aboutsummaryrefslogtreecommitdiffstats
path: root/backends/cxxrtl/cxxrtl.h
blob: eb7d7eaeb30a75527cb608f1b99404ffcaf0648d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2019-2020  whitequark <whitequark@whitequark.org>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
//
// The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
// to unwrap the abstraction and generate efficient code.

#ifndef CXXRTL_H
#define CXXRTL_H

#include <cstddef>
#include <cstdint>
#include <cassert>
#include <limits>
#include <type_traits>
#include <tuple>
#include <vector>
#include <map>
#include <algorithm>
#include <memory>
#include <sstream>

#include <backends/cxxrtl/cxxrtl_capi.h>

// CXXRTL essentially uses the C++ compiler as a hygienic macro engine that feeds an instruction selector.
// It generates a lot of specialized template functions with relatively large bodies that, when inlined
// into the caller and (for those with loops) unrolled, often expose many new optimization opportunities.
// Because of this, most of the CXXRTL runtime must be always inlined for best performance.
#ifndef __has_attribute
#	define __has_attribute(x) 0
#endif
#if __has_attribute(always_inline)
#define CXXRTL_ALWAYS_INLINE inline __attribute__((__always_inline__))
#else
#define CXXRTL_ALWAYS_INLINE inline
#endif

// CXXRTL uses assert() to check for C++ contract violations (which may result in e.g. undefined behavior
// of the simulation code itself), and CXXRTL_ASSERT to check for RTL contract violations (which may at
// most result in undefined simulation results).
//
// Though by default, CXXRTL_ASSERT() expands to assert(), it may be overridden e.g. when integrating
// the simulation into another process that should survive violating RTL contracts.
#ifndef CXXRTL_ASSERT
#ifndef CXXRTL_NDEBUG
#define CXXRTL_ASSERT(x) assert(x)
#else
#define CXXRTL_ASSERT(x)
#endif
#endif

namespace cxxrtl {

// All arbitrary-width values in CXXRTL are backed by arrays of unsigned integers called chunks. The chunk size
// is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving
// and introspecting the simulation in Python.
//
// It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on
// narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register.
// However, (a) most of our operations do not change those bits in the first place because of invariants that are
// invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway.
// Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
// clobbered results in simpler generated code.
typedef uint32_t chunk_t;
typedef uint64_t wide_chunk_t;

template<typename T>
struct chunk_traits {
	static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
	              "chunk type must be an unsigned integral type");
	using type = T;
	static constexpr size_t bits = std::numeric_limits<T>::digits;
	static constexpr T mask = std::numeric_limits<T>::max();
};

template<class T>
struct expr_base;

template<size_t Bits>
struct value : public expr_base<value<Bits>> {
	static constexpr size_t bits = Bits;

	using chunk = chunk_traits<chunk_t>;
	static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask
		: chunk::mask >> (chunk::bits - (Bits % chunk::bits));

	static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits;
	chunk::type data[chunks] = {};

	value() = default;
	template<typename... Init>
	explicit constexpr value(Init ...init) : data{init...} {}

	value(const value<Bits> &) = default;
	value<Bits> &operator=(const value<Bits> &) = default;

	value(value<Bits> &&) = default;
	value<Bits> &operator=(value<Bits> &&) = default;

	// A (no-op) helper that forces the cast to value<>.
	CXXRTL_ALWAYS_INLINE
	const value<Bits> &val() const {
		return *this;
	}

	std::string str() const {
		std::stringstream ss;
		ss << *this;
		return ss.str();
	}

	// Conversion operations.
	//
	// These functions ensure that a conversion is never out of range, and should be always used, if at all
	// possible, instead of direct manipulation of the `data` member. For very large types, .slice() and
	// .concat() can be used to split them into more manageable parts.
	template<class IntegerT>
	CXXRTL_ALWAYS_INLINE
	IntegerT get() const {
		static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
		              "get<T>() requires T to be an unsigned integral type");
		static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
		              "get<T>() requires T to be at least as wide as the value is");
		IntegerT result = 0;
		for (size_t n = 0; n < chunks; n++)
			result |= IntegerT(data[n]) << (n * chunk::bits);
		return result;
	}

	template<class IntegerT>
	CXXRTL_ALWAYS_INLINE
	void set(IntegerT other) {
		static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
		              "set<T>() requires T to be an unsigned integral type");
		static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
		              "set<T>() requires the value to be at least as wide as T is");
		for (size_t n = 0; n < chunks; n++)
			data[n] = (other >> (n * chunk::bits)) & chunk::mask;
	}

