aboutsummaryrefslogtreecommitdiffstats
path: root/libs/minisat/SimpSolver.cc
blob: fd5774e0e74b8ba50107265c641545e5b9166879 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
#define __STDC_FORMAT_MACROS
#define __STDC_LIMIT_MACROS
/***********************************************************************************[SimpSolver.cc]
Copyright (c) 2006,      Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/

#include "Sort.h"
#include "SimpSolver.h"
#include "System.h"

using namespace Minisat;

//=================================================================================================
// Options:


static const char* _cat = "SIMP";

static BoolOption   opt_use_asymm        (_cat, "asymm",        "Shrink clauses by asymmetric branching.", false);
static BoolOption   opt_use_rcheck       (_cat, "rcheck",       "Check if a clause is already implied. (costly)", false);
static BoolOption   opt_use_elim         (_cat, "elim",         "Perform variable elimination.", true);
static IntOption    opt_grow             (_cat, "grow",         "Allow a variable elimination step to grow by a number of clauses.", 0);
static IntOption    opt_clause_lim       (_cat, "cl-lim",       "Variables are not eliminated if it produces a resolvent with a length above this limit. -1 means no limit", 20,   IntRange(-1, INT32_MAX));
static IntOption    opt_subsumption_lim  (_cat, "sub-lim",      "Do not check if subsumption against a clause larger than this. -1 means no limit.", 1000, IntRange(-1, INT32_MAX));
static DoubleOption opt_simp_garbage_frac(_cat, "simp-gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered during simplification.",  0.5, DoubleRange(0, false, HUGE_VAL, false));


//=================================================================================================
// Constructor/Destructor:


SimpSolver::SimpSolver() :
    grow               (opt_grow)
  , clause_lim         (opt_clause_lim)
  , subsumption_lim    (opt_subsumption_lim)
  , simp_garbage_frac  (opt_simp_garbage_frac)
  , use_asymm          (opt_use_asymm)
  , use_rcheck         (opt_use_rcheck)
  , use_elim           (opt_use_elim)
  , extend_model       (true)
  , merges             (0)
  , asymm_lits         (0)
  , eliminated_vars    (0)
  , elimorder          (1)
  , use_simplification (true)
  , occurs             (ClauseDeleted(ca))
  , elim_heap          (ElimLt(n_occ))
  , bwdsub_assigns     (0)
  , n_touched          (0)
{
    vec<Lit> dummy(1,lit_Undef);
    ca.extra_clause_field = true; // NOTE: must happen before allocating the dummy clause below.
    bwdsub_tmpunit        = ca.alloc(dummy);
    remove_satisfied      = false;
}


SimpSolver::~SimpSolver()
{
}


Var SimpSolver::newVar(lbool upol, bool dvar) {
    Var v = Solver::newVar(upol, dvar);

    frozen    .insert(v, (char)false);
    eliminated.insert(v, (char)false);

    if (use_simplification){
        n_occ     .insert( mkLit(v), 0);
        n_occ     .insert(~mkLit(v), 0);
        occurs    .init  (v);
        touched   .insert(v, 0);
        elim_heap .insert(v);
    }
    return v; }


void SimpSolver::releaseVar(Lit l)
{
    assert(!isEliminated(var(l)));
    if (!use_simplification && var(l) >= max_simp_var)
        // Note: Guarantees that no references to this variable is
        // left in model extension datastructure. Could be improved!
        Solver::releaseVar(l);
    else
        // Otherwise, don't allow variable to be reused.
        Solver::addClause(l);
}


lbool SimpSolver::solve_(bool do_simp, bool turn_off_simp)
{
    vec<Var> extra_frozen;
    lbool    result = l_True;

    do_simp &= use_simplification;

    if (do_simp){
        // Assumptions must be temporarily frozen to run variable elimination:
        for (int i = 0; i < assumptions.size(); i++){
            Var v = var(assumptions[i]);

