aboutsummaryrefslogtreecommitdiffstats
path: root/backends/aiger/xaiger.cc
blob: 66955d88e9d854f73c827257742bbd72a44e01f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 *                2019  Eddie Hung <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// https://stackoverflow.com/a/46137633
#ifdef _MSC_VER
#include <stdlib.h>
#define bswap32 _byteswap_ulong
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define bswap32 OSSwapInt32
#elif defined(__GNUC__)
#define bswap32 __builtin_bswap32
#else
#include <cstdint>
inline static uint32_t bswap32(uint32_t x)
{
	// https://stackoverflow.com/a/27796212
	register uint32_t value = number_to_be_reversed;
	uint8_t lolo = (value >> 0) & 0xFF;
	uint8_t lohi = (value >> 8) & 0xFF;
	uint8_t hilo = (value >> 16) & 0xFF;
	uint8_t hihi = (value >> 24) & 0xFF;
	return (hihi << 24)
		| (hilo << 16)
		| (lohi << 8)
		| (lolo << 0);
}
#endif

#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/timinginfo.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

inline int32_t to_big_endian(int32_t i32) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	return bswap32(i32);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	return i32;
#else
#error "Unknown endianness"
#endif
}

void aiger_encode(std::ostream &f, int x)
{
	log_assert(x >= 0);

	while (x & ~0x7f) {
		f.put((x & 0x7f) | 0x80);
		x = x >> 7;
	}

	f.put(x);
}

struct XAigerWriter
{
	Design *design;
	Module *module;
	SigMap sigmap;

	dict<SigBit, State> init_map;
	pool<SigBit> input_bits, output_bits;
	dict<SigBit, SigBit> not_map, alias_map;
	dict<SigBit, pair<SigBit, SigBit>> and_map;
	vector<SigBit> ci_bits, co_bits;
	vector<Cell*> ff_list;
	dict<SigBit, float> arrival_times;

	vector<pair<int, int>> aig_gates;
	vector<int> aig_outputs;
	int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0;

	dict<SigBit, int> aig_map;
	dict<SigBit, int> ordered_outputs;

	vector<Cell*> box_list;

	int mkgate(int a0, int a1)
	{
		aig_m++, aig_a++;
		aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0));
		return 2*aig_m;
	}

	int bit2aig(SigBit bit)
	{
		auto it = aig_map.find(bit);
		if (it != aig_map.end()) {
			log_assert(it->second >= 0);
			return it->second;
		}

		// NB: Cannot use iterator returned from aig_map.insert()
		//     since this function is called recursively

		int a = -1;
		if (not_map.count(bit)) {
			a = bit2aig(not_map.at(bit)) ^ 1;
		} else
		if (and_map.count(bit)) {
			auto args = and_map.at(bit);
			int a0 = bit2aig(args.first);
			int a1 = bit2aig(args.second);
			a = mkgate(a0, a1);
		} else
		if (alias_map.count(bit)) {
			a = bit2aig(alias_map.at(bit));
		}

		if (bit == State::Sx || bit == State::Sz) {
			log_debug("Design contains 'x' or 'z' bits. Treating as 1'b0.\n");
			a = aig_map.at(State::S0);
		}

		log_assert(a >= 0);
		aig_map[bit] = a;
		return a;
	}

	XAigerWriter(Module *module, bool dff_mode) : design(module->design), module(module), sigmap(module)
	{
		pool<SigBit> undriven_bits;
		pool<SigBit> unused_bits;

		// promote public wires
		for (auto wire : module->wires())
			if (wire->name.isPublic())
				sigmap.add(wire);

		// promote input wires
		for (auto wire : module->wires())
			if (wire->port_input)
				sigmap.add(wire);

