aboutsummaryrefslogtreecommitdiffstats
path: root/libs/bigint/BigUnsigned.hh
blob: 9228753c89f0dca9d75e5fccd47664617b98e7e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#ifndef BIGUNSIGNED_H
#define BIGUNSIGNED_H

#include "NumberlikeArray.hh"

/* A BigUnsigned object represents a nonnegative integer of size limited only by
 * available memory.  BigUnsigneds support most mathematical operators and can
 * be converted to and from most primitive integer types.
 *
 * The number is stored as a NumberlikeArray of unsigned longs as if it were
 * written in base 256^sizeof(unsigned long).  The least significant block is
 * first, and the length is such that the most significant block is nonzero. */
class BigUnsigned : protected NumberlikeArray<unsigned long> {

public:
	// Enumeration for the result of a comparison.
	enum CmpRes { less = -1, equal = 0, greater = 1 };

	// BigUnsigneds are built with a Blk type of unsigned long.
	typedef unsigned long Blk;

	typedef NumberlikeArray<Blk>::Index Index;
	using NumberlikeArray<Blk>::N;

protected:
	// Creates a BigUnsigned with a capacity; for internal use.
	BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}

	// Decreases len to eliminate any leading zero blocks.
	void zapLeadingZeros() { 
		while (len > 0 && blk[len - 1] == 0)
			len--;
	}

public:
	// Constructs zero.
	BigUnsigned() : NumberlikeArray<Blk>() {}

	// Copy constructor
	BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}

	// Assignment operator
	void operator=(const BigUnsigned &x) {
		NumberlikeArray<Blk>::operator =(x);
	}

	// Constructor that copies from a given array of blocks.
	BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
		// Eliminate any leading zeros we may have been passed.
		zapLeadingZeros();
	}

	// Destructor.  NumberlikeArray does the delete for us.
	~BigUnsigned() {}
	
	// Constructors from primitive integer types
	BigUnsigned(unsigned long  x);
	BigUnsigned(         long  x);
	BigUnsigned(unsigned int   x);
	BigUnsigned(         int   x);
	BigUnsigned(unsigned short x);
	BigUnsigned(         short x);
protected:
	// Helpers
	template <class X> void initFromPrimitive      (X x);
	template <class X> void initFromSignedPrimitive(X x);
public:

	/* Converters to primitive integer types
	 * The implicit conversion operators caused trouble, so these are now
	 * named. */
	unsigned long  toUnsignedLong () const;
	long           toLong         () const;
	unsigned int   toUnsignedInt  () const;
	int            toInt          () const;
	unsigned short toUnsignedShort() const;
	short          toShort        () const;
protected:
	// Helpers
	template <class X> X convertToSignedPrimitive() const;
	template <class X> X convertToPrimitive      () const;
public:

	// BIT/BLOCK ACCESSORS

	// Expose these from NumberlikeArray directly.
	using NumberlikeArray<Blk>::getCapacity;
	using NumberlikeArray<Blk>::getLength;

	/* Returns the requested block, or 0 if it is beyond the length (as if
	 * the number had 0s infinitely to the left). */
	Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
	/* Sets the requested block.  The number grows or shrinks as necessary. */
	void setBlock(Index i, Blk newBlock);

	// The number is zero if and only if the canonical length is zero.
	bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }

	/* Returns the length of the number in bits, i.e., zero if the number
	 * is zero and otherwise one more than the largest value of bi for
	 * which getBit(bi) returns true. */
	Index bitLength() const;
	/* Get the state of bit bi, which has value 2^bi.  Bits beyond the
	 * number's length are considered to be 0. */
	bool getBit(Index bi) const {
		return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
	}
	/* Sets the state of bit bi to newBit.  The number grows or shrinks as
	 * necessary. */
	void setBit(Index bi, bool newBit);

	// COMPARISONS

	// Compares this to x like Perl's <=>
	CmpRes compareTo(const BigUnsigned &x) const;

	// Ordinary comparison operators
	bool operator ==(const BigUnsigned &x) const {
		return NumberlikeArray<Blk>::operator ==(x);
	}
	bool operator !=(const BigUnsigned &x) const {
		return NumberlikeArray<Blk>::operator !=(x);
	}
	bool operator < (const BigUnsigned &x) const { return compareTo(x) == less   ; }
	bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
	bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less   ; }
	bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }

	/*
	 * BigUnsigned and BigInteger both provide three kinds of operators.
	 * Here ``big-integer'' refers to BigInteger or BigUnsigned.
	 *
	 * (1) Overloaded ``return-by-value'' operators:
	 *     +, -, *, /, %, unary -, &, |, ^, <<, >>.
	 * Big-integer code using these operators looks identical to code using
	 * the primitive integer types.  These operators take one or two
	 * big-integer inputs and return a big-integer result, which can then
	 * be assigned to a BigInteger variable or used in an expression.
	 * Example:
	 *     BigInteger a(1), b = 1;
	 *     BigInteger c = a + b;
	 *
	 * (2) Overloaded assignment operators:
	 *     +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
	 * Again, these are used on big integers just like on ints.  They take
	 * one writable big integer that both provides an operand and receives a
	 * result.  Most also take a second read-only operand.
	 * Example:
	 *     BigInteger a(1), b(1);
	 *     a += b;
	 *
	 * (3) Copy-less operations: `add', `subtract', etc.
	 * These named methods take operands as arguments and store the result
	 * in the receiver (*this), avoiding unnecessary copies and allocations.
	 * `divideWithRemainder' is special: it both takes the dividend from and
	 * stores the remainder into the receiver, and it takes a separate
	 * object in which to store the quotient.  NOTE: If you are wondering
	 * why these don't return a value, you probably mean to use the
	 * overloaded return-by-value operators instead.
	 * 
	 * Examples:
	 *     BigInteger a(43), b(7), c, d;
	 *
	 *     c = a + b;   // Now c == 50.
	 *     c.add(a, b); // Same effect but without the two copies.
	 *
	 *     c.divideWithRemainder(b, d);
	 *     // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
	 *
	 *     // ``Aliased'' calls now do the right thing using a temporary
	 *     // copy, but see note on `divideWithRemainder'.
	 *     a.add(a, b); 
	 */

	// COPY-LESS OPERATIONS

	// These 8: Arguments are read-only operands, result is saved in *this.
	void add(const BigUnsigned &a, const BigUnsigned &b);
	void subtract(const BigUnsigned &a, const BigUnsigned &b);
	void multiply(const BigUnsigned &a, const BigUnsigned &b);
	void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
	void bitOr(const BigUnsigned &a, const BigUnsigned &b);
	void bitXor(const BigUnsigned &a, const BigUnsigned &b);
	/* Negative shift amounts translate to opposite-direction shifts,
	 * except for -2^(8*sizeof(int)-1) which is unimplemented. */
	void bitShiftLeft(const BigUnsigned &a, int b);
	void bitShiftRight(const BigUnsigned &a, int b);

	/* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
	 * / and % use semantics similar to Knuth's, which differ from the
	 * primitive integer semantics under division by zero.  See the
	 * implementation in BigUnsigned.cc for details.
	 * `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
	 * sense to write quotient and remainder into the same variable. */
	void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);

	/* `divide' and `modulo' are no longer offered.  Use
	 * `divideWithRemainder' instead. */

	// OVERLOADED RETURN-BY-VALUE OPERATORS
	BigUnsigned operator +(const BigUnsigned &x) const;
	BigUnsigned operator -(const BigUnsigned &x) const;
	BigUnsigned operator *(const BigUnsigned &x) const;
	BigUnsigned operator /(const BigUnsigned &x) const;
	BigUnsigned operator %(const BigUnsigned &x) const;
	/* OK, maybe unary minus could succeed in one case, but it really
	 * shouldn't be used, so it isn't provided. */
	BigUnsigned operator &(const BigUnsigned &x) const;
	BigUnsigned operator |(const BigUnsigned &x) const;
	BigUnsigned operator ^(const BigUnsigned &x) const;
	BigUnsigned operator <<(int b) const;
	BigUnsigned operator >>(int b) const;

	// OVERLOADED ASSIGNMENT OPERATORS
	void operator +=(const BigUnsigned &x);
	void operator -=(const BigUnsigned &x);
	void operator *=(const BigUnsigned &x);
	void operator /=(const BigUnsigned &x);
	void operator %=(const BigUnsigned &x);
	void operator &=(const BigUnsigned &x);
	void operator |=(const BigUnsigned &x);
	void operator ^=(const BigUnsigned &x);
	void operator <<=(int b);
	void operator >>=(int b);

	/* INCREMENT/DECREMENT OPERATORS
	 * To discourage messy coding, these do not return *this, so prefix
	 * and postfix behave the same. */
	void operator ++(   );
	void operator ++(int);
	void operator --(   );
	void operator --(int);

	// Helper function that needs access to BigUnsigned internals
	friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
			unsigned int y);

	// See BigInteger.cc.
	template <class X>
	friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
};

