aboutsummaryrefslogtreecommitdiffstats
path: root/frontends/verilog/lexer.l
blob: 6b9c9e4ccc0e38844d5ab48bf49a1f6cf0b11dd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
'#n280'>280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2021  Symbiflow Authors
 *
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "lookahead.h"

#include <boost/filesystem.hpp>
#include <boost/safe_numerics/safe_integer.hpp>
#include <capnp/message.h>
#include <capnp/serialize.h>
#include <kj/filesystem.h>
#include <kj/std/iostream.h>
#include <queue>
#include <sstream>
#include <zlib.h>

#include "context.h"
#include "flat_wire_map.h"
#include "log.h"
#include "sampler.h"
#include "scope_lock.h"

#if defined(NEXTPNR_USE_TBB)
#include <tbb/parallel_for_each.h>
#endif

NEXTPNR_NAMESPACE_BEGIN

static constexpr size_t kNumberSamples = 4;
static constexpr int32_t kMaxExploreDist = 20;

// Initial only explore with a depth of this.
static constexpr int32_t kInitialExploreDepth = 30;

struct RoutingNode
{
    WireId wire_to_expand;
    delay_t cost;
    int32_t depth;

    bool operator<(const RoutingNode &other) const { return cost < other.cost; }
};

struct PipAndCost
{
    PipId upstream_pip;
    delay_t cost_from_src;
    int32_t depth;
};

static void expand_input(const Context *ctx, WireId input_wire, dict<TypeWireId, delay_t> *input_costs)
{
    pool<WireId> seen;
    std::priority_queue<RoutingNode> to_expand;

    RoutingNode initial;
    initial.cost = 0;
    initial.wire_to_expand = input_wire;

    to_expand.push(initial);

    while (!to_expand.empty()) {
        RoutingNode node = to_expand.top();
        to_expand.pop();

        auto result = seen.emplace(node.wire_to_expand);
        if (!result.second) {
            // We've already done an expansion at this wire.
            continue;
        }

        for (PipId pip : ctx->getPipsUphill(node.wire_to_expand)) {
            if (ctx->is_pip_synthetic(pip)) {
                continue;
            }
            WireId new_wire = ctx->getPipSrcWire(pip);
            if (new_wire == WireId()) {
                continue;
            }

            RoutingNode next_node;
            next_node.wire_to_expand = new_wire;
            next_node.cost = node.cost + ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(new_wire).maxDelay();

            if (ctx->is_site_port(pip)) {
                // Done with expansion, record the path if cheaper.
                // Only the first path to each wire will be the cheapest.

                // Get local tile wire at pip dest. Using getPipSrcWire may
                // return a node wire, which is not correct here.
                TypeWireId route_to;
                route_to.type = ctx->chip_info->tiles[pip.tile].type;
                route_to.index = loc_info(ctx->chip_info, pip).pip_data[pip.index].src_index;
                if (route_to.index >= 0) {
                    auto result = input_costs->emplace(route_to, next_node.cost);
                    if (!result.second && result.first->second > next_node.cost) {
                        result.first->second = next_node.cost;
                    }
                }
            } else {
                to_expand.push(next_node);
            }
        }
    }
}

static void update_site_to_site_costs(const Context *ctx, WireId first_wire, const dict<WireId, PipAndCost> &best_path,
                                      dict<TypeWirePair, delay_t> *site_to_site_cost)
{
    for (auto &best_pair : best_path) {
        WireId last_wire = best_pair.first;
        TypeWirePair pair;
        pair.dst = TypeWireId(ctx, last_wire);

        PipAndCost pip_and_cost = best_pair.second;
        delay_t cost_from_src = pip_and_cost.cost_from_src;

        WireId cursor;
        do {
            cursor = ctx->getPipSrcWire(pip_and_cost.upstream_pip);

            pair.src = TypeWireId(ctx, cursor);

            delay_t cost = cost_from_src;

            // Only use the delta cost from cursor to last_wire, not the full
            // cost from first_wire to last_wire.
            if (cursor != first_wire) {
                pip_and_cost = best_path.at(cursor);
                cost -= pip_and_cost.cost_from_src;
            }

            NPNR_ASSERT(cost >= 0);

            auto cost_result = site_to_site_cost->emplace(pair, cost);
            if (!cost_result.second) {
                // Update point to point cost if cheaper.
                if (cost_result.first->second > cost) {
                    cost_result.first->second = cost;
                }
            }
        } while (cursor != first_wire);
    }
}

static void expand_output(const Context *ctx, WireId output_wire, Lookahead::OutputSiteWireCost *output_cost,
                          dict<TypeWirePair, delay_t> *site_to_site_cost)
{
    pool<WireId> seen;
    std::priority_queue<RoutingNode> to_expand;

    RoutingNode initial;
    initial.cost = 0;
    initial.wire_to_expand = output_wire;

    to_expand.push(initial);

    dict<WireId, PipAndCost> best_path;

    while (!to_expand.empty()) {
        RoutingNode node = to_expand.top();
        to_expand.pop();

        auto result = seen.emplace(node.wire_to_expand);
        if (!result.second) {
            // We've already done an expansion at this wire.
            continue;
        }

        for (PipId pip : ctx->getPipsDownhill(node.wire_to_expand)) {
            if (ctx->is_pip_synthetic(pip)) {
                continue;
            }
            WireId new_wire = ctx->getPipDstWire(pip);
            if (new_wire == WireId()) {
                continue;
            }

            RoutingNode next_node;
            next_node.wire_to_expand = new_wire;
            next_node.cost = node.cost + ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(new_wire).maxDelay();

            if (ctx->is_site_port(pip)) {
                // Done with expansion, record the path if cheaper.