	// Operations with compile-time parameters.
	//
	// These operations are used to implement slicing, concatenation, and blitting.
	// The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
	// the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> trunc() const {
		static_assert(NewBits <= Bits, "trunc() may not increase width");
		value<NewBits> result;
		for (size_t n = 0; n < result.chunks; n++)
			result.data[n] = data[n];
		result.data[result.chunks - 1] &= result.msb_mask;
		return result;
	}

	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> zext() const {
		static_assert(NewBits >= Bits, "zext() may not decrease width");
		value<NewBits> result;
		for (size_t n = 0; n < chunks; n++)
			result.data[n] = data[n];
		return result;
	}

	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> sext() const {
		static_assert(NewBits >= Bits, "sext() may not decrease width");
		value<NewBits> result;
		for (size_t n = 0; n < chunks; n++)
			result.data[n] = data[n];
		if (is_neg()) {
			result.data[chunks - 1] |= ~msb_mask;
			for (size_t n = chunks; n < result.chunks; n++)
				result.data[n] = chunk::mask;
			result.data[result.chunks - 1] &= result.msb_mask;
		}
		return result;
	}

	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> rtrunc() const {
		static_assert(NewBits <= Bits, "rtrunc() may not increase width");
		value<NewBits> result;
		constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits;
		constexpr size_t shift_bits   = (Bits - NewBits) % chunk::bits;
		chunk::type carry = 0;
		if (shift_chunks + result.chunks < chunks) {
			carry = (shift_bits == 0) ? 0
				: data[shift_chunks + result.chunks] << (chunk::bits - shift_bits);
		}
		for (size_t n = result.chunks; n > 0; n--) {
			result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits);
			carry = (shift_bits == 0) ? 0
				: data[shift_chunks + n - 1] << (chunk::bits - shift_bits);
		}
		return result;
	}

	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> rzext() const {
		static_assert(NewBits >= Bits, "rzext() may not decrease width");
		value<NewBits> result;
		constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits;
		constexpr size_t shift_bits   = (NewBits - Bits) % chunk::bits;
		chunk::type carry = 0;
		for (size_t n = 0; n < chunks; n++) {
			result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
			carry = (shift_bits == 0) ? 0
				: data[n] >> (chunk::bits - shift_bits);
		}
		if (shift_chunks + chunks < result.chunks)
			result.data[shift_chunks + chunks] = carry;
		return result;
	}

	// Bit blit operation, i.e. a partial read-modify-write.
	template<size_t Stop, size_t Start>
	CXXRTL_ALWAYS_INLINE
	value<Bits> blit(const value<Stop - Start + 1> &source) const {
		static_assert(Stop >= Start, "blit() may not reverse bit order");
		constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
		constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0
			: (chunk::mask << (Stop % chunk::bits + 1));
		value<Bits> masked = *this;
		if (Start / chunk::bits == Stop / chunk::bits) {
			masked.data[Start / chunk::bits] &= stop_mask | start_mask;
		} else {
			masked.data[Start / chunk::bits] &= start_mask;
			for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++)
				masked.data[n] = 0;
			masked.data[Stop / chunk::bits] &= stop_mask;
		}
		value<Bits> shifted = source
			.template rzext<Stop + 1>()
			.template zext<Bits>();
		return masked.bit_or(shifted);
	}

	// Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower
	// than the operand. In C++17 these can be replaced with `if constexpr`.
	template<size_t NewBits, typename = void>
	struct zext_cast {
		CXXRTL_ALWAYS_INLINE
		value<NewBits> operator()(const value<Bits> &val) {
			return val.template zext<NewBits>();
		}
	};

	template<size_t NewBits>
	struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
		CXXRTL_ALWAYS_INLINE
		value<NewBits> operator()(const value<Bits> &val) {
			return val.template trunc<NewBits>();
		}
	};

	template<size_t NewBits, typename = void>
	struct sext_cast {
		CXXRTL_ALWAYS_INLINE
		value<NewBits> operator()(const value<Bits> &val) {
			return val.template sext<NewBits>();
		}
	};

	template<size_t NewBits>
	struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
		CXXRTL_ALWAYS_INLINE
		value<NewBits> operator()(const value<Bits> &val) {
			return val.template trunc<NewBits>();
		}
	};

	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> zcast() const {
		return zext_cast<NewBits>()(*this);
	}

	template<size_t NewBits>
	CXXRTL_ALWAYS_INLINE
	value<NewBits> scast() const {
		return sext_cast<NewBits>()(*this);
	}

