Syn_Inst) then
         Synth_Declarations (Syn_Inst, Get_Declaration_Chain (Arch));
      end if;
      if not Is_Error (Syn_Inst) then
         Synth_Concurrent_Statements
           (Syn_Inst, Get_Concurrent_Statement_Chain (Arch));
      end if;

      if not Is_Error (Syn_Inst) then
         Synth_Verification_Units (Syn_Inst, Entity);
      end if;
      if not Is_Error (Syn_Inst) then
         Synth_Verification_Units (Syn_Inst, Arch);
      end if;

      Finalize_Assignments (Get_Build (Syn_Inst));

      Finalize_Declarations (Syn_Inst, Get_Declaration_Chain (Arch));

      --  Remove unused gates.  This is not only an optimization but also
      --  a correctness point: there might be some unsynthesizable gates, like
      --  the one created for 'rising_egde (clk) and not rst'.
      if not Synth.Flags.Flag_Debug_Nocleanup then
         --  Netlists.Cleanup.Remove_Unconnected_Instances (Inst.M);
         Netlists.Cleanup.Mark_And_Sweep (Inst.M);
         Netlists.Cleanup.Remove_Output_Gates (Inst.M);
      end if;

      if not Synth.Flags.Flag_Debug_Nomemory then
         Netlists.Memories.Extract_Memories2 (Get_Build (Syn_Inst), Inst.M);
         --  Remove remaining clock edge gates.
         Netlists.Cleanup.Mark_And_Sweep (Inst.M);
      end if;

      if not Synth.Flags.Flag_Debug_Noexpand then
         Netlists.Expands.Expand_Gates (Get_Build (Syn_Inst), Inst.M);
      end if;
   end Synth_Instance;

   procedure Synth_All_Instances
   is
      use Insts_Interning;
      Idx : Index_Type;
   begin
      Idx := First_Index;
      while Idx <= Last_Index loop
         Synth_Instance (Get_By_Index (Idx));
         Idx := Idx + 1;
      end loop;
   end Synth_All_Instances;
end Synth.Insts;