            // If an assumption has been eliminated, remember it.
            assert(!isEliminated(v));

            if (!frozen[v]){
                // Freeze and store.
                setFrozen(v, true);
                extra_frozen.push(v);
            } }

        result = lbool(eliminate(turn_off_simp));
    }

    if (result == l_True)
        result = Solver::solve_();
    else if (verbosity >= 1)
        printf("===============================================================================\n");

    if (result == l_True && extend_model)
        extendModel();

    if (do_simp)
        // Unfreeze the assumptions that were frozen:
        for (int i = 0; i < extra_frozen.size(); i++)
            setFrozen(extra_frozen[i], false);

    return result;
}



bool SimpSolver::addClause_(vec<Lit>& ps)
{
#ifndef NDEBUG
    for (int i = 0; i < ps.size(); i++)
        assert(!isEliminated(var(ps[i])));
#endif

    int nclauses = clauses.size();

    if (use_rcheck && implied(ps))
        return true;

    if (!Solver::addClause_(ps))
        return false;

    if (use_simplification && clauses.size() == nclauses + 1){
        CRef          cr = clauses.last();
        const Clause& c  = ca[cr];

        // NOTE: the clause is added to the queue immediately and then
        // again during 'gatherTouchedClauses()'. If nothing happens
        // in between, it will only be checked once. Otherwise, it may
        // be checked twice unnecessarily. This is an unfortunate
        // consequence of how backward subsumption is used to mimic
        // forward subsumption.
        subsumption_queue.insert(cr);
        for (int i = 0; i < c.size(); i++){
            occurs[var(c[i])].push(cr);
            n_occ[c[i]]++;
            touched[var(c[i])] = 1;
            n_touched++;
            if (elim_heap.inHeap(var(c[i])))
                elim_heap.increase(var(c[i]));
        }
    }

    return true;
}


void SimpSolver::removeClause(CRef cr)
{
    const Clause& c = ca[cr];

    if (use_simplification)
        for (int i = 0; i < c.size(); i++){
            n_occ[c[i]]--;
            updateElimHeap(var(c[i]));
            occurs.smudge(var(c[i]));
        }

    Solver::removeClause(cr);
}


bool SimpSolver::strengthenClause(CRef cr, Lit l)
{
    Clause& c = ca[cr];
    assert(decisionLevel() == 0);
    assert(use_simplification);

    // FIX: this is too inefficient but would be nice to have (properly implemented)
    // if (!find(subsumption_queue, &c))
    subsumption_queue.insert(cr);

    if (c.size() == 2){
        removeClause(cr);
        c.strengthen(l);
    }else{
        detachClause(cr, true);
        c.strengthen(l);
        attachClause(cr);
        remove(occurs[var(l)], cr);
        n_occ[l]--;
        updateElimHeap(var(l));
    }

    return c.size() == 1 ? enqueue(c[0]) && propagate() == CRef_Undef : true;
}


// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
{
    merges++;
    out_clause.clear();

    bool  ps_smallest = _ps.size() < _qs.size();
    const Clause& ps  =  ps_smallest ? _qs : _ps;
    const Clause& qs  =  ps_smallest ? _ps : _qs;

    for (int i = 0; i < qs.size(); i++){
        if (var(qs[i]) != v){
            for (int j = 0; j < ps.size(); j++)
                if (var(ps[j]) == var(qs[i])){
                    if (ps[j] == ~qs[i])
                        return false;
                    else
                        goto next;
                }
            out_clause.push(qs[i]);
        }
        next:;
    }

    for (int i = 0; i < ps.size(); i++)
        if (var(ps[i]) != v)
            out_clause.push(ps[i]);

    return true;
}


// Returns FALSE if clause is always satisfied.
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, int& size)
{
    merges++;

    bool  ps_smallest = _ps.size() < _qs.size();
    const Clause& ps  =  ps_smallest ? _qs : _ps;
    const Clause& qs  =  ps_smallest ? _ps : _qs;
    const Lit*  __ps  = (const Lit*)ps;
    const Lit*  __qs  = (const Lit*)qs;

    size = ps.size()-1;

    for (int i = 0; i < qs.size(); i++){
        if (var(__qs[i]) != v){
            for (int j = 0; j < ps.size(); j++)
                if (var(__ps[j]) == var(__qs[i])){
                    if (__ps[j] == ~__qs[i])
                        return false;
                    else
                        goto next;
                }
            size++;
        }
        next:;
    }

    return true;
}


void SimpSolver::gatherTouchedClauses()
{
    if (n_touched == 0) return;

    int i,j;
    for (i = j = 0; i < subsumption_queue.size(); i++)
        if (ca[subsumption_queue[i]].mark() == 0)
            ca[subsumption_queue[i]].mark(2);