	// Operations with run-time parameters (offsets, amounts, etc).
	//
	// These operations are used for computations.
	bool bit(size_t offset) const {
		return data[offset / chunk::bits] & (1 << (offset % chunk::bits));
	}

	void set_bit(size_t offset, bool value = true) {
		size_t offset_chunks = offset / chunk::bits;
		size_t offset_bits = offset % chunk::bits;
		data[offset_chunks] &= ~(1 << offset_bits);
		data[offset_chunks] |= value ? 1 << offset_bits : 0;
	}

	explicit operator bool() const {
		return !is_zero();
	}

	bool is_zero() const {
		for (size_t n = 0; n < chunks; n++)
			if (data[n] != 0)
				return false;
		return true;
	}

	bool is_neg() const {
		return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
	}

	bool operator ==(const value<Bits> &other) const {
		for (size_t n = 0; n < chunks; n++)
			if (data[n] != other.data[n])
				return false;
		return true;
	}

	bool operator !=(const value<Bits> &other) const {
		return !(*this == other);
	}

	value<Bits> bit_not() const {
		value<Bits> result;
		for (size_t n = 0; n < chunks; n++)
			result.data[n] = ~data[n];
		result.data[chunks - 1] &= msb_mask;
		return result;
	}

	value<Bits> bit_and(const value<Bits> &other) const {
		value<Bits> result;
		for (size_t n = 0; n < chunks; n++)
			result.data[n] = data[n] & other.data[n];
		return result;
	}

	value<Bits> bit_or(const value<Bits> &other) const {
		value<Bits> result;
		for (size_t n = 0; n < chunks; n++)
			result.data[n] = data[n] | other.data[n];
		return result;
	}

	value<Bits> bit_xor(const value<Bits> &other) const {
		value<Bits> result;
		for (size_t n = 0; n < chunks; n++)
			result.data[n] = data[n] ^ other.data[n];
		return result;
	}

	value<Bits> update(const value<Bits> &val, const value<Bits> &mask) const {
		return bit_and(mask.bit_not()).bit_or(val.bit_and(mask));
	}

	template<size_t AmountBits>
	value<Bits> shl(const value<AmountBits> &amount) const {
		// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
		static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported");
		// Detect shifts definitely large than Bits early.
		for (size_t n = 1; n < amount.chunks; n++)
			if (amount.data[n] != 0)
				return {};
		// Past this point we can use the least significant chunk as the shift size.
		size_t shift_chunks = amount.data[0] / chunk::bits;
		size_t shift_bits   = amount.data[0] % chunk::bits;
		if (shift_chunks >= chunks)
			return {};
		value<Bits> result;
		chunk::type carry = 0;
		for (size_t n = 0; n < chunks - shift_chunks; n++) {
			result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
			carry = (shift_bits == 0) ? 0
				: data[n] >> (chunk::bits - shift_bits);
		}
		return result;
	}

	template<size_t AmountBits, bool Signed = false>
	value<Bits> shr(const value<AmountBits> &amount) const {
		// Ensure our early return is correct by prohibiting values larger than 4 Gbit.
		static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported");
		// Detect shifts definitely large than Bits early.
		for (size_t n = 1; n < amount.chunks; n++)
			if (amount.data[n] != 0)
				return {};
		// Past this point we can use the least significant chunk as the shift size.
		size_t shift_chunks = amount.data[0] / chunk::bits;
		size_t shift_bits   = amount.data[0] % chunk::bits;
		if (shift_chunks >= chunks)
			return {};
		value<Bits> result;
		chunk::type carry = 0;
		for (size_t n = 0; n < chunks - shift_chunks; n++) {
			result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits);
			carry = (shift_bits == 0) ? 0
				: data[chunks - 1 - n] << (chunk::bits - shift_bits);
		}
		if (Signed && is_neg()) {
			size_t top_chunk_idx  = (Bits - shift_bits) / chunk::bits;
			size_t top_chunk_bits = (Bits - shift_bits) % chunk::bits;
			for (size_t n = top_chunk_idx + 1; n < chunks; n++)
				result.data[n] = chunk::mask;
			if (shift_bits != 0)
				result.data[top_chunk_idx] |= chunk::mask << top_chunk_bits;
		}
		return result;
	}

	template<size_t AmountBits>
	value<Bits> sshr(const value<AmountBits> &amount) const {
		return shr<AmountBits, /*Signed=*/true>(amount);
	}

	size_t ctpop() const {
		size_t count = 0;
		for (size_t n = 0; n < chunks; n++) {
			// This loop implements the population count idiom as recognized by LLVM and GCC.
			for (chunk::type x = data[n]; x != 0; count++)
				x = x & (x - 1);
		}
		return count;
	}

	size_t ctlz() const {
		size_t count = 0;
		for (size_t n = 0; n < chunks; n++) {
			chunk::type x = data[chunks - 1 - n];
			if (x == 0) {
				count += (n == 0 ? Bits % chunk::bits : chunk::bits);
			} else {
				// This loop implements the find first set idiom as recognized by LLVM.
				for (; x != 0; count++)
					x >>= 1;
			}
		}
		return count;
	}