                // Get local tile wire at pip dest. Using getPipDstWire may
                // return a node wire, which is not correct here.
                TypeWireId route_from;
                route_from.type = ctx->chip_info->tiles[pip.tile].type;
                route_from.index = loc_info(ctx->chip_info, pip).pip_data[pip.index].dst_index;
                if (route_from.index != -1 && output_cost != nullptr && next_node.cost < output_cost->cost) {
                    output_cost->cost = next_node.cost;
                    output_cost->cheapest_route_from = route_from;
                }
            } else {
                to_expand.push(next_node);

                auto result = best_path.emplace(new_wire, PipAndCost());
                PipAndCost &pip_and_cost = result.first->second;
                if (result.second || pip_and_cost.cost_from_src > next_node.cost) {
                    pip_and_cost.upstream_pip = pip;
                    pip_and_cost.cost_from_src = next_node.cost;
                }
            }
        }
    }

    update_site_to_site_costs(ctx, output_wire, best_path, site_to_site_cost);
}

static void expand_input_type(const Context *ctx, DeterministicRNG *rng, const Sampler &tiles_of_type,
                              TypeWireId input_wire, std::vector<Lookahead::InputSiteWireCost> *input_costs)
{
    dict<TypeWireId, delay_t> input_costs_map;
    for (size_t region = 0; region < tiles_of_type.number_of_regions(); ++region) {
        size_t tile = tiles_of_type.get_sample_from_region(region, [rng]() -> int32_t { return rng->rng(); });

        NPNR_ASSERT(ctx->chip_info->tiles[tile].type == input_wire.type);
        WireId wire = canonical_wire(ctx->chip_info, tile, input_wire.index);

        expand_input(ctx, wire, &input_costs_map);
    }

    input_costs->clear();
    input_costs->reserve(input_costs_map.size());
    for (const auto &input_pair : input_costs_map) {
        input_costs->emplace_back();
        auto &input_cost = input_costs->back();
        input_cost.route_to = input_pair.first;
        input_cost.cost = input_pair.second;
    }
}

struct DelayStorage
{
    dict<TypeWirePair, dict<std::pair<int32_t, int32_t>, delay_t>> storage;
    int32_t max_explore_depth;
};

static bool has_multiple_inputs(const Context *ctx, WireId wire)
{
    size_t pip_count = 0;
    for (PipId pip : ctx->getPipsUphill(wire)) {
        (void)pip;
        pip_count += 1;
    }

    return pip_count > 1;
}

static void update_results(const Context *ctx, const FlatWireMap<PipAndCost> &best_path, WireId src_wire,
                           WireId sink_wire, DelayStorage *storage)
{
    TypeWireId src_wire_type(ctx, src_wire);

    int src_tile;
    if (src_wire.tile == -1) {
        src_tile = ctx->chip_info->nodes[src_wire.index].tile_wires[0].tile;
    } else {
        src_tile = src_wire.tile;
    }

    int32_t src_x, src_y;
    ctx->get_tile_x_y(src_tile, &src_x, &src_y);

    TypeWirePair wire_pair;
    wire_pair.src = src_wire_type;

    // The first couple wires from the site pip are usually boring, don't record
    // them.
    bool out_of_infeed = false;

    // Starting from end of result, walk backwards and record the path into
    // the delay storage.
    WireId cursor = sink_wire;
    pool<WireId> seen;
    while (cursor != src_wire) {
        // No loops allowed in routing!
        auto result = seen.emplace(cursor);
        NPNR_ASSERT(result.second);

        if (!out_of_infeed && has_multiple_inputs(ctx, cursor)) {
            out_of_infeed = true;
        }

        TypeWireId dst_wire_type(ctx, cursor);
        wire_pair.dst = dst_wire_type;

        int dst_tile;
        if (cursor.tile == -1) {
            dst_tile = ctx->chip_info->nodes[cursor.index].tile_wires[0].tile;
        } else {
            dst_tile = cursor.tile;
        }
        int32_t dst_x;
        int32_t dst_y;
        ctx->get_tile_x_y(dst_tile, &dst_x, &dst_y);

        std::pair<int32_t, int32_t> dx_dy;
        dx_dy.first = dst_x - src_x;
        dx_dy.second = dst_y - src_y;

        const PipAndCost &pip_and_cost = best_path.at(cursor);
        if (out_of_infeed) {
            auto &delta_data = storage->storage[wire_pair];
            auto result2 = delta_data.emplace(dx_dy, pip_and_cost.cost_from_src);
            if (!result2.second) {
                if (result2.first->second > pip_and_cost.cost_from_src) {
                    result2.first->second = pip_and_cost.cost_from_src;
                }
            }
        }

        cursor = ctx->getPipSrcWire(pip_and_cost.upstream_pip);
    }
}

static void expand_routing_graph_from_wire(const Context *ctx, WireId first_wire, FlatWireMap<PipAndCost> *best_path,
                                           DelayStorage *storage)
{
    pool<WireId> seen;
    std::priority_queue<RoutingNode> to_expand;

    int src_tile;
    if (first_wire.tile == -1) {
        src_tile = ctx->chip_info->nodes[first_wire.index].tile_wires[0].tile;
    } else {
        src_tile = first_wire.tile;
    }

    int32_t src_x, src_y;
    ctx->get_tile_x_y(src_tile, &src_x, &src_y);

    RoutingNode initial;
    initial.cost = 0;
    initial.wire_to_expand = first_wire;
    initial.depth = 0;

    to_expand.push(initial);

    best_path->clear();
    size_t skip_count = 0;

    while (!to_expand.empty()) {
        RoutingNode node = to_expand.top();
        to_expand.pop();

        auto result = seen.emplace(node.wire_to_expand);
        if (!result.second) {
            // We've already done an expansion at this wire.
            skip_count += 1;
            continue;
        }

        bool has_site_pip = false;
        for (PipId pip : ctx->getPipsDownhill(node.wire_to_expand)) {
            if (ctx->is_pip_synthetic(pip)) {
                continue;
            }

            // Don't expand edges that are site pips, but do record how we
            // got to the pip before the site pip!
            if (ctx->is_site_port(pip)) {
                has_site_pip = true;
                continue;
            }

            WireId new_wire = ctx->getPipDstWire(pip);
            if (new_wire == WireId()) {
                continue;
            }

            RoutingNode next_node;
            next_node.wire_to_expand = new_wire;
            next_node.cost = node.cost + ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(new_wire).maxDelay();
            next_node.depth = node.depth + 1;

            // Record best path.
            PipAndCost pip_and_cost;
            pip_and_cost.upstream_pip = pip;
            pip_and_cost.cost_from_src = next_node.cost;
            pip_and_cost.depth = next_node.depth;
            auto result = best_path->emplace(new_wire, pip_and_cost);
            bool is_best_path = true;
            if (!result.second) {
                if (result.first.second->cost_from_src > next_node.cost) {
                    result.first.second->cost_from_src = next_node.cost;
                    result.first.second->upstream_pip = pip;
                    result.first.second->depth = next_node.depth;
                } else {
                    is_best_path = false;
                }
            }