/* Implementing the return-by-value and assignment operators in terms of the
 * copy-less operations.  The copy-less operations are responsible for making
 * any necessary temporary copies to work around aliasing. */

inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.add(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.subtract(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.multiply(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
	if (x.isZero()) throw "BigUnsigned::operator /: division by zero";
	BigUnsigned q, r;
	r = *this;
	r.divideWithRemainder(x, q);
	return q;
}
inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
	if (x.isZero()) throw "BigUnsigned::operator %: division by zero";
	BigUnsigned q, r;
	r = *this;
	r.divideWithRemainder(x, q);
	return r;
}
inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.bitAnd(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.bitOr(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.bitXor(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator <<(int b) const {
	BigUnsigned ans;
	ans.bitShiftLeft(*this, b);
	return ans;
}
inline BigUnsigned BigUnsigned::operator >>(int b) const {
	BigUnsigned ans;
	ans.bitShiftRight(*this, b);
	return ans;
}

inline void BigUnsigned::operator +=(const BigUnsigned &x) {
	add(*this, x);
}
inline void BigUnsigned::operator -=(const BigUnsigned &x) {
	subtract(*this, x);
}
inline void BigUnsigned::operator *=(const BigUnsigned &x) {
	multiply(*this, x);
}
inline void BigUnsigned::operator /=(const BigUnsigned &x) {
	if (x.isZero()) throw "BigUnsigned::operator /=: division by zero";
	/* The following technique is slightly faster than copying *this first
	 * when x is large. */
	BigUnsigned q;
	divideWithRemainder(x, q);
	// *this contains the remainder, but we overwrite it with the quotient.
	*this = q;
}
inline void BigUnsigned::operator %=(const BigUnsigned &x) {
	if (x.isZero()) throw "BigUnsigned::operator %=: division by zero";
	BigUnsigned q;
	// Mods *this by x.  Don't care about quotient left in q.
	divideWithRemainder(x, q);
}
inline void BigUnsigned::operator &=(const BigUnsigned &x) {
	bitAnd(*this, x);
}
inline void BigUnsigned::operator |=(const BigUnsigned &x) {
	bitOr(*this, x);
}
inline void BigUnsigned::operator ^=(const BigUnsigned &x) {
	bitXor(*this, x);
}
inline void BigUnsigned::operator <<=(int b) {
	bitShiftLeft(*this, b);
}
inline void BigUnsigned::operator >>=(int b) {
	bitShiftRight(*this, b);
}

/* Templates for conversions of BigUnsigned to and from primitive integers.
 * BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
 * BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
 * instead of generating linkable instantiations.  So for consistency, I put
 * all the templates here. */

// CONSTRUCTION FROM PRIMITIVE INTEGERS

/* Initialize this BigUnsigned from the given primitive integer.  The same
 * pattern works for all primitive integer types, so I put it into a template to
 * reduce code duplication.  (Don't worry: this is protected and we instantiate
 * it only with primitive integer types.)  Type X could be signed, but x is
 * known to be nonnegative. */
template <class X>
void BigUnsigned::initFromPrimitive(X x) {
	if (x == 0)
		; // NumberlikeArray already initialized us to zero.
	else {
		// Create a single block.  blk is NULL; no need to delete it.
		cap = 1;
		blk = new Blk[1];
		len = 1;
		blk[0] = Blk(x);
	}
}

/* Ditto, but first check that x is nonnegative.  I could have put the check in
 * initFromPrimitive and let the compiler optimize it out for unsigned-type
 * instantiations, but I wanted to avoid the warning stupidly issued by g++ for
 * a condition that is constant in *any* instantiation, even if not in all. */
template <class X>
void BigUnsigned::initFromSignedPrimitive(X x) {
	if (x < 0)
		throw "BigUnsigned constructor: "
			"Cannot construct a BigUnsigned from a negative number";
	else
		initFromPrimitive(x);
}

// CONVERSION TO PRIMITIVE INTEGERS

/* Template with the same idea as initFromPrimitive.  This might be slightly
 * slower than the previous version with the masks, but it's much shorter and
 * clearer, which is the library's stated goal. */
template <class X>
X BigUnsigned::convertToPrimitive() const {
	if (len == 0)
		// The number is zero; return zero.
		return 0;
	else if (len == 1) {
		// The single block might fit in an X.  Try the conversion.
		X x = X(blk[0]);
		// Make sure the result accurately represents the block.
		if (Blk(x) == blk[0])
			// Successful conversion.
			return x;
		// Otherwise fall through.
	}
	throw "BigUnsigned::to<Primitive>: "
		"Value is too big to fit in the requested type";
}

/* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
 * not a negative one that happened to convert back into the correct nonnegative
 * one.  (E.g., catch incorrect conversion of 2^31 to the long -2^31.)  Again,
 * separated to avoid a g++ warning. */
template <class X>
X BigUnsigned::convertToSignedPrimitive() const {
	X x = convertToPrimitive<X>();
	if (x >= 0)
		return x;
	else
		throw "BigUnsigned::to(Primitive): "
			"Value is too big to fit in the requested type";
}

#endif