1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
#include "BigInteger.hh"
void BigInteger::operator =(const BigInteger &x) {
// Calls like a = a have no effect
if (this == &x)
return;
// Copy sign
sign = x.sign;
// Copy the rest
mag = x.mag;
}
BigInteger::BigInteger(const Blk *b, Index blen, Sign s) : mag(b, blen) {
switch (s) {
case zero:
if (!mag.isZero())
throw "BigInteger::BigInteger(const Blk *, Index, Sign): Cannot use a sign of zero with a nonzero magnitude";
sign = zero;
break;
case positive:
case negative:
// If the magnitude is zero, force the sign to zero.
sign = mag.isZero() ? zero : s;
break;
default:
/* g++ seems to be optimizing out this case on the assumption
* that the sign is a valid member of the enumeration. Oh well. */
throw "BigInteger::BigInteger(const Blk *, Index, Sign): Invalid sign";
}
}
BigInteger::BigInteger(const BigUnsigned &x, Sign s) : mag(x) {
switch (s) {
case zero:
if (!mag.isZero())
throw "BigInteger::BigInteger(const BigUnsigned &, Sign): Cannot use a sign of zero with a nonzero magnitude";
sign = zero;
break;
case positive:
case negative:
// If the magnitude is zero, force the sign to zero.
sign = mag.isZero() ? zero : s;
break;
default:
/* g++ seems to be optimizing out this case on the assumption
* that the sign is a valid member of the enumeration. Oh well. */
throw "BigInteger::BigInteger(const BigUnsigned &, Sign): Invalid sign";
}
}
/* CONSTRUCTION FROM PRIMITIVE INTEGERS
* Same idea as in BigUnsigned.cc, except that negative input results in a
* negative BigInteger instead of an exception. */
// Done longhand to let us use initialization.
BigInteger::BigInteger(unsigned long x) : mag(x) { sign = mag.isZero() ? zero : positive; }
BigInteger::BigInteger(unsigned int x) : mag(x) { sign = mag.isZero() ? zero : positive; }
BigInteger::BigInteger(unsigned short x) : mag(x) { sign = mag.isZero() ? zero : positive; }
// For signed input, determine the desired magnitude and sign separately.
namespace {
template <class X, class UX>
BigInteger::Blk magOf(X x) {
/* UX(...) cast needed to stop short(-2^15), which negates to
* itself, from sign-extending in the conversion to Blk. */
return BigInteger::Blk(x < 0 ? UX(-x) : x);
}
template <class X>
BigInteger::Sign signOf(X x) {
return (x == 0) ? BigInteger::zero
: (x > 0) ? BigInteger::positive
: BigInteger::negative;
}
}
BigInteger::BigInteger(long x) : sign(signOf(x)), mag(magOf<long , unsigned long >(x)) {}
BigInteger::BigInteger(int x) : sign(signOf(x)), mag(magOf<int , unsigned int >(x)) {}
BigInteger::BigInteger(short x) : sign(signOf(x)), mag(magOf<short, unsigned short>(x)) {}
// CONVERSION TO PRIMITIVE INTEGERS
/* Reuse BigUnsigned's conversion to an unsigned primitive integer.
* The friend is a separate function rather than
* BigInteger::convertToUnsignedPrimitive to avoid requiring BigUnsigned to
* declare BigInteger. */
template <class X>
inline X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a) {
return a.convertToPrimitive<X>();
}
template <class X>
X BigInteger::convertToUnsignedPrimitive() const {
if (sign == negative)
throw "BigInteger::to<Primitive>: "
"Cannot convert a negative integer to an unsigned type";
else
return convertBigUnsignedToPrimitiveAccess<X>(mag);
}
/* Similar to BigUnsigned::convertToPrimitive, but split into two cases for
* nonnegative and negative numbers. */
template <class X, class UX>
X BigInteger::convertToSignedPrimitive() const {
if (sign == zero)
return 0;
else if (mag.getLength() == 1) {
// The single block might fit in an X. Try the conversion.
Blk b = mag.getBlock(0);
if (sign == positive) {
X x = X(b);
if (x >= 0 && Blk(x) == b)
return x;
} else {
X x = -X(b);
/* UX(...) needed to avoid rejecting conversion of
* -2^15 to a short. */
if (x < 0 && Blk(UX(-x)) == b)
return x;
}
// Otherwise fall through.