            Loc dst = ctx->getPipLocation(pip);
            int32_t dst_x = dst.x;
            int32_t dst_y = dst.y;
            if (is_best_path && std::abs(dst_x - src_x) < kMaxExploreDist &&
                std::abs(dst_y - src_y) < kMaxExploreDist && next_node.depth < storage->max_explore_depth) {
                to_expand.push(next_node);
            }
        }

        if (has_site_pip) {
            update_results(ctx, *best_path, first_wire, node.wire_to_expand, storage);
        }
    }
}

static bool has_multiple_outputs(const Context *ctx, WireId wire)
{
    size_t pip_count = 0;
    for (PipId pip : ctx->getPipsDownhill(wire)) {
        (void)pip;
        pip_count += 1;
    }

    return pip_count > 1;
}

static void expand_routing_graph(const Context *ctx, DeterministicRNG *rng, const Sampler &tiles_of_type,
                                 TypeWireId wire_type, pool<TypeWireSet> *types_explored, DelayStorage *storage,
                                 pool<TypeWireId> *types_deferred, FlatWireMap<PipAndCost> *best_path)
{
    pool<TypeWireSet> new_types_explored;

    for (size_t region = 0; region < tiles_of_type.number_of_regions(); ++region) {
        size_t tile = tiles_of_type.get_sample_from_region(region, [rng]() -> int32_t { return rng->rng(); });

        NPNR_ASSERT(ctx->chip_info->tiles[tile].type == wire_type.type);

        WireId wire = canonical_wire(ctx->chip_info, tile, wire_type.index);
        TypeWireSet wire_set(ctx, wire);

        if (!has_multiple_outputs(ctx, wire)) {
            types_deferred->emplace(wire_type);
            continue;
        }

        new_types_explored.emplace(wire_set);

        expand_routing_graph_from_wire(ctx, wire, best_path, storage);
    }

    for (const TypeWireSet &new_wire_set : new_types_explored) {
        types_explored->emplace(new_wire_set);
    }
}

static WireId follow_pip_chain(const Context *ctx, WireId wire, delay_t *delay_out)
{
    delay_t delay = 0;
    WireId cursor = wire;
    while (true) {
        WireId next;
        size_t pip_count = 0;
        delay_t next_delay = delay;
        for (PipId pip : ctx->getPipsDownhill(cursor)) {
            pip_count += 1;
            next = ctx->getPipDstWire(pip);
            next_delay += ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(next).maxDelay();
        }

        if (pip_count > 1) {
            *delay_out = delay;
            return cursor;
        }

        if (next == WireId()) {
            return WireId();
        }

        delay = next_delay;

        cursor = next;
    }

    // Unreachable?
    NPNR_ASSERT(false);
}

static WireId follow_pip_chain_target(const Context *ctx, WireId wire, WireId target, delay_t *delay_out)
{
    delay_t delay = 0;
    WireId cursor = wire;
    while (cursor != target) {
        WireId next;
        size_t pip_count = 0;
        delay_t next_delay = delay;
        for (PipId pip : ctx->getPipsDownhill(cursor)) {
            pip_count += 1;
            next = ctx->getPipDstWire(pip);
            next_delay += ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(next).maxDelay();
        }

        if (pip_count > 1) {
            *delay_out = delay;
            return cursor;
        }

        if (next == WireId()) {
            return WireId();
        }

        delay = next_delay;

        cursor = next;
    }

    *delay_out = delay;
    return cursor;
}

static WireId follow_pip_chain_up(const Context *ctx, WireId wire, delay_t *delay_out)
{
    delay_t delay = 0;
    WireId cursor = wire;
    while (true) {
        WireId next;
        size_t pip_count = 0;
        delay_t next_delay = delay;
        for (PipId pip : ctx->getPipsUphill(cursor)) {
            pip_count += 1;
            next = ctx->getPipSrcWire(pip);
            next_delay += ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(next).maxDelay();
        }

        if (pip_count > 1) {
            *delay_out = delay;
            return cursor;
        }

        if (next == WireId()) {
            return WireId();
        }

        delay = next_delay;

        cursor = next;
    }

    // Unreachable?
    NPNR_ASSERT(false);
}

static void expand_deferred_routing_graph(const Context *ctx, DeterministicRNG *rng, const Sampler &tiles_of_type,
                                          TypeWireId wire_type, pool<TypeWireSet> *types_explored,
                                          DelayStorage *storage, FlatWireMap<PipAndCost> *best_path)
{
    pool<TypeWireSet> new_types_explored;

    for (size_t region = 0; region < tiles_of_type.number_of_regions(); ++region) {
        size_t tile = tiles_of_type.get_sample_from_region(region, [rng]() -> int32_t { return rng->rng(); });

        NPNR_ASSERT(ctx->chip_info->tiles[tile].type == wire_type.type);

        WireId wire = canonical_wire(ctx->chip_info, tile, wire_type.index);
        TypeWireSet wire_set(ctx, wire);
        if (types_explored->count(wire_set)) {
            // Check if this wire set has been expanded.
            continue;
        }

        delay_t delay;
        WireId routing_wire = follow_pip_chain(ctx, wire, &delay);

        // This wire doesn't go anywhere!
        if (routing_wire == WireId()) {
            continue;
        }

        TypeWireSet routing_wire_set(ctx, routing_wire);
        if (types_explored->count(routing_wire_set)) {
            continue;
        }

        new_types_explored.emplace(wire_set);
        expand_routing_graph_from_wire(ctx, wire, best_path, storage);
    }

    for (const TypeWireSet &new_wire_set : new_types_explored) {
        types_explored->emplace(new_wire_set);
    }
}

static void expand_output_type(const Context *ctx, DeterministicRNG *rng, const Sampler &tiles_of_type,
                               TypeWireId output_wire, Lookahead::OutputSiteWireCost *output_cost,
                               dict<TypeWirePair, delay_t> *site_to_site_cost)
{
    for (size_t region = 0; region < tiles_of_type.number_of_regions(); ++region) {
        size_t tile = tiles_of_type.get_sample_from_region(region, [rng]() -> int32_t { return rng->rng(); });

        NPNR_ASSERT(ctx->chip_info->tiles[tile].type == output_wire.type);
        WireId wire = canonical_wire(ctx->chip_info, tile, output_wire.index);

        expand_output(ctx, wire, output_cost, site_to_site_cost);
    }
}

static constexpr bool kWriteLookaheadCsv = false;

void write_lookahead_csv(const Context *ctx, const DelayStorage &all_tiles_storage)
{
    FILE *lookahead_data = fopen("lookahead.csv", "w");
    NPNR_ASSERT(lookahead_data != nullptr);
    fprintf(lookahead_data, "src_type,src_wire,dest_type,dest_wire,delta_x,delta_y,delay\n");
    for (const auto &type_pair : all_tiles_storage.storage) {
        auto &src_wire_type = type_pair.first.src;
        auto &src_type_data = ctx->chip_info->tile_types[src_wire_type.type];
        IdString src_type(src_type_data.name);
        IdString src_wire(src_type_data.wire_data[src_wire_type.index].name);