		// promote keep wires
		for (auto wire : module->wires())
			if (wire->get_bool_attribute(ID::keep))
				sigmap.add(wire);

		for (auto wire : module->wires()) {
			auto it = wire->attributes.find(ID::init);
			for (int i = 0; i < GetSize(wire); i++)
			{
				SigBit wirebit(wire, i);
				SigBit bit = sigmap(wirebit);

				if (bit.wire == nullptr) {
					if (wire->port_output) {
						aig_map[wirebit] = (bit == State::S1) ? 1 : 0;
						output_bits.insert(wirebit);
					}
					continue;
				}

				undriven_bits.insert(bit);
				unused_bits.insert(bit);

				if (wire->port_input)
					input_bits.insert(bit);

				bool keep = wire->get_bool_attribute(ID::keep);
				if (wire->port_output || keep) {
					if (bit != wirebit)
						alias_map[wirebit] = bit;
					output_bits.insert(wirebit);
				}

				if (it != wire->attributes.end()) {
					auto s = it->second[i];
					if (s != State::Sx) {
						auto r = init_map.insert(std::make_pair(bit, it->second[i]));
						if (!r.second && r.first->second != it->second[i])
							log_error("Bit '%s' has a conflicting (* init *) value.\n", log_signal(bit));
					}
				}
			}
		}

		TimingInfo timing;

		for (auto cell : module->cells()) {
			if (!cell->has_keep_attr()) {
				if (cell->type == ID($_NOT_))
				{
					SigBit A = sigmap(cell->getPort(ID::A).as_bit());
					SigBit Y = sigmap(cell->getPort(ID::Y).as_bit());
					unused_bits.erase(A);
					undriven_bits.erase(Y);
					not_map[Y] = A;
					continue;
				}

				if (cell->type == ID($_AND_))
				{
					SigBit A = sigmap(cell->getPort(ID::A).as_bit());
					SigBit B = sigmap(cell->getPort(ID::B).as_bit());
					SigBit Y = sigmap(cell->getPort(ID::Y).as_bit());
					unused_bits.erase(A);
					unused_bits.erase(B);
					undriven_bits.erase(Y);
					and_map[Y] = make_pair(A, B);
					continue;
				}

				if (dff_mode && cell->type.in(ID($_DFF_N_), ID($_DFF_P_)) && !cell->get_bool_attribute(ID::abc9_keep))
				{
					SigBit D = sigmap(cell->getPort(ID::D).as_bit());
					SigBit Q = sigmap(cell->getPort(ID::Q).as_bit());
					unused_bits.erase(D);
					undriven_bits.erase(Q);
					alias_map[Q] = D;
					ff_list.emplace_back(cell);
					continue;
				}

				if (cell->type.in(ID($specify2), ID($specify3), ID($specrule)))
					continue;
			}

			RTLIL::Module* inst_module = design->module(cell->type);
			if (inst_module && inst_module->get_blackbox_attribute()) {
				bool abc9_flop = false;

				auto it = cell->attributes.find(ID::abc9_box_seq);
				if (it != cell->attributes.end()) {
					log_assert(!cell->has_keep_attr());
					log_assert(cell->parameters.empty());
					int abc9_box_seq = it->second.as_int();
					if (GetSize(box_list) <= abc9_box_seq)
						box_list.resize(abc9_box_seq+1);
					box_list[abc9_box_seq] = cell;
					// Only flop boxes may have arrival times
					//   (all others are combinatorial)
					log_assert(cell->parameters.empty());
					abc9_flop = inst_module->get_bool_attribute(ID::abc9_flop);
					if (!abc9_flop)
						continue;
				}

				if (!timing.count(inst_module->name))
					timing.setup_module(inst_module);
				auto &t = timing.at(inst_module->name).arrival;
				for (const auto &conn : cell->connections()) {
					auto port_wire = inst_module->wire(conn.first);
					if (!port_wire->port_output)
						continue;

					for (int i = 0; i < GetSize(conn.second); i++) {
						auto d = t.at(TimingInfo::NameBit(conn.first,i), 0);
						if (d == 0)
							continue;

#ifndef NDEBUG
						if (ys_debug(1)) {
							static std::set<std::tuple<IdString,IdString,int>> seen;
							if (seen.emplace(inst_module->name, conn.first, i).second) log("%s.%s[%d] abc9_arrival = %d\n",
									log_id(cell->type), log_id(conn.first), i, d);
						}
#endif
						arrival_times[conn.second[i]] = d;
					}
				}

				if (abc9_flop)
					continue;
			}

			bool cell_known = inst_module || cell->known();
			for (const auto &c : cell->connections()) {
				if (c.second.is_fully_const()) continue;
				auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
				auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
				auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
				if (!is_input && !is_output)
					log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));

				if (is_input)
					for (auto b : c.second) {
						Wire *w = b.wire;
						if (!w) continue;
						// Do not add as PO if bit is already a PI
						if (input_bits.count(b))
							continue;
						if (!w->port_output || !cell_known) {
							SigBit I = sigmap(b);
							if (I != b)
								alias_map[b] = I;
							output_bits.insert(b);
						}
					}
			}