	template<bool Invert, bool CarryIn>
	std::pair<value<Bits>, bool /*CarryOut*/> alu(const value<Bits> &other) const {
		value<Bits> result;
		bool carry = CarryIn;
		for (size_t n = 0; n < result.chunks; n++) {
			result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
			if (result.chunks - 1 == n)
				result.data[result.chunks - 1] &= result.msb_mask;
			carry = (result.data[n] <  data[n]) ||
			        (result.data[n] == data[n] && carry);
		}
		return {result, carry};
	}

	value<Bits> add(const value<Bits> &other) const {
		return alu</*Invert=*/false, /*CarryIn=*/false>(other).first;
	}

	value<Bits> sub(const value<Bits> &other) const {
		return alu</*Invert=*/true, /*CarryIn=*/true>(other).first;
	}

	value<Bits> neg() const {
		return value<Bits> { 0u }.sub(*this);
	}

	bool ucmp(const value<Bits> &other) const {
		bool carry;
		std::tie(std::ignore, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
		return !carry; // a.ucmp(b) ≡ a u< b
	}

	bool scmp(const value<Bits> &other) const {
		value<Bits> result;
		bool carry;
		std::tie(result, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
		bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
		return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
	}

	template<size_t ResultBits>
	value<ResultBits> mul(const value<Bits> &other) const {
		value<ResultBits> result;
		wide_chunk_t wide_result[result.chunks + 1] = {};
		for (size_t n = 0; n < chunks; n++) {
			for (size_t m = 0; m < chunks && n + m < result.chunks; m++) {
				wide_result[n + m] += wide_chunk_t(data[n]) * wide_chunk_t(other.data[m]);
				wide_result[n + m + 1] += wide_result[n + m] >> chunk::bits;
				wide_result[n + m] &= chunk::mask;
			}
		}
		for (size_t n = 0; n < result.chunks; n++) {
			result.data[n] = wide_result[n];
		}
		result.data[result.chunks - 1] &= result.msb_mask;
		return result;
	}
};

// Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
template<class T, size_t Stop, size_t Start>
struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
	static_assert(Stop >= Start, "slice_expr() may not reverse bit order");
	static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds");
	static constexpr size_t bits = Stop - Start + 1;

	T &expr;

	slice_expr(T &expr) : expr(expr) {}
	slice_expr(const slice_expr<T, Stop, Start> &) = delete;

	CXXRTL_ALWAYS_INLINE
	operator value<bits>() const {
		return static_cast<const value<T::bits> &>(expr)
			.template rtrunc<T::bits - Start>()
			.template trunc<bits>();
	}

	CXXRTL_ALWAYS_INLINE
	slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
		// Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
		expr = static_cast<const value<T::bits> &>(expr)
			.template blit<Stop, Start>(rhs);
		return *this;
	}

	// A helper that forces the cast to value<>, which allows deduction to work.
	CXXRTL_ALWAYS_INLINE
	value<bits> val() const {
		return static_cast<const value<bits> &>(*this);
	}
};

// Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here.
template<class T, class U>
struct concat_expr : public expr_base<concat_expr<T, U>> {
	static constexpr size_t bits = T::bits + U::bits;

	T &ms_expr;
	U &ls_expr;

	concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
	concat_expr(const concat_expr<T, U> &) = delete;

	CXXRTL_ALWAYS_INLINE
	operator value<bits>() const {
		value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
			.template rzext<bits>();
		value<bits> ls_extended = static_cast<const value<U::bits> &>(ls_expr)
			.template zext<bits>();
		return ms_shifted.bit_or(ls_extended);
	}

	CXXRTL_ALWAYS_INLINE
	concat_expr<T, U> &operator=(const value<bits> &rhs) {
		ms_expr = rhs.template rtrunc<T::bits>();
		ls_expr = rhs.template trunc<U::bits>();
		return *this;
	}

	// A helper that forces the cast to value<>, which allows deduction to work.
	CXXRTL_ALWAYS_INLINE
	value<bits> val() const {
		return static_cast<const value<bits> &>(*this);
	}
};

// Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues.
//
// Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because
// they refer to temporaries that will, in general, only live until the end of the statement. For example, both of
// these snippets perform use-after-free:
//
//    const auto &a = val.slice<7,0>().slice<1>();
//    value<1> b = a;
//
//    auto &&c = val.slice<7,0>().slice<1>();
//    c = value<1>{1u};
//
// An easy way to write code using slices and concatenations safely is to follow two simple rules:
//   * Never explicitly name any type except `value<W>` or `const value<W> &`.
//   * Never use a `const auto &` or `auto &&` in any such expression.
// Then, any code that compiles will be well-defined.
template<class T>
struct expr_base {
	template<size_t Stop, size_t Start = Stop>
	CXXRTL_ALWAYS_INLINE
	slice_expr<const T, Stop, Start> slice() const {
		return {*static_cast<const T *>(this)};
	}

	template<size_t Stop, size_t Start = Stop>
	CXXRTL_ALWAYS_INLINE
	slice_expr<T, Stop, Start> slice() {
		return {*static_cast<T *>(this)};
	}

	template<class U>
	CXXRTL_ALWAYS_INLINE
	concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
		return {*static_cast<const T *>(this), other};
	}

	template<class U>
	CXXRTL_ALWAYS_INLINE
	concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
		return {*static_cast<T *>(this), other};
	}
};

template<size_t Bits>
std::ostream &operator<<(std::ostream &os, const value<Bits> &val) {
	auto old_flags = os.flags(std::ios::right);
	auto old_width = os.width(0);
	auto old_fill  = os.fill('0');
	os << val.bits << '\'' << std::hex;
	for (size_t n = val.chunks - 1; n != (size_t)-1; n--) {
		if (n == val.chunks - 1 && Bits % value<Bits>::chunk::bits != 0)
			os.width((Bits % value<Bits>::chunk::bits + 3) / 4);
		else
			os.width((value<Bits>::chunk::bits + 3) / 4);
		os << val.data[n];
	}
	os.fill(old_fill);
	os.width(old_width);
	os.flags(old_flags);
	return os;
}

template<size_t Bits>
struct wire {
	static constexpr size_t bits = Bits;

	value<Bits> curr;
	value<Bits> next;

	wire() = default;
	constexpr wire(const value<Bits> &init) : curr(init), next(init) {}
	template<typename... Init>
	explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {}

	// Copying and copy-assigning values is natural. If, however, a value is replaced with a wire,
	// e.g. because a module is built with a different optimization level, then existing code could
	// unintentionally copy a wire instead, which would create a subtle but serious bug. To make sure
	// this doesn't happen, prohibit copying and copy-assigning wires.
	wire(const wire<Bits> &) = delete;
	wire<Bits> &operator=(const wire<Bits> &) = delete;

	wire(wire<Bits> &&) = default;
	wire<Bits> &operator=(wire<Bits> &&) = default;

	template<class IntegerT>
	CXXRTL_ALWAYS_INLINE
	IntegerT get() const {
		return curr.template get<IntegerT>();
	}

	template<class IntegerT>
	CXXRTL_ALWAYS_INLINE
	void set(IntegerT other) {
		next.template set<IntegerT>(other);
	}

	bool commit() {
		if (curr != next) {
			curr = next;
			return true;
		}
		return false;
	}
};

template<size_t Bits>
std::ostream &operator<<(std::ostream &os, const wire<Bits> &val) {
	os << val.curr;
	return os;
}

template<size_t Width>
struct memory {
	std::vector<value<Width>> data;

	size_t depth() const {
		return data.size();
	}

	memory() = delete;
	explicit memory(size_t depth) : data(depth) {}

	memory(const memory<Width> &) = delete;
	memory<Width> &operator=(const memory<Width> &) = delete;

	memory(memory<Width> &&) = default;
	memory<Width> &operator=(memory<Width> &&) = default;

	// The only way to get the compiler to put the initializer in .rodata and do not copy it on stack is to stuff it
	// into a plain array. You'd think an std::initializer_list would work here, but it doesn't, because you can't
	// construct an initializer_list in a constexpr (or something) and so if you try to do that the whole thing is
	// first copied on the stack (probably overflowing it) and then again into `data`.
	template<size_t Size>
	struct init {
		size_t offset;
		value<Width> data[Size];
	};

	template<size_t... InitSize>
	explicit memory(size_t depth, const init<InitSize> &...init) : data(depth) {
		data.resize(depth);
		// This utterly reprehensible construct is the most reasonable way to apply a function to every element
		// of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list.
		auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...};
		(void)_;
	}

	// An operator for direct memory reads. May be used at any time during the simulation.
	const value<Width> &operator [](size_t index) const {
		assert(index < data.size());
		return data[index];
	}

	// An operator for direct memory writes. May only be used before the simulation is started. If used
	// after the simulation is started, the design may malfunction.
	value<Width> &operator [](size_t index) {
		assert(index < data.size());
		return data[index];
	}