        auto &dst_wire_type = type_pair.first.dst;
        auto &dst_type_data = ctx->chip_info->tile_types[dst_wire_type.type];
        IdString dst_type(dst_type_data.name);
        IdString dst_wire(dst_type_data.wire_data[dst_wire_type.index].name);

        for (const auto &delta_pair : type_pair.second) {
            fprintf(lookahead_data, "%s,%s,%s,%s,%d,%d,%d\n", src_type.c_str(ctx), src_wire.c_str(ctx),
                    dst_type.c_str(ctx), dst_wire.c_str(ctx), delta_pair.first.first, delta_pair.first.second,
                    delta_pair.second);
        }
    }

    fclose(lookahead_data);
}

// Storage for tile type expansion for lookahead.
struct ExpandLocals
{
    virtual ~ExpandLocals() {}
    const std::vector<Sampler> *tiles_of_type;
    DeterministicRNG *rng;
    FlatWireMap<PipAndCost> *best_path;
    DelayStorage *storage;
    pool<TypeWireSet> *explored;
    pool<TypeWireId> *deferred;

    virtual void lock() {}
    virtual void unlock() {}
    virtual void copy_back(int32_t tile_type) {}
};

// Do tile type expansion for 1 tile.
static void expand_tile_type(const Context *ctx, int32_t tile_type, ExpandLocals *locals)
{
    auto &type_data = ctx->chip_info->tile_types[tile_type];
    if (ctx->verbose) {
        ScopeLock<ExpandLocals> lock(locals);
        log_info("Expanding all wires in type %s\n", IdString(type_data.name).c_str(ctx));
    }

    auto &tile_sampler = (*locals->tiles_of_type)[tile_type];
    for (size_t wire_index = 0; wire_index < type_data.wire_data.size(); ++wire_index) {
        auto &wire_data = type_data.wire_data[wire_index];
        if (wire_data.site != -1) {
            // Skip site wires
            continue;
        }

        if (ctx->debug) {
            ScopeLock<ExpandLocals> lock(locals);
            log_info("Expanding wire %s in type %s (%d/%zu, seen %zu types, deferred %zu types)\n",
                     IdString(wire_data.name).c_str(ctx), IdString(type_data.name).c_str(ctx), tile_type,
                     ctx->chip_info->tile_types.size(), locals->explored->size(), locals->deferred->size());
        }

        TypeWireId wire;
        wire.type = tile_type;
        wire.index = wire_index;

        expand_routing_graph(ctx, locals->rng, tile_sampler, wire, locals->explored, locals->storage, locals->deferred,
                             locals->best_path);
    }

    locals->copy_back(tile_type);
}

// Function that does all tile expansions serially.
static void expand_tile_type_serial(const Context *ctx, const std::vector<int32_t> &tile_types,
                                    const std::vector<Sampler> &tiles_of_type, DeterministicRNG *rng,
                                    FlatWireMap<PipAndCost> *best_path, DelayStorage *storage,
                                    pool<TypeWireSet> *explored, pool<TypeWireId> *deferred, pool<int32_t> *tiles_left)
{

    for (int32_t tile_type : tile_types) {
        ExpandLocals locals;

        locals.tiles_of_type = &tiles_of_type;
        locals.rng = rng;
        locals.best_path = best_path;
        locals.storage = storage;
        locals.explored = explored;
        expand_tile_type(ctx, tile_type, &locals);

        NPNR_ASSERT(tiles_left->erase(tile_type) == 1);
    }

    NPNR_ASSERT(tiles_left->empty());
}

// Additional storage for doing tile type expansion in parallel.
struct TbbExpandLocals : public ExpandLocals
{
    const Context *ctx;
    std::mutex *all_costs_mutex;

    DelayStorage *all_tiles_storage;
    pool<TypeWireSet> *types_explored;
    pool<TypeWireId> *types_deferred;
    pool<int32_t> *tiles_left;

    void lock() override { all_costs_mutex->lock(); }

    void unlock() override { all_costs_mutex->unlock(); }

    void copy_back(int32_t tile_type) override
    {
        ScopeLock<TbbExpandLocals> locker(this);

        auto &type_data = ctx->chip_info->tile_types[tile_type];

        // Copy per tile data by to over all data structures.
        if (ctx->verbose) {
            log_info("Expanded all wires in type %s, merging data back\n", IdString(type_data.name).c_str(ctx));
            log_info("Testing %zu wires, saw %zu types, deferred %zu types\n", type_data.wire_data.size(),
                     explored->size(), deferred->size());
        }

        // Copy cheapest explored paths back to all_tiles_storage.
        for (const auto &type_pair : storage->storage) {
            auto &type_pair_data = all_tiles_storage->storage[type_pair.first];
            for (const auto &delta_pair : type_pair.second) {
                // See if this dx/dy already has data.
                auto result = type_pair_data.emplace(delta_pair.first, delta_pair.second);
                if (!result.second) {
                    // This was already in the map, check if this new result is
                    // better
                    if (delta_pair.second < result.first->second) {
                        result.first->second = delta_pair.second;
                    }
                }
            }
        }

        // Update explored and deferred sets.
        for (auto &key : *explored) {
            types_explored->emplace(key);
        }
        for (auto &key : *deferred) {
            types_deferred->emplace(key);
        }

        NPNR_ASSERT(tiles_left->erase(tile_type));

        if (ctx->verbose) {
            log_info("Done merging data from type %s, %zu tiles left\n", IdString(type_data.name).c_str(ctx),
                     tiles_left->size());
        }
    }
};

// Wrapper method used if running expansion in parallel.
//
// expand_tile_type is invoked using thread local data, and then afterwards
// the data is joined with the global data.
static void expand_tile_type_parallel(const Context *ctx, int32_t tile_type, const std::vector<Sampler> &tiles_of_type,
                                      DeterministicRNG *rng, std::mutex *all_costs_mutex,
                                      DelayStorage *all_tiles_storage, pool<TypeWireSet> *types_explored,
                                      pool<TypeWireId> *types_deferred, pool<int32_t> *tiles_left)
{
    TbbExpandLocals locals;