			//log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell));
		}

		dict<IdString, std::vector<IdString>> box_ports;
		for (auto cell : box_list) {
			log_assert(cell);

			RTLIL::Module* box_module = design->module(cell->type);
			log_assert(box_module);
			log_assert(box_module->has_attribute(ID::abc9_box_id));

			auto r = box_ports.insert(cell->type);
			if (r.second) {
				// Make carry in the last PI, and carry out the last PO
				//   since ABC requires it this way
				IdString carry_in, carry_out;
				for (const auto &port_name : box_module->ports) {
					auto w = box_module->wire(port_name);
					log_assert(w);
					if (w->get_bool_attribute(ID::abc9_carry)) {
						if (w->port_input) {
							if (carry_in != IdString())
								log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module));
							carry_in = port_name;
						}
						if (w->port_output) {
							if (carry_out != IdString())
								log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module));
							carry_out = port_name;
						}
					}
					else
						r.first->second.push_back(port_name);
				}

				if (carry_in != IdString() && carry_out == IdString())
					log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module));
				if (carry_in == IdString() && carry_out != IdString())
					log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module));
				if (carry_in != IdString()) {
					r.first->second.push_back(carry_in);
					r.first->second.push_back(carry_out);
				}
			}

			for (auto port_name : r.first->second) {
				auto w = box_module->wire(port_name);
				log_assert(w);
				auto rhs = cell->connections_.at(port_name, SigSpec());
				rhs.append(Const(State::Sx, GetSize(w)-GetSize(rhs)));
				if (w->port_input)
					for (auto b : rhs) {
						SigBit I = sigmap(b);
						if (b == RTLIL::Sx)
							b = State::S0;
						else if (I != b) {
							if (I == RTLIL::Sx)
								alias_map[b] = State::S0;
							else
								alias_map[b] = I;
						}
						co_bits.emplace_back(b);
						unused_bits.erase(I);
					}
				if (w->port_output)
					for (const auto &b : rhs) {
						SigBit O = sigmap(b);
						if (O != b)
							alias_map[O] = b;
						ci_bits.emplace_back(b);
						undriven_bits.erase(O);
					}
			}
		}

		for (auto bit : input_bits)
			undriven_bits.erase(bit);
		for (auto bit : output_bits)
			unused_bits.erase(sigmap(bit));
		for (auto bit : unused_bits)
			undriven_bits.erase(bit);

		// Make all undriven bits a primary input
		for (auto bit : undriven_bits) {
			input_bits.insert(bit);
			undriven_bits.erase(bit);
		}

		struct sort_by_port_id {
			bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
				return a.wire->port_id < b.wire->port_id ||
				    (a.wire->port_id == b.wire->port_id && a.offset < b.offset);
			}
		};
		input_bits.sort(sort_by_port_id());
		output_bits.sort(sort_by_port_id());

		aig_map[State::S0] = 0;
		aig_map[State::S1] = 1;

		for (const auto &bit : input_bits) {
			aig_m++, aig_i++;
			log_assert(!aig_map.count(bit));
			aig_map[bit] = 2*aig_m;
		}

		for (auto cell : ff_list) {
			const SigBit &q = sigmap(cell->getPort(ID::Q));
			aig_m++, aig_i++;
			log_assert(!aig_map.count(q));
			aig_map[q] = 2*aig_m;
		}

		for (auto &bit : ci_bits) {
			aig_m++, aig_i++;
			// 1'bx may exist here due to a box output
			//   that has been padded to its full width
			if (bit == State::Sx)
				continue;
			if (aig_map.count(bit))
				log_error("Visited AIG node more than once; this could be a combinatorial loop that has not been broken\n");
			aig_map[bit] = 2*aig_m;
		}

