1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 whitequark <whitequark@whitequark.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef CXXRTL_VCD_H
#define CXXRTL_VCD_H
#include <backends/cxxrtl/cxxrtl.h>
namespace cxxrtl {
class vcd_writer {
struct variable {
size_t ident;
size_t width;
chunk_t *curr;
size_t prev_off;
};
std::vector<std::string> current_scope;
std::vector<variable> variables;
std::vector<chunk_t> cache;
std::map<chunk_t*, size_t> aliases;
bool streaming = false;
void emit_timescale(unsigned number, const std::string &unit) {
assert(!streaming);
assert(number == 1 || number == 10 || number == 100);
assert(unit == "s" || unit == "ms" || unit == "us" ||
unit == "ns" || unit == "ps" || unit == "fs");
buffer += "$timescale " + std::to_string(number) + " " + unit + " $end\n";
}
void emit_scope(const std::vector<std::string> &scope) {
assert(!streaming);
while (current_scope.size() > scope.size() ||
(current_scope.size() > 0 &&
current_scope[current_scope.size() - 1] != scope[current_scope.size() - 1])) {
buffer += "$upscope $end\n";
current_scope.pop_back();
}
while (current_scope.size() < scope.size()) {
buffer += "$scope module " + scope[current_scope.size()] + " $end\n";
current_scope.push_back(scope[current_scope.size()]);
}
}
void emit_ident(size_t ident) {
do {
buffer += '!' + ident % 94; // "base94"
ident /= 94;
} while (ident != 0);
}
void emit_var(const variable &var, const std::string &type, const std::string &name,
size_t lsb_at, bool multipart) {
assert(!streaming);
buffer += "$var " + type + " " + std::to_string(var.width) + " ";
emit_ident(var.ident);
buffer += " " + name;
if (multipart || name.back() == ']' || lsb_at != 0) {
if (var.width == 1)
buffer += " [" + std::to_string(lsb_at) + "]";
else
buffer += " [" + std::to_string(lsb_at + var.width - 1) + ":" + std::to_string(lsb_at) + "]";
}
buffer += " $end\n";
}
void emit_enddefinitions() {
assert(!streaming);
buffer += "$enddefinitions $end\n";
streaming = true;
}
void emit_time(uint64_t timestamp) {
assert(streaming);
buffer += "#" + std::to_string(timestamp) + "\n";
}
void emit_scalar(const variable &var) {
assert(streaming);
assert(var.width == 1);
buffer += (*var.curr ? '1' : '0');
emit_ident(var.ident);
buffer += '\n';
}
void emit_vector(const variable &var) {
assert(streaming);
buffer += 'b';
for (size_t bit = var.width - 1; bit != (size_t)-1; bit--) {
bool bit_curr = var.curr[bit / (8 * sizeof(chunk_t))] & (1 << (bit % (8 * sizeof(chunk_t))));
buffer += (bit_curr ? '1' : '0');
}
buffer += ' ';
emit_ident(var.ident);
buffer += '\n';
}
const variable ®ister_variable(size_t width, chunk_t *curr, bool constant = false) {
if (aliases.count(curr)) {
return variables[aliases[curr]];
} else {
const size_t chunks = (width + (sizeof(chunk_t) * 8 - 1)) / (sizeof(chunk_t) * 8);
aliases[curr] = variables.size();
if (constant) {
variables.emplace_back(variable { variables.size(), width, curr, (size_t)-1 });
} else {
variables.emplace_back(variable { variables.size(), width, curr, cache.size() });
cache.insert(cache.end(), &curr[0], &curr[chunks]);
}
return variables.back();
}
}
bool test_variable(const variable &var) {
if (var.prev_off == (size_t)-1)
return false; // constant
const size_t chunks = (var.width + (sizeof(chunk_t) * 8 - 1)) / (sizeof(chunk_t) * 8);
if (std::equal(&var.curr[0], &var.curr[chunks], &cache[var.prev_off])) {
return false;
} else {
std::copy(&var.curr[0], &var.curr[chunks], &cache[var.prev_off]);
return true;
}
}
static std::vector<std::string> split_hierarchy(const std::string &hier_name) {
std::vector<std::string> hierarchy;
size_t prev = 0;
while (true) {
size_t curr = hier_name.find_first_of(' ', prev);
if (curr == std::string::npos) {
hierarchy.push_back(hier_name.substr(prev));
break;
} else {
hierarchy.push_back(hier_name.substr(prev, curr - prev));
prev = curr + 1;
}
}
return hierarchy;
}
public:
std::string buffer;
void timescale(unsigned number, const std::string &unit) {
emit_timescale(number, unit);
}
void add(const std::string &hier_name, const debug_item &item, bool multipart = false) {
std::vector<std::string> scope = split_hierarchy(hier_name);
std::string name = scope.back();
scope.pop_back();
emit_scope(scope);
switch (item.type) {
// Not the best naming but oh well...
case debug_item::VALUE:
emit_var(register_variable(item.width, item.curr, /*constant=*/item.next == nullptr),
"wire", name, item.lsb_at, multipart);
break;
case debug_item::WIRE:
emit_var(register_variable(item.width, item.curr),
"reg", name, item.lsb_at, multipart);
break;
case debug_item::MEMORY: {
const size_t stride = (item.width + (sizeof(chunk_t) * 8 - 1)) / (sizeof(chunk_t) * 8);
for (size_t index = 0; index < item.depth; index++) {
chunk_t *nth_curr = &item.curr[stride * index];
std::string nth_name = name + '[' + std::to_string(index) + ']';
emit_var(register_variable(item.width, nth_curr),
"reg", nth_name, item.lsb_at, multipart);
}
break;
}
case debug_item::ALIAS:
// Like VALUE, but, even though `item.next == nullptr` always holds, the underlying value
// can actually change, and must be tracked. In most cases the VCD identifier will be
// unified with the aliased reg, but we should handle the case where only the alias is
// added to the VCD writer, too.
emit_var(register_variable(item.width, item.curr),
"wire", name, item.lsb_at, multipart);
break;
}
}
template<class Filter>
void add(const debug_items &items, const Filter &filter) {
// `debug_items` is a map, so the items are already sorted in an order optimal for emitting
// VCD scope sections.
for (auto &it : items.table)
for (auto &part : it.second)
if (filter(it.first, part))
add(it.first, part, it.second.size() > 1);
}
void add(const debug_items &items) {
this->template add(items, [](const std::string &, const debug_item &) {
return true;
});
}
void add_without_memories(const debug_items &items) {
this->template add(items, [](const std::string &, const debug_item &item) {
return item.type != debug_item::MEMORY;
});
}
void sample(uint64_t timestamp) {
bool first_sample = !streaming;
if (first_sample) {
emit_scope({});
emit_enddefinitions();
}
emit_time(timestamp);
for (auto var : variables)
if (test_variable(var) || first_sample) {
if (var.width == 1)
emit_scalar(var);
else
emit_vector(var);
}
}
};
}
#endif
|