}
throw "BigInteger::to<Primitive>: "
"Value is too big to fit in the requested type";
}
unsigned long BigInteger::toUnsignedLong () const { return convertToUnsignedPrimitive<unsigned long > (); }
unsigned int BigInteger::toUnsignedInt () const { return convertToUnsignedPrimitive<unsigned int > (); }
unsigned short BigInteger::toUnsignedShort() const { return convertToUnsignedPrimitive<unsigned short> (); }
long BigInteger::toLong () const { return convertToSignedPrimitive <long , unsigned long> (); }
int BigInteger::toInt () const { return convertToSignedPrimitive <int , unsigned int> (); }
short BigInteger::toShort () const { return convertToSignedPrimitive <short, unsigned short>(); }
// COMPARISON
BigInteger::CmpRes BigInteger::compareTo(const BigInteger &x) const {
// A greater sign implies a greater number
if (sign < x.sign)
return less;
else if (sign > x.sign)
return greater;
else switch (sign) {
// If the signs are the same...
case zero:
return equal; // Two zeros are equal
case positive:
// Compare the magnitudes
return mag.compareTo(x.mag);
case negative:
// Compare the magnitudes, but return the opposite result
return CmpRes(-mag.compareTo(x.mag));
default:
throw "BigInteger internal error";
}
}
/* COPY-LESS OPERATIONS
* These do some messing around to determine the sign of the result,
* then call one of BigUnsigned's copy-less operations. */
// See remarks about aliased calls in BigUnsigned.cc .
#define DTRT_ALIASED(cond, op) \
if (cond) { \
BigInteger tmpThis; \
tmpThis.op; \
*this = tmpThis; \
return; \
}
void BigInteger::add(const BigInteger &a, const BigInteger &b) {
DTRT_ALIASED(this == &a || this == &b, add(a, b));
// If one argument is zero, copy the other.
if (a.sign == zero)
operator =(b);
else if (b.sign == zero)
operator =(a);
// If the arguments have the same sign, take the
// common sign and add their magnitudes.
else if (a.sign == b.sign) {
sign = a.sign;
mag.add(a.mag, b.mag);
} else {
// Otherwise, their magnitudes must be compared.
switch (a.mag.compareTo(b.mag)) {
case equal:
// If their magnitudes are the same, copy zero.
mag = 0;
sign = zero;
break;
// Otherwise, take the sign of the greater, and subtract
// the lesser magnitude from the greater magnitude.
case greater:
sign = a.sign;
mag.subtract(a.mag, b.mag);
break;
case less:
sign = b.sign;
mag.subtract(b.mag, a.mag);
break;
}
}
}
void BigInteger::subtract(const BigInteger &a, const BigInteger &b) {
// Notice that this routine is identical to BigInteger::add,
// if one replaces b.sign by its opposite.
DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
// If a is zero, copy b and flip its sign. If b is zero, copy a.
if (a.sign == zero) {
mag = b.mag;
// Take the negative of _b_'s, sign, not ours.
// Bug pointed out by Sam Larkin on 2005.03.30.
sign = Sign(-b.sign);
} else if (b.sign == zero)
operator =(a);
// If their signs differ, take a.sign and add the magnitudes.
else if (a.sign != b.sign) {
sign = a.sign;
mag.add(a.mag, b.mag);
} else {
// Otherwise, their magnitudes must be compared.
switch (a.mag.compareTo(b.mag)) {
// If their magnitudes are the same, copy zero.
case equal:
mag = 0;
sign = zero;
break;
// If a's magnitude is greater, take a.sign and
// subtract a from b.
case greater:
sign = a.sign;
mag.subtract(a.mag, b.mag);
break;
// If b's magnitude is greater, take the opposite
// of b.sign and subtract b from a.
case less:
sign = Sign(-b.sign);
mag.subtract(b.mag, a.mag);
break;
}
}
}
void BigInteger::multiply(const BigInteger &a, const BigInteger &b) {
DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
// If one object is zero, copy zero and return.
if (a.sign == zero || b.sign == zero) {
sign = zero;
mag = 0;
return;
}
// If the signs of the arguments are the same, the result
// is positive, otherwise it is negative.
sign = (a.sign == b.sign) ? positive : negative;
// Multiply the magnitudes.
mag.multiply(a.mag, b.mag);
}
/*
* DIVISION WITH REMAINDER
* Please read the comments before the definition of
* `BigUnsigned::divideWithRemainder' in `BigUnsigned.cc' for lots of
* information you should know before reading this function.