		for (auto bit : co_bits) {
			ordered_outputs[bit] = aig_o++;
			aig_outputs.push_back(bit2aig(bit));
		}

		for (const auto &bit : output_bits) {
			ordered_outputs[bit] = aig_o++;
			int aig;
			// Unlike bit2aig() which checks aig_map first for
			//   inout/scc bits, since aig_map will point to
			//   the PI, first attempt to find the NOT/AND driver
			//   before resorting to an aig_map lookup (which
			//   could be another PO)
			if (input_bits.count(bit)) {
				if (not_map.count(bit)) {
					aig = bit2aig(not_map.at(bit)) ^ 1;
				} else if (and_map.count(bit)) {
					auto args = and_map.at(bit);
					int a0 = bit2aig(args.first);
					int a1 = bit2aig(args.second);
					aig = mkgate(a0, a1);
				}
				else
					aig = aig_map.at(bit);
			}
			else
				aig = bit2aig(bit);
			aig_outputs.push_back(aig);
		}

		for (auto cell : ff_list) {
			const SigBit &d = sigmap(cell->getPort(ID::D));
			aig_o++;
			aig_outputs.push_back(aig_map.at(d));
		}
	}

	void write_aiger(std::ostream &f, bool ascii_mode)
	{
		int aig_obc = aig_o;
		int aig_obcj = aig_obc;
		int aig_obcjf = aig_obcj;

		log_assert(aig_m == aig_i + aig_l + aig_a);
		log_assert(aig_obcjf == GetSize(aig_outputs));

		f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a);
		f << stringf("\n");

		if (ascii_mode)
		{
			for (int i = 0; i < aig_i; i++)
				f << stringf("%d\n", 2*i+2);

			for (int i = 0; i < aig_obc; i++)
				f << stringf("%d\n", aig_outputs.at(i));

			for (int i = aig_obc; i < aig_obcj; i++)
				f << stringf("1\n");

			for (int i = aig_obc; i < aig_obcj; i++)
				f << stringf("%d\n", aig_outputs.at(i));

			for (int i = aig_obcj; i < aig_obcjf; i++)
				f << stringf("%d\n", aig_outputs.at(i));

			for (int i = 0; i < aig_a; i++)
				f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second);
		}
		else
		{
			for (int i = 0; i < aig_obc; i++)
				f << stringf("%d\n", aig_outputs.at(i));

			for (int i = aig_obc; i < aig_obcj; i++)
				f << stringf("1\n");

			for (int i = aig_obc; i < aig_obcj; i++)
				f << stringf("%d\n", aig_outputs.at(i));

			for (int i = aig_obcj; i < aig_obcjf; i++)
				f << stringf("%d\n", aig_outputs.at(i));

			for (int i = 0; i < aig_a; i++) {
				int lhs = 2*(aig_i+aig_l+i)+2;
				int rhs0 = aig_gates.at(i).first;
				int rhs1 = aig_gates.at(i).second;
				int delta0 = lhs - rhs0;
				int delta1 = rhs0 - rhs1;
				aiger_encode(f, delta0);
				aiger_encode(f, delta1);
			}
		}

		f << "c";

		auto write_buffer = [](std::stringstream &buffer, int i32) {
			int32_t i32_be = to_big_endian(i32);
			buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
		};
		std::stringstream h_buffer;
		auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
		write_h_buffer(1);
		log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_list) + GetSize(ci_bits));
		write_h_buffer(GetSize(input_bits) + GetSize(ff_list) + GetSize(ci_bits));
		log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_list) + GetSize(co_bits));
		write_h_buffer(GetSize(output_bits) + GetSize(ff_list) + GetSize(co_bits));
		log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_list));
		write_h_buffer(GetSize(input_bits) + GetSize(ff_list));
		log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_list));
		write_h_buffer(GetSize(output_bits) + GetSize(ff_list));
		log_debug("boxNum = %d\n", GetSize(box_list));
		write_h_buffer(GetSize(box_list));