	// A simple way to make a writable memory would be to use an array of wires instead of an array of values.
	// However, there are two significant downsides to this approach: first, it has large overhead (2× space
	// overhead, and O(depth) time overhead during commit); second, it does not simplify handling write port
	// priorities. Although in principle write ports could be ordered or conditionally enabled in generated
	// code based on their priorities and selected addresses, the feedback arc set problem is computationally
	// expensive, and the heuristic based algorithms are not easily modified to guarantee (rather than prefer)
	// a particular write port evaluation order.
	//
	// The approach used here instead is to queue writes into a buffer during the eval phase, then perform
	// the writes during the commit phase in the priority order. This approach has low overhead, with both space
	// and time proportional to the amount of write ports. Because virtually every memory in a practical design
	// has at most two write ports, linear search is used on every write, being the fastest and simplest approach.
	struct write {
		size_t index;
		value<Width> val;
		value<Width> mask;
		int priority;
	};
	std::vector<write> write_queue;

	void update(size_t index, const value<Width> &val, const value<Width> &mask, int priority = 0) {
		assert(index < data.size());
		// Queue up the write while keeping the queue sorted by priority.
		write_queue.insert(
			std::upper_bound(write_queue.begin(), write_queue.end(), priority,
				[](const int a, const write& b) { return a < b.priority; }),
			write { index, val, mask, priority });
	}

	bool commit() {
		bool changed = false;
		for (const write &entry : write_queue) {
			value<Width> elem = data[entry.index];
			elem = elem.update(entry.val, entry.mask);
			changed |= (data[entry.index] != elem);
			data[entry.index] = elem;
		}
		write_queue.clear();
		return changed;
	}
};

struct metadata {
	const enum {
		MISSING = 0,
		UINT   	= 1,
		SINT   	= 2,
		STRING 	= 3,
		DOUBLE 	= 4,
	} value_type;

	// In debug mode, using the wrong .as_*() function will assert.
	// In release mode, using the wrong .as_*() function will safely return a default value.
	const unsigned    uint_value = 0;
	const signed      sint_value = 0;
	const std::string string_value = "";
	const double      double_value = 0.0;

	metadata() : value_type(MISSING) {}
	metadata(unsigned value) : value_type(UINT), uint_value(value) {}
	metadata(signed value) : value_type(SINT), sint_value(value) {}
	metadata(const std::string &value) : value_type(STRING), string_value(value) {}
	metadata(const char *value) : value_type(STRING), string_value(value) {}
	metadata(double value) : value_type(DOUBLE), double_value(value) {}

	metadata(const metadata &) = default;
	metadata &operator=(const metadata &) = delete;

	unsigned as_uint() const {
		assert(value_type == UINT);
		return uint_value;
	}

	signed as_sint() const {
		assert(value_type == SINT);
		return sint_value;
	}

	const std::string &as_string() const {
		assert(value_type == STRING);
		return string_value;
	}

	double as_double() const {
		assert(value_type == DOUBLE);
		return double_value;
	}
};

typedef std::map<std::string, metadata> metadata_map;

// Tag class to disambiguate values/wires and their aliases.
struct debug_alias {};

// This structure is intended for consumption via foreign function interfaces, like Python's ctypes.
// Because of this it uses a C-style layout that is easy to parse rather than more idiomatic C++.
//
// To avoid violating strict aliasing rules, this structure has to be a subclass of the one used
// in the C API, or it would not be possible to cast between the pointers to these.
struct debug_item : ::cxxrtl_object {
	// Object types.
	enum : uint32_t {
		VALUE  = CXXRTL_VALUE,
		WIRE   = CXXRTL_WIRE,
		MEMORY = CXXRTL_MEMORY,
		ALIAS  = CXXRTL_ALIAS,
	};

	// Object flags.
	enum : uint32_t {
		INPUT  = CXXRTL_INPUT,
		OUTPUT = CXXRTL_OUTPUT,
		INOUT  = CXXRTL_INOUT,
		DRIVEN_SYNC = CXXRTL_DRIVEN_SYNC,
		DRIVEN_COMB = CXXRTL_DRIVEN_COMB,
		UNDRIVEN    = CXXRTL_UNDRIVEN,
	};

	debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}

	template<size_t Bits>
	debug_item(value<Bits> &item, size_t lsb_offset = 0, uint32_t flags_ = 0) {
		static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
		              "value<Bits> is not compatible with C layout");
		type    = VALUE;
		flags   = flags_;
		width   = Bits;
		lsb_at  = lsb_offset;
		depth   = 1;
		zero_at = 0;
		curr    = item.data;
		next    = item.data;
	}

	template<size_t Bits>
	debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
		static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
		              "value<Bits> is not compatible with C layout");
		type    = VALUE;
		flags   = DRIVEN_COMB;
		width   = Bits;
		lsb_at  = lsb_offset;
		depth   = 1;
		zero_at = 0;
		curr    = const_cast<chunk_t*>(item.data);
		next    = nullptr;
	}