*
* Following Knuth, I decree that x / y is to be
* 0 if y==0 and floor(real-number x / y) if y!=0.
* Then x % y shall be x - y*(integer x / y).
*
* Note that x = y * (x / y) + (x % y) always holds.
* In addition, (x % y) is from 0 to y - 1 if y > 0,
* and from -(|y| - 1) to 0 if y < 0. (x % y) = x if y = 0.
*
* Examples: (q = a / b, r = a % b)
* a b q r
* === === === ===
* 4 3 1 1
* -4 3 -2 2
* 4 -3 -2 -2
* -4 -3 1 -1
*/
void BigInteger::divideWithRemainder(const BigInteger &b, BigInteger &q) {
// Defend against aliased calls;
// same idea as in BigUnsigned::divideWithRemainder .
if (this == &q)
throw "BigInteger::divideWithRemainder: Cannot write quotient and remainder into the same variable";
if (this == &b || &q == &b) {
BigInteger tmpB(b);
divideWithRemainder(tmpB, q);
return;
}
// Division by zero gives quotient 0 and remainder *this
if (b.sign == zero) {
q.mag = 0;
q.sign = zero;
return;
}
// 0 / b gives quotient 0 and remainder 0
if (sign == zero) {
q.mag = 0;
q.sign = zero;
return;
}
// Here *this != 0, b != 0.
// Do the operands have the same sign?
if (sign == b.sign) {
// Yes: easy case. Quotient is zero or positive.
q.sign = positive;
} else {
// No: harder case. Quotient is negative.
q.sign = negative;
// Decrease the magnitude of the dividend by one.
mag--;
/*
* We tinker with the dividend before and with the
* quotient and remainder after so that the result
* comes out right. To see why it works, consider the following
* list of examples, where A is the magnitude-decreased
* a, Q and R are the results of BigUnsigned division
* with remainder on A and |b|, and q and r are the
* final results we want:
*
* a A b Q R q r
* -3 -2 3 0 2 -1 0
* -4 -3 3 1 0 -2 2
* -5 -4 3 1 1 -2 1
* -6 -5 3 1 2 -2 0
*
* It appears that we need a total of 3 corrections:
* Decrease the magnitude of a to get A. Increase the
* magnitude of Q to get q (and make it negative).
* Find r = (b - 1) - R and give it the desired sign.
*/
}
// Divide the magnitudes.
mag.divideWithRemainder(b.mag, q.mag);
if (sign != b.sign) {
// More for the harder case (as described):
// Increase the magnitude of the quotient by one.
q.mag++;
// Modify the remainder.
mag.subtract(b.mag, mag);
mag--;
}
// Sign of the remainder is always the sign of the divisor b.
sign = b.sign;
// Set signs to zero as necessary. (Thanks David Allen!)
if (mag.isZero())
sign = zero;
if (q.mag.isZero())
q.sign = zero;
// WHEW!!!
}
// Negation
void BigInteger::negate(const BigInteger &a) {
DTRT_ALIASED(this == &a, negate(a));
// Copy a's magnitude
mag = a.mag;
// Copy the opposite of a.sign
sign = Sign(-a.sign);
}
// INCREMENT/DECREMENT OPERATORS
// Prefix increment
void BigInteger::operator ++() {
if (sign == negative) {
mag--;
if (mag == 0)
sign = zero;
} else {
mag++;
sign = positive; // if not already
}
}
// Postfix increment: same as prefix
void BigInteger::operator ++(int) {
operator ++();
}
// Prefix decrement
void BigInteger::operator --() {
if (sign == positive) {
mag--;
if (mag == 0)
sign = zero;
} else {
mag++;
sign = negative;
}
}
// Postfix decrement: same as prefix
void BigInteger::operator --(int) {
operator --();
}
|