    for (i = 0; i < nVars(); i++)
        if (touched[i]){
            const vec<CRef>& cs = occurs.lookup(i);
            for (j = 0; j < cs.size(); j++)
                if (ca[cs[j]].mark() == 0){
                    subsumption_queue.insert(cs[j]);
                    ca[cs[j]].mark(2);
                }
            touched[i] = 0;
        }

    for (i = 0; i < subsumption_queue.size(); i++)
        if (ca[subsumption_queue[i]].mark() == 2)
            ca[subsumption_queue[i]].mark(0);

    n_touched = 0;
}


bool SimpSolver::implied(const vec<Lit>& c)
{
    assert(decisionLevel() == 0);

    trail_lim.push(trail.size());
    for (int i = 0; i < c.size(); i++)
        if (value(c[i]) == l_True){
            cancelUntil(0);
            return true;
        }else if (value(c[i]) != l_False){
            assert(value(c[i]) == l_Undef);
            uncheckedEnqueue(~c[i]);
        }

    bool result = propagate() != CRef_Undef;
    cancelUntil(0);
    return result;
}


// Backward subsumption + backward subsumption resolution
bool SimpSolver::backwardSubsumptionCheck(bool verbose)
{
    int cnt = 0;
    int subsumed = 0;
    int deleted_literals = 0;
    assert(decisionLevel() == 0);

    while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){

        // Empty subsumption queue and return immediately on user-interrupt:
        if (asynch_interrupt){
            subsumption_queue.clear();
            bwdsub_assigns = trail.size();
            break; }

        // Check top-level assignments by creating a dummy clause and placing it in the queue:
        if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
            Lit l = trail[bwdsub_assigns++];
            ca[bwdsub_tmpunit][0] = l;
            ca[bwdsub_tmpunit].calcAbstraction();
            subsumption_queue.insert(bwdsub_tmpunit); }

        CRef    cr = subsumption_queue.peek(); subsumption_queue.pop();
        Clause& c  = ca[cr];

        if (c.mark()) continue;

        if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
            printf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);

        assert(c.size() > 1 || value(c[0]) == l_True);    // Unit-clauses should have been propagated before this point.

        // Find best variable to scan:
        Var best = var(c[0]);
        for (int i = 1; i < c.size(); i++)
            if (occurs[var(c[i])].size() < occurs[best].size())
                best = var(c[i]);

        // Search all candidates:
        vec<CRef>& _cs = occurs.lookup(best);
        CRef*       cs = (CRef*)_cs;

        for (int j = 0; j < _cs.size(); j++)
            if (c.mark())
                break;
            else if (!ca[cs[j]].mark() &&  cs[j] != cr && (subsumption_lim == -1 || ca[cs[j]].size() < subsumption_lim)){
                Lit l = c.subsumes(ca[cs[j]]);

                if (l == lit_Undef)
                    subsumed++, removeClause(cs[j]);
                else if (l != lit_Error){
                    deleted_literals++;

                    if (!strengthenClause(cs[j], ~l))
                        return false;

                    // Did current candidate get deleted from cs? Then check candidate at index j again:
                    if (var(l) == best)
                        j--;
                }
            }
    }

    return true;
}


bool SimpSolver::asymm(Var v, CRef cr)
{
    Clause& c = ca[cr];
    assert(decisionLevel() == 0);

    if (c.mark() || satisfied(c)) return true;

    trail_lim.push(trail.size());
    Lit l = lit_Undef;
    for (int i = 0; i < c.size(); i++)
        if (var(c[i]) != v && value(c[i]) != l_False)
            uncheckedEnqueue(~c[i]);
        else
            l = c[i];

    if (propagate() != CRef_Undef){
        cancelUntil(0);
        asymm_lits++;
        if (!strengthenClause(cr, l))
            return false;
    }else
        cancelUntil(0);

    return true;
}


bool SimpSolver::asymmVar(Var v)
{
    assert(use_simplification);

    const vec<CRef>& cls = occurs.lookup(v);

    if (value(v) != l_Undef || cls.size() == 0)
        return true;

    for (int i = 0; i < cls.size(); i++)
        if (!asymm(v, cls[i]))
            return false;

    return backwardSubsumptionCheck();
}


static void mkElimClause(vec<uint32_t>& elimclauses, Lit x)
{
    elimclauses.push(toInt(x));
    elimclauses.push(1);
}


static void mkElimClause(vec<uint32_t>& elimclauses, Var v, Clause& c)
{
    int first = elimclauses.size();
    int v_pos = -1;