	template<size_t Bits>
	debug_item(wire<Bits> &item, size_t lsb_offset = 0, uint32_t flags_ = 0) {
		static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
		              sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
		              "wire<Bits> is not compatible with C layout");
		type    = WIRE;
		flags   = flags_;
		width   = Bits;
		lsb_at  = lsb_offset;
		depth   = 1;
		zero_at = 0;
		curr    = item.curr.data;
		next    = item.next.data;
	}

	template<size_t Width>
	debug_item(memory<Width> &item, size_t zero_offset = 0) {
		static_assert(sizeof(item.data[0]) == value<Width>::chunks * sizeof(chunk_t),
		              "memory<Width> is not compatible with C layout");
		type    = MEMORY;
		flags   = 0;
		width   = Width;
		lsb_at  = 0;
		depth   = item.data.size();
		zero_at = zero_offset;
		curr    = item.data.empty() ? nullptr : item.data[0].data;
		next    = nullptr;
	}

	template<size_t Bits>
	debug_item(debug_alias, const value<Bits> &item, size_t lsb_offset = 0) {
		static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
		              "value<Bits> is not compatible with C layout");
		type    = ALIAS;
		flags   = DRIVEN_COMB;
		width   = Bits;
		lsb_at  = lsb_offset;
		depth   = 1;
		zero_at = 0;
		curr    = const_cast<chunk_t*>(item.data);
		next    = nullptr;
	}

	template<size_t Bits>
	debug_item(debug_alias, const wire<Bits> &item, size_t lsb_offset = 0) {
		static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
		              sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
		              "wire<Bits> is not compatible with C layout");
		type    = ALIAS;
		flags   = DRIVEN_COMB;
		width   = Bits;
		lsb_at  = lsb_offset;
		depth   = 1;
		zero_at = 0;
		curr    = const_cast<chunk_t*>(item.curr.data);
		next    = nullptr;
	}
};
static_assert(std::is_standard_layout<debug_item>::value, "debug_item is not compatible with C layout");

struct debug_items {
	std::map<std::string, std::vector<debug_item>> table;

	void add(const std::string &name, debug_item &&item) {
		std::vector<debug_item> &parts = table[name];
		parts.emplace_back(item);
		std::sort(parts.begin(), parts.end(),
			[](const debug_item &a, const debug_item &b) {
				return a.lsb_at < b.lsb_at;
			});
	}

	size_t count(const std::string &name) const {
		if (table.count(name) == 0)
			return 0;
		return table.at(name).size();
	}

	const std::vector<debug_item> &parts_at(const std::string &name) const {
		return table.at(name);
	}

	const debug_item &at(const std::string &name) const {
		const std::vector<debug_item> &parts = table.at(name);
		assert(parts.size() == 1);
		return parts.at(0);
	}

	const debug_item &operator [](const std::string &name) const {
		return at(name);
	}
};

// Tag class to disambiguate module move constructor and module constructor that takes black boxes
// out of another instance of the module.
struct adopt {};

struct module {
	module() {}
	virtual ~module() {}

	// Modules with black boxes cannot be copied. Although not all designs include black boxes,
	// delete the copy constructor and copy assignment operator to make sure that any downstream
	// code that manipulates modules doesn't accidentally depend on their availability.
	module(const module &) = delete;
	module &operator=(const module &) = delete;

	module(module &&) = default;
	module &operator=(module &&) = default;

	virtual void reset() = 0;

	virtual bool eval() = 0;
	virtual bool commit() = 0;

	size_t step() {
		size_t deltas = 0;
		bool converged = false;
		do {
			converged = eval();
			deltas++;
		} while (commit() && !converged);
		return deltas;
	}

	virtual void debug_info(debug_items &items, std::string path = "") {
		(void)items, (void)path;
	}
};

} // namespace cxxrtl

// Internal structure used to communicate with the implementation of the C interface.
typedef struct _cxxrtl_toplevel {
	std::unique_ptr<cxxrtl::module> module;
} *cxxrtl_toplevel;

// Definitions of internal Yosys cells. Other than the functions in this namespace, CXXRTL is fully generic
// and indepenent of Yosys implementation details.
//
// The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these
// functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands,
// whereas basic operations on arbitrary width values require operands to be of the same width. These functions
// bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u`
// if the corresponding operand is unsigned, and `s` if it is signed.
namespace cxxrtl_yosys {

using namespace cxxrtl;

// std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
template<class T>
CXXRTL_ALWAYS_INLINE
constexpr T max(const T &a, const T &b) {
	return a > b ? a : b;
}