    DeterministicRNG rng_copy = *rng;
    FlatWireMap<PipAndCost> best_path(ctx);
    pool<TypeWireSet> explored;
    pool<TypeWireId> deferred;
    DelayStorage storage;
    storage.max_explore_depth = all_tiles_storage->max_explore_depth;

    locals.tiles_of_type = &tiles_of_type;
    locals.rng = &rng_copy;
    locals.best_path = &best_path;
    locals.storage = &storage;
    locals.explored = &explored;
    locals.deferred = &deferred;

    locals.ctx = ctx;
    locals.all_costs_mutex = all_costs_mutex;
    locals.all_tiles_storage = all_tiles_storage;
    locals.types_explored = types_explored;
    locals.types_deferred = types_deferred;
    locals.tiles_left = tiles_left;

    expand_tile_type(ctx, tile_type, &locals);
}

void Lookahead::build_lookahead(const Context *ctx, DeterministicRNG *rng)
{
    auto start = std::chrono::high_resolution_clock::now();

    if (ctx->verbose) {
        log_info("Building lookahead, first gathering input and output site wires\n");
    }

    pool<TypeWireId> input_site_ports;
    for (BelId bel : ctx->getBels()) {
        const auto &bel_data = bel_info(ctx->chip_info, bel);

        for (IdString pin : ctx->getBelPins(bel)) {
            WireId pin_wire = ctx->getBelPinWire(bel, pin);
            if (pin_wire == WireId()) {
                continue;
            }

            PortType type = ctx->getBelPinType(bel, pin);

            if (type == PORT_IN && bel_data.category == BEL_CATEGORY_LOGIC) {
                input_site_wires.emplace(TypeWireId(ctx, pin_wire), std::vector<InputSiteWireCost>());
            } else if (type == PORT_OUT && bel_data.category == BEL_CATEGORY_LOGIC) {
                output_site_wires.emplace(TypeWireId(ctx, pin_wire), OutputSiteWireCost());
            } else if (type == PORT_OUT && bel_data.category == BEL_CATEGORY_SITE_PORT) {
                input_site_ports.emplace(TypeWireId(ctx, pin_wire));
            }
        }
    }

    if (ctx->verbose) {
        log_info("Have %zu input and %zu output site wire types. Creating tile type samplers\n",
                 input_site_wires.size(), output_site_wires.size());
    }

    std::vector<Sampler> tiles_of_type;
    tiles_of_type.resize(ctx->chip_info->tile_types.ssize());

    std::vector<size_t> indicies;
    std::vector<std::pair<int32_t, int32_t>> xys;
    indicies.reserve(ctx->chip_info->tiles.size());
    xys.reserve(ctx->chip_info->tiles.size());

    for (int32_t tile_type = 0; tile_type < ctx->chip_info->tile_types.ssize(); ++tile_type) {
        indicies.clear();
        xys.clear();

        for (size_t tile = 0; tile < ctx->chip_info->tiles.size(); ++tile) {
            if (ctx->chip_info->tiles[tile].type != tile_type) {
                continue;
            }

            std::pair<size_t, size_t> xy;
            ctx->get_tile_x_y(tile, &xy.first, &xy.second);

            indicies.push_back(tile);
            xys.push_back(xy);
        }

        auto &tile_sampler = tiles_of_type[tile_type];
        tile_sampler.divide_samples(kNumberSamples, xys);

        // Remap Sampler::indicies from 0 to number of tiles of type to
        // absolute tile indicies.
        for (size_t i = 0; i < indicies.size(); ++i) {
            tile_sampler.indicies[i] = indicies[tile_sampler.indicies[i]];
        }
    }

    if (ctx->verbose) {
        log_info("Expanding input site wires\n");
    }

    // Expand backwards from each input site wire to find the cheapest
    // non-site wire.
    for (auto &input_pair : input_site_wires) {
        expand_input_type(ctx, rng, tiles_of_type[input_pair.first.type], input_pair.first, &input_pair.second);
    }

    if (ctx->verbose) {
        log_info("Expanding output site wires\n");
    }

    // Expand forward from each output site wire to find the cheapest
    // non-site wire.
    for (auto &output_pair : output_site_wires) {
        output_pair.second.cost = std::numeric_limits<delay_t>::max();
        expand_output_type(ctx, rng, tiles_of_type[output_pair.first.type], output_pair.first, &output_pair.second,
                           &site_to_site_cost);
    }
    for (TypeWireId input_site_port : input_site_ports) {
        expand_output_type(ctx, rng, tiles_of_type[input_site_port.type], input_site_port, nullptr, &site_to_site_cost);
    }

    if (ctx->verbose) {
        log_info("Expanding all wire types\n");
    }

    DelayStorage all_tiles_storage;
    all_tiles_storage.max_explore_depth = kInitialExploreDepth;

    // These are wire types that have been explored.
    pool<TypeWireSet> types_explored;

    // These are wire types that have been deferred because they are trival
    // copies of another wire type.  These can be cheaply computed after the
    // graph has been explored.
    pool<TypeWireId> types_deferred;

    std::vector<int32_t> tile_types;
    pool<int32_t> tiles_left;
    tile_types.reserve(ctx->chip_info->tile_types.size());
    for (int32_t tile_type = 0; tile_type < ctx->chip_info->tile_types.ssize(); ++tile_type) {
        tile_types.push_back(tile_type);
        tiles_left.emplace(tile_type);
    }

    FlatWireMap<PipAndCost> best_path(ctx);

    // Walk each tile type, and expand all non-site wires in the tile.
    // Wires that are nodes will expand as if the node type is the first node
    // in the wire.
    //
    // Wires that only have 1 output pip are deferred until the next loop,
    // because generally those wires will get explored via another wire.
    // The deferred will be expanded if this assumption doesn't hold.
    bool expand_serially = true;
#if defined(NEXTPNR_USE_TBB) // Run parallely
    {
        std::mutex all_costs_mutex;

        expand_serially = false;
        tbb::parallel_for_each(tile_types, [&](int32_t tile_type) {
            expand_tile_type_parallel(ctx, tile_type, tiles_of_type, rng, &all_costs_mutex, &all_tiles_storage,
                                      &types_explored, &types_deferred, &tiles_left);
        });
    }
#else
    // Supress warning that expand_tile_type_parallel if not running in
    // parallel.
    (void)expand_tile_type_parallel;
#endif
    if (expand_serially) {
        expand_tile_type_serial(ctx, tile_types, tiles_of_type, rng, &best_path, &all_tiles_storage, &types_explored,
                                &types_deferred, &tiles_left);
    }

