1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/* -*- c++ -*-
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef SATGEN_H
#define SATGEN_H
#include "kernel/rtlil.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/macc.h"
#include "libs/ezsat/ezminisat.h"
YOSYS_NAMESPACE_BEGIN
// defined in kernel/register.cc
extern struct SatSolver *yosys_satsolver_list;
extern struct SatSolver *yosys_satsolver;
struct SatSolver
{
string name;
SatSolver *next;
virtual ezSAT *create() = 0;
SatSolver(string name) : name(name) {
next = yosys_satsolver_list;
yosys_satsolver_list = this;
}
virtual ~SatSolver() {
auto p = &yosys_satsolver_list;
while (*p) {
if (*p == this)
*p = next;
else
p = &(*p)->next;
}
if (yosys_satsolver == this)
yosys_satsolver = yosys_satsolver_list;
}
};
struct ezSatPtr : public std::unique_ptr<ezSAT> {
ezSatPtr() : unique_ptr<ezSAT>(yosys_satsolver->create()) { }
};
struct SatGen
{
ezSAT *ez;
SigMap *sigmap;
std::string prefix;
SigPool initial_state;
std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
std::map<std::string, RTLIL::SigSpec> assumes_a, assumes_en;
std::map<std::string, std::map<RTLIL::SigBit, int>> imported_signals;
std::map<std::pair<std::string, int>, bool> initstates;
bool ignore_div_by_zero;
bool model_undef;
bool def_formal = false;
SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
{
}
void setContext(SigMap *sigmap, std::string prefix = std::string())
{
this->sigmap = sigmap;
this->prefix = prefix;
}
std::vector<int> importSigSpecWorker(RTLIL::SigSpec sig, std::string &pf, bool undef_mode, bool dup_undef)
{
log_assert(!undef_mode || model_undef);
sigmap->apply(sig);
std::vector<int> vec;
vec.reserve(GetSize(sig));
for (auto &bit : sig)
if (bit.wire == NULL) {
if (model_undef && dup_undef && bit == RTLIL::State::Sx)
vec.push_back(ez->frozen_literal());
else
vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->CONST_TRUE : ez->CONST_FALSE);
} else {
std::string name = pf + (bit.wire->width == 1 ? stringf("%s", log_id(bit.wire)) : stringf("%s [%d]", log_id(bit.wire->name), bit.offset));
vec.push_back(ez->frozen_literal(name));
imported_signals[pf][bit] = vec.back();
}
return vec;
}
std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, false, false);
}
std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, false, true);
}
std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(sig, pf, true, false);
}
int importSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(bit, pf, false, false).front();
}
int importDefSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(bit, pf, false, true).front();
}
int importUndefSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return importSigSpecWorker(bit, pf, true, false).front();
}
bool importedSigBit(RTLIL::SigBit bit, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
return imported_signals[pf].count(bit) != 0;
}
void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
sig_a = asserts_a[pf];
sig_en = asserts_en[pf];
}
void getAssumes(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
sig_a = assumes_a[pf];
sig_en = assumes_en[pf];
}
int importAsserts(int timestep = -1)
{
std::vector<int> check_bits, enable_bits;
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
if (model_undef) {
check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep));
enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep));
} else {
check_bits = importDefSigSpec(asserts_a[pf], timestep);
enable_bits = importDefSigSpec(asserts_en[pf], timestep);
}
return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
}
int importAssumes(int timestep = -1)
{
std::vector<int> check_bits, enable_bits;
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
if (model_undef) {
check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_a[pf], timestep)), importDefSigSpec(assumes_a[pf], timestep));
enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_en[pf], timestep)), importDefSigSpec(assumes_en[pf], timestep));
} else {
check_bits = importDefSigSpec(assumes_a[pf], timestep);
enable_bits = importDefSigSpec(assumes_en[pf], timestep);
}
return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
}
int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1)
{
if (timestep_rhs < 0)
timestep_rhs = timestep_lhs;
log_assert(lhs.size() == rhs.size());
std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs);
std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs);
if (!model_undef)
return ez->vec_eq(vec_lhs, vec_rhs);
std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs);
std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs);
std::vector<int> eq_bits;
for (int i = 0; i < lhs.size(); i++)
eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)),
ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i)))));
return ez->expression(ezSAT::OpAnd, eq_bits);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false)
{
bool is_signed = forced_signed;
if (!forced_signed && cell->parameters.count(ID::A_SIGNED) > 0 && cell->parameters.count(ID::B_SIGNED) > 0)
is_signed = cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool();
while (vec_a.size() < vec_b.size() || vec_a.size() < y_width)
vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE);
while (vec_b.size() < vec_a.size() || vec_b.size() < y_width)
vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->CONST_FALSE);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
{
extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed);
while (vec_y.size() < vec_a.size())
vec_y.push_back(ez->literal());
}
void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
{
bool is_signed = forced_signed || (cell->parameters.count(ID::A_SIGNED) > 0 && cell->parameters[ID::A_SIGNED].as_bool());
while (vec_a.size() < vec_y.size())
vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE);
while (vec_y.size() < vec_a.size())
vec_y.push_back(ez->literal());
}
void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef)
{
log_assert(model_undef);
log_assert(vec_y.size() == vec_yy.size());
if (vec_y.size() > vec_undef.size()) {
std::vector<int> trunc_y(vec_y.begin(), vec_y.begin() + vec_undef.size());
std::vector<int> trunc_yy(vec_yy.begin(), vec_yy.begin() + vec_undef.size());
ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(trunc_y, trunc_yy))));
} else {
log_assert(vec_y.size() == vec_undef.size());
ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy))));
}
}
std::pair<std::vector<int>, std::vector<int>> mux(int s, int undef_s, const std::vector<int> &a, const std::vector<int> &undef_a, const std::vector<int> &b, const std::vector<int> &undef_b) {
std::vector<int> res;
std::vector<int> undef_res;
res = ez->vec_ite(s, b, a);
if (model_undef) {
std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b));
std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b));
undef_res = ez->vec_ite(undef_s, undef_ab, ez->vec_ite(s, undef_b, undef_a));
}
return std::make_pair(res, undef_res);
}
void undefGating(int y, int yy, int undef)
{
ez->assume(ez->OR(undef, ez->IFF(y, yy)));
}
void setInitState(int timestep)
{
auto key = make_pair(prefix, timestep);
log_assert(initstates.count(key) == 0 || initstates.at(key) == true);
initstates[key] = true;
}
bool importCell(RTLIL::Cell *cell, int timestep = -1);
};
YOSYS_NAMESPACE_END
#endif
|