    // Copy clause to elimclauses-vector. Remember position where the
    // variable 'v' occurs:
    for (int i = 0; i < c.size(); i++){
        elimclauses.push(toInt(c[i]));
        if (var(c[i]) == v)
            v_pos = i + first;
    }
    assert(v_pos != -1);

    // Swap the first literal with the 'v' literal, so that the literal
    // containing 'v' will occur first in the clause:
    uint32_t tmp = elimclauses[v_pos];
    elimclauses[v_pos] = elimclauses[first];
    elimclauses[first] = tmp;

    // Store the length of the clause last:
    elimclauses.push(c.size());
}



bool SimpSolver::eliminateVar(Var v)
{
    assert(!frozen[v]);
    assert(!isEliminated(v));
    assert(value(v) == l_Undef);

    // Split the occurrences into positive and negative:
    //
    const vec<CRef>& cls = occurs.lookup(v);
    vec<CRef>        pos, neg;
    for (int i = 0; i < cls.size(); i++)
        (find(ca[cls[i]], mkLit(v)) ? pos : neg).push(cls[i]);

    // Check wether the increase in number of clauses stays within the allowed ('grow'). Moreover, no
    // clause must exceed the limit on the maximal clause size (if it is set):
    //
    int cnt         = 0;
    int clause_size = 0;

    for (int i = 0; i < pos.size(); i++)
        for (int j = 0; j < neg.size(); j++)
            if (merge(ca[pos[i]], ca[neg[j]], v, clause_size) && 
                (++cnt > cls.size() + grow || (clause_lim != -1 && clause_size > clause_lim)))
                return true;

    // Delete and store old clauses:
    eliminated[v] = true;
    setDecisionVar(v, false);
    eliminated_vars++;

    if (pos.size() > neg.size()){
        for (int i = 0; i < neg.size(); i++)
            mkElimClause(elimclauses, v, ca[neg[i]]);
        mkElimClause(elimclauses, mkLit(v));
    }else{
        for (int i = 0; i < pos.size(); i++)
            mkElimClause(elimclauses, v, ca[pos[i]]);
        mkElimClause(elimclauses, ~mkLit(v));
    }

    for (int i = 0; i < cls.size(); i++)
        removeClause(cls[i]); 

    // Produce clauses in cross product:
    vec<Lit>& resolvent = add_tmp;
    for (int i = 0; i < pos.size(); i++)
        for (int j = 0; j < neg.size(); j++)
            if (merge(ca[pos[i]], ca[neg[j]], v, resolvent) && !addClause_(resolvent))
                return false;

    // Free occurs list for this variable:
    occurs[v].clear(true);
    
    // Free watchers lists for this variable, if possible:
    if (watches[ mkLit(v)].size() == 0) watches[ mkLit(v)].clear(true);
    if (watches[~mkLit(v)].size() == 0) watches[~mkLit(v)].clear(true);

    return backwardSubsumptionCheck();
}


bool SimpSolver::substitute(Var v, Lit x)
{
    assert(!frozen[v]);
    assert(!isEliminated(v));
    assert(value(v) == l_Undef);

    if (!ok) return false;

    eliminated[v] = true;
    setDecisionVar(v, false);
    const vec<CRef>& cls = occurs.lookup(v);
    
    vec<Lit>& subst_clause = add_tmp;
    for (int i = 0; i < cls.size(); i++){
        Clause& c = ca[cls[i]];

        subst_clause.clear();
        for (int j = 0; j < c.size(); j++){
            Lit p = c[j];
            subst_clause.push(var(p) == v ? x ^ sign(p) : p);
        }

        removeClause(cls[i]);

        if (!addClause_(subst_clause))
            return ok = false;
    }

    return true;
}


void SimpSolver::extendModel()
{
    int i, j;
    Lit x;

    for (i = elimclauses.size()-1; i > 0; i -= j){
        for (j = elimclauses[i--]; j > 1; j--, i--)
            if (modelValue(toLit(elimclauses[i])) != l_False)
                goto next;

        x = toLit(elimclauses[i]);
        model[var(x)] = lbool(!sign(x));
    next:;
    }
}


bool SimpSolver::eliminate(bool turn_off_elim)
{
    if (!simplify())
        return false;
    else if (!use_simplification)
        return true;