    // Check to see if deferred wire types were expanded.  If they were not
    // expanded, expand them now.  If they were expanded, copy_types is
    // populated with the wire types that can just copy the relevant data from
    // another wire type.
    for (TypeWireId wire_type : types_deferred) {
        auto &type_data = ctx->chip_info->tile_types[wire_type.type];
        auto &tile_sampler = tiles_of_type[wire_type.type];
        auto &wire_data = type_data.wire_data[wire_type.index];

        if (ctx->verbose) {
            log_info("Expanding deferred wire %s in type %s (seen %zu types)\n", IdString(wire_data.name).c_str(ctx),
                     IdString(type_data.name).c_str(ctx), types_explored.size());
        }

        expand_deferred_routing_graph(ctx, rng, tile_sampler, wire_type, &types_explored, &all_tiles_storage,
                                      &best_path);
    }

    auto end = std::chrono::high_resolution_clock::now();
    if (ctx->verbose) {
        log_info("Done with expansion, dt %02fs\n", std::chrono::duration<float>(end - start).count());
    }

    if (kWriteLookaheadCsv) {
        write_lookahead_csv(ctx, all_tiles_storage);
        end = std::chrono::high_resolution_clock::now();
        if (ctx->verbose) {
            log_info("Done writing data to disk, dt %02fs\n", std::chrono::duration<float>(end - start).count());
        }
    }

#if defined(NEXTPNR_USE_TBB) // Run parallely
    tbb::parallel_for_each(all_tiles_storage.storage,
                           [&](const std::pair<TypeWirePair, dict<std::pair<int32_t, int32_t>, delay_t>> &type_pair) {
#else
    for (const auto &type_pair : all_tiles_storage.storage) {
#endif
                               cost_map.set_cost_map(ctx, type_pair.first, type_pair.second);
#if defined(NEXTPNR_USE_TBB) // Run parallely
                           });
#else
    }
#endif

    end = std::chrono::high_resolution_clock::now();
    if (ctx->verbose) {
        log_info("build_lookahead time %.02fs\n", std::chrono::duration<float>(end - start).count());
    }
}

constexpr static bool kUseGzipForLookahead = false;

static void write_message(::capnp::MallocMessageBuilder &message, const std::string &filename)
{
    kj::Array<capnp::word> words = messageToFlatArray(message);
    kj::ArrayPtr<kj::byte> bytes = words.asBytes();

    boost::filesystem::path temp = boost::filesystem::unique_path();
    log_info("Writing tempfile to %s\n", temp.c_str());

    if (kUseGzipForLookahead) {
        gzFile file = gzopen(temp.c_str(), "w");
        NPNR_ASSERT(file != Z_NULL);

        size_t bytes_written = 0;
        int result;
        while (bytes_written < bytes.size()) {
            size_t bytes_remaining = bytes.size() - bytes_written;
            size_t bytes_to_write = bytes_remaining;
            if (bytes_to_write >= std::numeric_limits<int>::max()) {
                bytes_to_write = std::numeric_limits<int>::max();
            }
            result = gzwrite(file, &bytes[0] + bytes_written, bytes_to_write);
            if (result < 0) {
                break;
            }

            bytes_written += result;
        }

        int error;
        std::string error_str;
        if (result < 0) {
            error_str.assign(gzerror(file, &error));
        }
        NPNR_ASSERT(gzclose(file) == Z_OK);
        if (bytes_written != bytes.size()) {
            // Remove failed writes before reporting error.
            boost::filesystem::remove(temp);
        }

        if (result < 0) {
            log_error("Failed to write lookahead, error from gzip %s\n", error_str.c_str());
        } else {
            if (bytes_written != bytes.size()) {
                log_error("Failed to write lookahead, wrote %d bytes, had %zu bytes\n", result, bytes.size());
            } else {
                // Written, move file into place
                boost::filesystem::rename(temp, filename);
            }
        }
    } else {
        {
            kj::Own<kj::Filesystem> fs = kj::newDiskFilesystem();

            auto path = kj::Path::parse(temp);
            auto file = fs->getCurrent().openFile(path, kj::WriteMode::CREATE);
            file->writeAll(bytes);
        }

        boost::filesystem::rename(temp, filename);
    }
}

bool Lookahead::read_lookahead(const std::string &chipdb_hash, const std::string &filename)
{
    capnp::ReaderOptions reader_options;
    reader_options.traversalLimitInWords = 32llu * 1024llu * 1024llu * 1024llu;

    if (kUseGzipForLookahead) {
        gzFile file = gzopen(filename.c_str(), "r");
        if (file == Z_NULL) {
            return false;
        }

        std::vector<uint8_t> output_data;
        output_data.resize(4096);
        std::stringstream sstream(std::ios_base::in | std::ios_base::out | std::ios_base::binary);
        while (true) {
            int ret = gzread(file, output_data.data(), output_data.size());
            NPNR_ASSERT(ret >= 0);
            if (ret > 0) {
                sstream.write((const char *)output_data.data(), ret);
                NPNR_ASSERT(sstream);
            } else {
                NPNR_ASSERT(ret == 0);
                int error;
                gzerror(file, &error);
                NPNR_ASSERT(error == Z_OK);
                break;
            }
        }

        NPNR_ASSERT(gzclose(file) == Z_OK);

        sstream.seekg(0);
        kj::std::StdInputStream istream(sstream);
        capnp::InputStreamMessageReader message_reader(istream, reader_options);

        lookahead_storage::Lookahead::Reader lookahead = message_reader.getRoot<lookahead_storage::Lookahead>();
        return from_reader(chipdb_hash, lookahead);
    } else {
        boost::iostreams::mapped_file_source file;
        try {
            file.open(filename.c_str());
        } catch (std::ios_base::failure &fail) {
            return false;
        }

        if (!file.is_open()) {
            return false;
        }

        const char *data = reinterpret_cast<const char *>(file.data());
        const kj::ArrayPtr<const ::capnp::word> words =
                kj::arrayPtr(reinterpret_cast<const ::capnp::word *>(data), file.size() / sizeof(::capnp::word));
        ::capnp::FlatArrayMessageReader reader(words, reader_options);
        lookahead_storage::Lookahead::Reader lookahead = reader.getRoot<lookahead_storage::Lookahead>();
        return from_reader(chipdb_hash, lookahead);
    }
}

void Lookahead::write_lookahead(const std::string &chipdb_hash, const std::string &file) const
{
    ::capnp::MallocMessageBuilder message;

    lookahead_storage::Lookahead::Builder lookahead = message.initRoot<lookahead_storage::Lookahead>();
    to_builder(chipdb_hash, lookahead);
    write_message(message, file);
}

void Lookahead::init(const Context *ctx, DeterministicRNG *rng)
{
    std::string lookahead_filename;
    if (kUseGzipForLookahead) {
        lookahead_filename = ctx->args.chipdb + ".lookahead.tgz";
    } else {
        lookahead_filename = ctx->args.chipdb + ".lookahead";
    }

    std::string chipdb_hash = ctx->get_chipdb_hash();

    if (ctx->args.rebuild_lookahead || !read_lookahead(chipdb_hash, lookahead_filename)) {
        build_lookahead(ctx, rng);
        if (!ctx->args.dont_write_lookahead) {
            write_lookahead(chipdb_hash, lookahead_filename);
        }
    }
}