// Logic operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> logic_not(const value<BitsA> &a) {
	return value<BitsY> { a ? 0u : 1u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> logic_and(const value<BitsA> &a, const value<BitsB> &b) {
	return value<BitsY> { (bool(a) && bool(b)) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> logic_or(const value<BitsA> &a, const value<BitsB> &b) {
	return value<BitsY> { (bool(a) || bool(b)) ? 1u : 0u };
}

// Reduction operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_and(const value<BitsA> &a) {
	return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_or(const value<BitsA> &a) {
	return value<BitsY> { a ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_xor(const value<BitsA> &a) {
	return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_xnor(const value<BitsA> &a) {
	return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> reduce_bool(const value<BitsA> &a) {
	return value<BitsY> { a ? 1u : 0u };
}

// Bitwise operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> not_u(const value<BitsA> &a) {
	return a.template zcast<BitsY>().bit_not();
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> not_s(const value<BitsA> &a) {
	return a.template scast<BitsY>().bit_not();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().template shl(b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().template shl(b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().template shl(b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().template shl(b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template shr(b).template zcast<BitsY>();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template shr(b).template scast<BitsY>();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template shr(b).template zcast<BitsY>();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template sshr(b).template scast<BitsY>();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return shr_uu<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
	return shr_su<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
	return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return shift_uu<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
	return shift_su<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
	return shift_us<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return shift_ss<BitsY>(a, b);
}

// Comparison operations
template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return eq_uu<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return eq_ss<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return ne_uu<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return ne_ss<BitsY>(a, b);
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsExt = max(BitsA, BitsB);
	return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
}

// Arithmetic operations
template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> pos_u(const value<BitsA> &a) {
	return a.template zcast<BitsY>();
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> pos_s(const value<BitsA> &a) {
	return a.template scast<BitsY>();
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> neg_u(const value<BitsA> &a) {
	return a.template zcast<BitsY>().neg();
}

template<size_t BitsY, size_t BitsA>
CXXRTL_ALWAYS_INLINE
value<BitsY> neg_s(const value<BitsA> &a) {
	return a.template scast<BitsY>().neg();
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().add(b.template scast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().sub(b.template scast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t BitsM = BitsA >= BitsB ? BitsA : BitsB;
	return a.template zcast<BitsM>().template mul<BitsY>(b.template zcast<BitsM>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return a.template scast<BitsY>().template mul<BitsY>(b.template scast<BitsY>());
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
	constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
	value<Bits> quotient;
	value<Bits> dividend = a.template zext<Bits>();
	value<Bits> divisor = b.template zext<Bits>();
	if (dividend.ucmp(divisor))
		return {/*quotient=*/value<BitsY> { 0u }, /*remainder=*/dividend.template trunc<BitsY>()};
	uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz();
	divisor = divisor.shl(value<32> { divisor_shift });
	for (size_t step = 0; step <= divisor_shift; step++) {
		quotient = quotient.shl(value<1> { 1u });
		if (!dividend.ucmp(divisor)) {
			dividend = dividend.sub(divisor);
			quotient.set_bit(0, true);
		}
		divisor = divisor.shr(value<1> { 1u });
	}
	return {quotient.template trunc<BitsY>(), /*remainder=*/dividend.template trunc<BitsY>()};
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
	value<BitsA + 1> ua = a.template sext<BitsA + 1>();
	value<BitsB + 1> ub = b.template sext<BitsB + 1>();
	if (ua.is_neg()) ua = ua.neg();
	if (ub.is_neg()) ub = ub.neg();
	value<BitsY> y, r;
	std::tie(y, r) = divmod_uu<BitsY>(ua, ub);
	if (a.is_neg() != b.is_neg()) y = y.neg();
	if (a.is_neg()) r = r.neg();
	return {y, r};
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return divmod_uu<BitsY>(a, b).first;
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return divmod_ss<BitsY>(a, b).first;
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
	return divmod_uu<BitsY>(a, b).second;
}

template<size_t BitsY, size_t BitsA, size_t BitsB>
CXXRTL_ALWAYS_INLINE
value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
	return divmod_ss<BitsY>(a, b).second;
}

// Memory helper
struct memory_index {
	bool valid;
	size_t index;

	template<size_t BitsAddr>
	memory_index(const value<BitsAddr> &addr, size_t offset, size_t depth) {
		static_assert(value<BitsAddr>::chunks <= 1, "memory address is too wide");
		size_t offset_index = addr.data[0];

		valid = (offset_index >= offset && offset_index < offset + depth);
		index = offset_index - offset;
	}
};

} // namespace cxxrtl_yosys

#endif