    // Main simplification loop:
    //
    while (n_touched > 0 || bwdsub_assigns < trail.size() || elim_heap.size() > 0){

        gatherTouchedClauses();
        // printf("  ## (time = %6.2f s) BWD-SUB: queue = %d, trail = %d\n", cpuTime(), subsumption_queue.size(), trail.size() - bwdsub_assigns);
        if ((subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()) && 
            !backwardSubsumptionCheck(true)){
            ok = false; goto cleanup; }

        // Empty elim_heap and return immediately on user-interrupt:
        if (asynch_interrupt){
            assert(bwdsub_assigns == trail.size());
            assert(subsumption_queue.size() == 0);
            assert(n_touched == 0);
            elim_heap.clear();
            goto cleanup; }

        // printf("  ## (time = %6.2f s) ELIM: vars = %d\n", cpuTime(), elim_heap.size());
        for (int cnt = 0; !elim_heap.empty(); cnt++){
            Var elim = elim_heap.removeMin();
            
            if (asynch_interrupt) break;

            if (isEliminated(elim) || value(elim) != l_Undef) continue;

            if (verbosity >= 2 && cnt % 100 == 0)
                printf("elimination left: %10d\r", elim_heap.size());

            if (use_asymm){
                // Temporarily freeze variable. Otherwise, it would immediately end up on the queue again:
                bool was_frozen = frozen[elim];
                frozen[elim] = true;
                if (!asymmVar(elim)){
                    ok = false; goto cleanup; }
                frozen[elim] = was_frozen; }

            // At this point, the variable may have been set by assymetric branching, so check it
            // again. Also, don't eliminate frozen variables:
            if (use_elim && value(elim) == l_Undef && !frozen[elim] && !eliminateVar(elim)){
                ok = false; goto cleanup; }

            checkGarbage(simp_garbage_frac);
        }

        assert(subsumption_queue.size() == 0);
    }
 cleanup:

    // If no more simplification is needed, free all simplification-related data structures:
    if (turn_off_elim){
        touched  .clear(true);
        occurs   .clear(true);
        n_occ    .clear(true);
        elim_heap.clear(true);
        subsumption_queue.clear(true);

        use_simplification    = false;
        remove_satisfied      = true;
        ca.extra_clause_field = false;
        max_simp_var          = nVars();

        // Force full cleanup (this is safe and desirable since it only happens once):
        rebuildOrderHeap();
        garbageCollect();
    }else{
        // Cheaper cleanup:
        checkGarbage();
    }

    if (verbosity >= 1 && elimclauses.size() > 0)
        printf("|  Eliminated clauses:     %10.2f Mb                                      |\n", 
               double(elimclauses.size() * sizeof(uint32_t)) / (1024*1024));

    return ok;
}


//=================================================================================================
// Garbage Collection methods:


void SimpSolver::relocAll(ClauseAllocator& to)
{
    if (!use_simplification) return;

    // All occurs lists:
    //
    for (int i = 0; i < nVars(); i++){
        occurs.clean(i);
        vec<CRef>& cs = occurs[i];
        for (int j = 0; j < cs.size(); j++)
            ca.reloc(cs[j], to);
    }

    // Subsumption queue:
    //
    for (int i = subsumption_queue.size(); i > 0; i--){
        CRef cr = subsumption_queue.peek(); subsumption_queue.pop();
        if (ca[cr].mark()) continue;
        ca.reloc(cr, to);
        subsumption_queue.insert(cr);
    }
        
    // Temporary clause:
    //
    ca.reloc(bwdsub_tmpunit, to);
}


void SimpSolver::garbageCollect()
{
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
    // is not precise but should avoid some unnecessary reallocations for the new region:
    ClauseAllocator to(ca.size() - ca.wasted()); 

    to.extra_clause_field = ca.extra_clause_field; // NOTE: this is important to keep (or lose) the extra fields.
    relocAll(to);
    Solver::relocAll(to);
    if (verbosity >= 2)
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n", 
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
    to.moveTo(ca);
}