		auto write_buffer_float = [](std::stringstream &buffer, float f32) {
			buffer.write(reinterpret_cast<const char*>(&f32), sizeof(f32));
		};
		std::stringstream i_buffer;
		auto write_i_buffer = std::bind(write_buffer_float, std::ref(i_buffer), std::placeholders::_1);
		for (auto bit : input_bits)
			write_i_buffer(arrival_times.at(bit, 0));
		//std::stringstream o_buffer;
		//auto write_o_buffer = std::bind(write_buffer_float, std::ref(o_buffer), std::placeholders::_1);
		//for (auto bit : output_bits)
		//	write_o_buffer(0);

		if (!box_list.empty() || !ff_list.empty()) {
			dict<IdString, std::tuple<int,int,int>> cell_cache;

			int box_count = 0;
			for (auto cell : box_list) {
				log_assert(cell);
				log_assert(cell->parameters.empty());

				auto r = cell_cache.insert(cell->type);
				auto &v = r.first->second;
				if (r.second) {
					RTLIL::Module* box_module = design->module(cell->type);
					log_assert(box_module);

					int box_inputs = 0, box_outputs = 0;
					for (auto port_name : box_module->ports) {
						RTLIL::Wire *w = box_module->wire(port_name);
						log_assert(w);
						if (w->port_input)
							box_inputs += GetSize(w);
						if (w->port_output)
							box_outputs += GetSize(w);
					}

					std::get<0>(v) = box_inputs;
					std::get<1>(v) = box_outputs;
					std::get<2>(v) = box_module->attributes.at(ID::abc9_box_id).as_int();
				}

				write_h_buffer(std::get<0>(v));
				write_h_buffer(std::get<1>(v));
				write_h_buffer(std::get<2>(v));
				write_h_buffer(box_count++);
			}

			std::stringstream r_buffer;
			auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
			log_debug("flopNum = %d\n", GetSize(ff_list));
			write_r_buffer(ff_list.size());

			std::stringstream s_buffer;
			auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
			write_s_buffer(ff_list.size());

			dict<SigSpec, int> clk_to_mergeability;
			for (const auto cell : ff_list) {
				const SigBit &d = sigmap(cell->getPort(ID::D));
				const SigBit &q = sigmap(cell->getPort(ID::Q));

				SigSpec clk_and_pol{sigmap(cell->getPort(ID::C)), cell->type[6] == 'P' ? State::S1 : State::S0};
				auto r = clk_to_mergeability.insert(std::make_pair(clk_and_pol, clk_to_mergeability.size()+1));
				int mergeability = r.first->second;
				log_assert(mergeability > 0);
				write_r_buffer(mergeability);

				State init = init_map.at(q, State::Sx);
				log_debug("Cell '%s' (type %s) has (* init *) value '%s'.\n", log_id(cell), log_id(cell->type), log_signal(init));
				if (init == State::S1)
					write_s_buffer(1);
				else if (init == State::S0)
					write_s_buffer(0);
				else {
					log_assert(init == State::Sx);
					write_s_buffer(2);
				}

				// Use arrival time from output of flop box
				write_i_buffer(arrival_times.at(d, 0));
				//write_o_buffer(0);
			}

			f << "r";
			std::string buffer_str = r_buffer.str();
			int32_t buffer_size_be = to_big_endian(buffer_str.size());
			f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
			f.write(buffer_str.data(), buffer_str.size());

			f << "s";
			buffer_str = s_buffer.str();
			buffer_size_be = to_big_endian(buffer_str.size());
			f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
			f.write(buffer_str.data(), buffer_str.size());

			RTLIL::Design *holes_design;
			auto it = saved_designs.find("$abc9_holes");
			if (it != saved_designs.end())
				holes_design = it->second;
			else
				holes_design = nullptr;
			RTLIL::Module *holes_module = holes_design ? holes_design->module(module->name) : nullptr;
			if (holes_module) {
				std::stringstream a_buffer;
				XAigerWriter writer(holes_module, false /* dff_mode */);
				writer.write_aiger(a_buffer, false /*ascii_mode*/);

				f << "a";
				std::string buffer_str = a_buffer.str();
				int32_t buffer_size_be = to_big_endian(buffer_str.size());
				f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
				f.write(buffer_str.data(), buffer_str.size());
			}
		}

		f << "h";
		std::string buffer_str = h_buffer.str();
		int32_t buffer_size_be = to_big_endian(buffer_str.size());
		f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
		f.write(buffer_str.data(), buffer_str.size());