static bool safe_add_i32(int32_t a, int32_t b, int32_t *out)
{
#if defined(__GNUG__) || defined(__clang__)
    // GCC and clang have had __builtin_add_overflow for a while.
    return !__builtin_add_overflow(a, b, out);
#else
    // MSVC and other don't have an intrinsic.  Emit some more code.
    bool safe_to_add;
    if (b < 0) {
        safe_to_add = a >= std::numeric_limits<int32_t>::min() - b;
    } else {
        safe_to_add = a <= std::numeric_limits<int32_t>::max() - b;
    }
    if (!safe_to_add) {
        return false;
    }
    *out = a + b;
    return true;
#endif
}

static void saturating_incr(int32_t *acc, int32_t value)
{
    if (!safe_add_i32(*acc, value, acc)) {
        if (value > 0) {
            *acc = std::numeric_limits<int32_t>::max();
        } else {
            *acc = std::numeric_limits<int32_t>::min();
        }
    }
}

#define DEBUG_LOOKUP

delay_t Lookahead::estimateDelay(const Context *ctx, WireId src, WireId dst) const
{
#ifdef DEBUG_LOOKUP
    if (ctx->debug) {
        log_info("Looking up %s to %s\n", ctx->nameOfWire(src), ctx->nameOfWire(dst));
    }
#endif
    delay_t delay = 0;

    // Follow chain down, chasing wires with only 1 pip.  Stop if dst is
    // reached.
    WireId orig_src = src;
    src = follow_pip_chain_target(ctx, src, dst, &delay);
    NPNR_ASSERT(delay >= 0);
    if (src == WireId()) {
        // This src wire is a dead end, tell router to avoid it!
#ifdef DEBUG_LOOKUP
        if (ctx->debug) {
            log_info("Source %s is a dead end!\n", ctx->nameOfWire(orig_src));
        }
#endif
        return std::numeric_limits<delay_t>::max();
    }

#ifdef DEBUG_LOOKUP
    if (ctx->debug && src != orig_src) {
        log_info("Moving src from %s to %s, delay = %d\n", ctx->nameOfWire(orig_src), ctx->nameOfWire(src), delay);
    }
#endif

    if (src == dst) {
        // Reached target already, done!
        return delay;
    }

    if (ctx->is_same_site(src, dst)) {
        // Check for site to site direct path.
        TypeWirePair pair;

        TypeWireId src_type(ctx, src);
        pair.src = src_type;

        TypeWireId dst_type(ctx, dst);
        pair.dst = dst_type;

        auto iter = site_to_site_cost.find(pair);
        if (iter != site_to_site_cost.end()) {
            NPNR_ASSERT(iter->second >= 0);
            saturating_incr(&delay, iter->second);
#ifdef DEBUG_LOOKUP
            if (ctx->debug) {
                log_info("Found site to site direct path %s -> %s = %d\n", ctx->nameOfWire(src), ctx->nameOfWire(dst),
                         delay);
            }
#endif
            return delay;
        }
    }

    // At this point we know that the routing interconnect is needed, or
    // the pair is unreachable.
    orig_src = src;
    TypeWireId src_type(ctx, src);

    // Find the first routing wire from the src_type.
    auto src_iter = output_site_wires.find(src_type);
    if (src_iter != output_site_wires.end()) {
        NPNR_ASSERT(src_iter->second.cost >= 0);
        saturating_incr(&delay, src_iter->second.cost);
        src_type = src_iter->second.cheapest_route_from;

        src = canonical_wire(ctx->chip_info, src.tile, src_type.index);
#ifdef DEBUG_LOOKUP
        if (ctx->debug) {
            log_info("Moving src from %s to %s, delay = %d\n", ctx->nameOfWire(orig_src), ctx->nameOfWire(src), delay);
        }
#endif
    }

    // Make sure that the new wire is in the routing graph.
    if (ctx->is_wire_in_site(src)) {
#ifdef DEBUG_LOOKUP
        // We've already tested for direct site to site routing, if src cannot
        // reach outside of the routing network, this path is impossible.
        if (ctx->debug) {
            log_warning("Failed to reach routing network for src %s, got to %s\n", ctx->nameOfWire(orig_src),
                        ctx->nameOfWire(src));
        }
#endif
        return std::numeric_limits<delay_t>::max();
    }

    if (src == dst) {
        // Reached target already, done!
        return delay;
    }

    // Find the first routing wire that reaches dst_type.
    WireId orig_dst = dst;
    TypeWireId dst_type(ctx, dst);

    auto dst_iter = input_site_wires.find(dst_type);
    if (dst_iter == input_site_wires.end()) {
        // dst_type isn't an input site wire, just add point to point delay.
        auto &dst_data = ctx->wire_info(dst);
        if (dst_data.site != -1) {
#ifdef DEBUG_LOOKUP
            // We've already tested for direct site to site routing, if dst cannot
            // be reached from the routing network, this path is impossible.
            if (ctx->debug) {
                log_warning("Failed to reach routing network for dst %s, got to %s\n", ctx->nameOfWire(orig_dst),
                            ctx->nameOfWire(dst));
            }
#endif
            return std::numeric_limits<delay_t>::max();
        }

        // Follow chain up
        WireId orig_dst = dst;
        (void)orig_dst;

        delay_t chain_delay;
        dst = follow_pip_chain_up(ctx, dst, &chain_delay);
        NPNR_ASSERT(chain_delay >= 0);
        saturating_incr(&delay, chain_delay);
#ifdef DEBUG_LOOKUP
        if (ctx->debug && dst != orig_dst) {
            log_info("Moving dst from %s to %s, delay = %d\n", ctx->nameOfWire(orig_dst), ctx->nameOfWire(dst), delay);
        }
#endif

        if (src == dst) {
            // Reached target already, done!
            return delay;
        }

        // Both src and dst are in the routing graph, lookup approx cost to go
        // from src to dst.
        int32_t delay_from_map = cost_map.get_delay(ctx, src, dst);
        NPNR_ASSERT(delay_from_map >= 0);
        saturating_incr(&delay, delay_from_map);

#ifdef DEBUG_LOOKUP
        if (ctx->debug) {
            log_info("Final delay = %d\n", delay);
        }
#endif

        return delay;
    } else {
        // dst_type is an input site wire, try each possible routing path.
        delay_t base_delay = delay;
        delay_t cheapest_path = std::numeric_limits<delay_t>::max();

        for (const InputSiteWireCost &input_cost : dst_iter->second) {
            dst = orig_dst;
            delay = base_delay;

