#!/usr/bin/env python3
with open("techlibs/ecp5/bram_init_1_2_4.vh", "w") as f:
for i in range(0, 0x40):
init_snippets = []
for j in range(32):
init_snippets.append("INIT[%4d*8 +: 8]" % (32 * i + j))
init_snippets.append("3'b000" if (j % 2 == 1) else "1'b0")
init_snippets = list(reversed(init_snippets))
for k in range(8, 64, 8):
init_snippets[k] = "\n " + init_snippets[k]
print(".INITVAL_%02X({%s})," % (i, ", ".join(init_snippets)), file=f)
with open("techlibs/ecp5/bram_init_9_18_36.vh", "w") as f:
for i in range(0, 0x40):
init_snippets = []
for j in range(16):
init_snippets.append("INIT[%3d*18 +: 18]" % (16 * i + j))
init_snippets.append("2'b00")
init_snippets = list(reversed(init_snippets))
for k in range(8, 32, 8):
init_snippets[k] = "\n " + init_snippets[k]
print(".INITVAL_%02X({%s})," % (i, ", ".join(init_snippets)), file=f)
lect>
#ifndef BIGINTEGERALGORITHMS_H#define BIGINTEGERALGORITHMS_H#include"BigInteger.hh"/* Some mathematical algorithms for big integers. * This code is new and, as such, experimental. */// Returns the greatest common divisor of a and b.BigUnsignedgcd(BigUnsigneda,BigUnsignedb);/* Extended Euclidean algorithm. * Given m and n, finds gcd g and numbers r, s such that r*m + s*n == g. */voidextendedEuclidean(BigIntegerm,BigIntegern,BigInteger&g,BigInteger&r,BigInteger&s);/* Returns the multiplicative inverse of x modulo n, or throws an exception if * they have a common factor. */BigUnsignedmodinv(constBigInteger&x,constBigUnsigned&n);// Returns (base ^ exponent) % modulus.BigUnsignedmodexp(constBigInteger&base,constBigUnsigned&exponent,constBigUnsigned&modulus);#endif