		f << "i";
		buffer_str = i_buffer.str();
		buffer_size_be = to_big_endian(buffer_str.size());
		f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
		f.write(buffer_str.data(), buffer_str.size());
		//f << "o";
		//buffer_str = o_buffer.str();
		//buffer_size_be = to_big_endian(buffer_str.size());
		//f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
		//f.write(buffer_str.data(), buffer_str.size());

		f << stringf("Generated by %s\n", yosys_version_str);

		design->scratchpad_set_int("write_xaiger.num_ands", and_map.size());
		design->scratchpad_set_int("write_xaiger.num_wires", aig_map.size());
		design->scratchpad_set_int("write_xaiger.num_inputs", input_bits.size());
		design->scratchpad_set_int("write_xaiger.num_outputs", output_bits.size());
	}

	void write_map(std::ostream &f)
	{
		dict<int, string> input_lines;
		dict<int, string> output_lines;

		for (auto wire : module->wires())
		{
			for (int i = 0; i < GetSize(wire); i++)
			{
				RTLIL::SigBit b(wire, i);
				if (input_bits.count(b)) {
					int a = aig_map.at(b);
					log_assert((a & 1) == 0);
					input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, wire->start_offset+i, log_id(wire));
				}

				if (output_bits.count(b)) {
					int o = ordered_outputs.at(b);
					output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), wire->start_offset+i, log_id(wire));
				}
			}
		}

		input_lines.sort();
		for (auto &it : input_lines)
			f << it.second;
		log_assert(input_lines.size() == input_bits.size());

		int box_count = 0;
		for (auto cell : box_list)
			f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));

		output_lines.sort();
		for (auto &it : output_lines)
			f << it.second;
		log_assert(output_lines.size() == output_bits.size());
	}
};

struct XAigerBackend : public Backend {
	XAigerBackend() : Backend("xaiger", "write design to XAIGER file") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    write_xaiger [options] [filename]\n");
		log("\n");
		log("Write the top module (according to the (* top *) attribute or if only one module\n");
		log("is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, (optionally\n");
		log("$_DFF_N_, $_DFF_P_), or non (* abc9_box *) cells will be converted into psuedo-\n");
		log("inputs and pseudo-outputs. Whitebox contents will be taken from the equivalent\n");
		log("module in the '$abc9_holes' design, if it exists.\n");
		log("\n");
		log("    -ascii\n");
		log("        write ASCII version of AIGER format\n");
		log("\n");
		log("    -map <filename>\n");
		log("        write an extra file with port and box symbols\n");
		log("\n");
		log("    -dff\n");
		log("        write $_DFF_[NP]_ cells\n");
		log("\n");
	}
	void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
	{
		bool ascii_mode = false, dff_mode = false;
		std::string map_filename;

		log_header(design, "Executing XAIGER backend.\n");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-ascii") {
				ascii_mode = true;
				continue;
			}
			if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
				map_filename = args[++argidx];
				continue;
			}
			if (args[argidx] == "-dff") {
				dff_mode = true;
				continue;
			}
			break;
		}
		extra_args(f, filename, args, argidx, !ascii_mode);

		Module *top_module = design->top_module();

		if (top_module == nullptr)
			log_error("Can't find top module in current design!\n");

		if (!design->selected_whole_module(top_module))
			log_cmd_error("Can't handle partially selected module %s!\n", log_id(top_module));

		if (!top_module->processes.empty())
			log_error("Found unmapped processes in module %s: unmapped processes are not supported in XAIGER backend!\n", log_id(top_module));
		if (!top_module->memories.empty())
			log_error("Found unmapped memories in module %s: unmapped memories are not supported in XAIGER backend!\n", log_id(top_module));

		XAigerWriter writer(top_module, dff_mode);
		writer.write_aiger(*f, ascii_mode);

		if (!map_filename.empty()) {
			std::ofstream mapf;
			mapf.open(map_filename.c_str(), std::ofstream::trunc);
			if (mapf.fail())
				log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno));
			writer.write_map(mapf);
		}
	}
} XAigerBackend;

PRIVATE_NAMESPACE_END