            NPNR_ASSERT(input_cost.cost >= 0);
            saturating_incr(&delay, input_cost.cost);
            dst_type = input_cost.route_to;

            NPNR_ASSERT(dst_type.index != -1);
            dst = canonical_wire(ctx->chip_info, dst.tile, dst_type.index);
            NPNR_ASSERT(dst != WireId());

#ifdef DEBUG_LOOKUP
            if (ctx->debug) {
                log_info("Moving dst from %s to %s, delay = %d\n", ctx->nameOfWire(orig_dst), ctx->nameOfWire(dst),
                         delay);
            }
#endif

            if (dst == src) {
#ifdef DEBUG_LOOKUP
                if (ctx->debug) {
                    log_info("Possible delay = %d\n", delay);
                }
#endif
                // Reached target already, done!
                cheapest_path = std::min(delay, cheapest_path);
                continue;
            }

            auto &dst_data = ctx->wire_info(dst);
            if (dst_data.site != -1) {
#ifdef DEBUG_LOOKUP
                // We've already tested for direct site to site routing, if dst cannot
                // be reached from the routing network, this path is impossible.
                if (ctx->debug) {
                    log_warning("Failed to reach routing network for dst %s, got to %s\n", ctx->nameOfWire(orig_dst),
                                ctx->nameOfWire(dst));
                }
#endif
                continue;
            }

            // Follow chain up
            WireId orig_dst = dst;
            (void)orig_dst;

            delay_t chain_delay;
            dst = follow_pip_chain_up(ctx, dst, &chain_delay);
            NPNR_ASSERT(chain_delay >= 0);
            saturating_incr(&delay, chain_delay);
#ifdef DEBUG_LOOKUP
            if (ctx->debug && dst != orig_dst) {
                log_info("Moving dst from %s to %s, delay = %d\n", ctx->nameOfWire(orig_dst), ctx->nameOfWire(dst),
                         delay);
            }
#endif

            if (dst == WireId()) {
                // This dst wire is a dead end, don't examine it!
#ifdef DEBUG_LOOKUP
                if (ctx->debug) {
                    log_info("Dest %s is a dead end!\n", ctx->nameOfWire(dst));
                }
#endif
                continue;
            }

            if (src == dst) {
#ifdef DEBUG_LOOKUP
                if (ctx->debug) {
                    log_info("Possible delay = %d\n", delay);
                }
#endif
                // Reached target already, done!
                cheapest_path = std::min(delay, cheapest_path);
                continue;
            }

            // Both src and dst are in the routing graph, lookup approx cost to go
            // from src to dst.
            int32_t delay_from_map = cost_map.get_delay(ctx, src, dst);
            NPNR_ASSERT(delay_from_map >= 0);
            saturating_incr(&delay, delay_from_map);
            cheapest_path = std::min(delay, cheapest_path);
#ifdef DEBUG_LOOKUP
            if (ctx->debug) {
                log_info("Possible delay = %d\n", delay);
            }
#endif
        }

#ifdef DEBUG_LOOKUP
        if (ctx->debug) {
            log_info("Final delay = %d\n", delay);
        }
#endif

        return cheapest_path;
    }
}

bool Lookahead::from_reader(const std::string &chipdb_hash, lookahead_storage::Lookahead::Reader reader)
{
    std::string expected_hash = reader.getChipdbHash();
    if (chipdb_hash != expected_hash) {
        return false;
    }

    input_site_wires.clear();
    output_site_wires.clear();
    site_to_site_cost.clear();

    for (auto input_reader : reader.getInputSiteWires()) {
        TypeWireId key(input_reader.getKey());

        auto result = input_site_wires.emplace(key, std::vector<InputSiteWireCost>());
        NPNR_ASSERT(result.second);
        std::vector<InputSiteWireCost> &costs = result.first->second;
        auto value = input_reader.getValue();
        costs.reserve(value.size());
        for (auto cost : value) {
            costs.emplace_back(InputSiteWireCost{TypeWireId(cost.getRouteTo()), cost.getCost()});
        }
    }

    for (auto output_reader : reader.getOutputSiteWires()) {
        TypeWireId key(output_reader.getKey());

        auto result = output_site_wires.emplace(
                key, OutputSiteWireCost{TypeWireId(output_reader.getCheapestRouteFrom()), output_reader.getCost()});
        NPNR_ASSERT(result.second);
    }

    for (auto site_to_site_reader : reader.getSiteToSiteCost()) {
        TypeWirePair key(site_to_site_reader.getKey());
        auto result = site_to_site_cost.emplace(key, site_to_site_reader.getCost());
        NPNR_ASSERT(result.second);
    }

    cost_map.from_reader(reader.getCostMap());

    return true;
}

void Lookahead::to_builder(const std::string &chipdb_hash, lookahead_storage::Lookahead::Builder builder) const
{
    builder.setChipdbHash(chipdb_hash);

    auto input_out = builder.initInputSiteWires(input_site_wires.size());
    auto in = input_site_wires.begin();
    for (auto out = input_out.begin(); out != input_out.end(); ++out, ++in) {
        NPNR_ASSERT(in != input_site_wires.end());

        const TypeWireId &key = in->first;
        key.to_builder(out->getKey());

        const std::vector<InputSiteWireCost> &costs = in->second;
        auto value = out->initValue(costs.size());

        auto value_in = costs.begin();
        for (auto value_out = value.begin(); value_out != value.end(); ++value_out, ++value_in) {
            value_in->route_to.to_builder(value_out->getRouteTo());
            value_out->setCost(value_in->cost);
        }
    }

    auto output_out = builder.initOutputSiteWires(output_site_wires.size());
    auto out = output_site_wires.begin();
    for (auto out2 = output_out.begin(); out2 != output_out.end(); ++out, ++out2) {
        NPNR_ASSERT(out != output_site_wires.end());

        const TypeWireId &key = out->first;
        key.to_builder(out2->getKey());

        const TypeWireId &cheapest_route_from = out->second.cheapest_route_from;
        cheapest_route_from.to_builder(out2->getCheapestRouteFrom());

        out2->setCost(out->second.cost);
    }

    auto site_out = builder.initSiteToSiteCost(site_to_site_cost.size());
    auto site = site_to_site_cost.begin();
    for (auto out2 = site_out.begin(); out2 != site_out.end(); ++out2, ++site) {
        NPNR_ASSERT(site != site_to_site_cost.end());

        const TypeWirePair &key = site->first;
        key.to_builder(out2->getKey());
        out2->setCost(site->second);
    }

    cost_map.to_builder(builder.getCostMap());
}

NEXTPNR_NAMESPACE_END