1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Serge Bazanski <q3k@q3k.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef QUADTREE_H
#define QUADTREE_H
// This file implements a quad tree used for committing 2D axis aligned
// bounding boxes and then retrieving them by 2D point.
NEXTPNR_NAMESPACE_BEGIN
// A node of a QuadTree. Internal.
template <typename CoordinateT, typename ElementT> class QuadTreeNode
{
public:
class BoundingBox
{
friend class QuadTreeNode;
private:
CoordinateT x0_, y0_, x1_, y1_;
static constexpr float pinf = std::numeric_limits<CoordinateT>::infinity();
static constexpr float ninf = -std::numeric_limits<CoordinateT>::infinity();
public:
// Standard constructor for a given (x0,y0), (x1,y1) bounding box
//
// @param x0 x coordinate of top-left corner of box
// @param y0 y coordinate of top-left corner of box
// @param x1 x coordinate of bottom-right corner of box
// @param y1 y coordinate of bottom-right corner of box
BoundingBox(CoordinateT x0, CoordinateT y0, CoordinateT x1, CoordinateT y1) : x0_(x0), y0_(y0), x1_(x1), y1_(y1)
{
}
BoundingBox() : x0_(pinf), y0_(pinf), x1_(ninf), y1_(ninf) {}
// Whether a bounding box contains a given points.
// A point is defined to be in a bounding box when it's not lesser than
// the lower coordinate or greater than the higher coordinate, eg:
// A BoundingBox of x0: 20, y0: 30, x1: 100, y1: 130 fits the following
// points:
// [ (50, 50), (20, 50), (20, 30), (100, 130) ]
inline bool contains(CoordinateT x, CoordinateT y) const
{
if (x < x0_ || x > x1_)
return false;
if (y < y0_ || y > y1_)
return false;
return true;
}
// Sort the bounding box coordinates.
void fixup()
{
if (x1_ < x0_)
std::swap(x0_, x1_);
if (y1_ < y0_)
std::swap(y0_, y1_);
}
CoordinateT x0() const { return x0_; }
CoordinateT y0() const { return y0_; }
CoordinateT x1() const { return x1_; }
CoordinateT y1() const { return y1_; }
void setX0(CoordinateT v) { x0_ = v; }
void setY0(CoordinateT v) { y0_ = v; }
void setX1(CoordinateT v) { x1_ = v; }
void setY1(CoordinateT v) { y1_ = v; }
void clear()
{
x0_ = pinf;
y0_ = pinf;
x1_ = ninf;
y1_ = ninf;
}
CoordinateT w() const { return x1_ - x0_; }
CoordinateT h() const { return y1_ - y0_; }
};
private:
// A pair of Element and BoundingBox that contains it.
class BoundElement
{
friend class QuadTreeNode;
private:
BoundingBox bb_;
ElementT elem_;
public:
BoundElement(BoundingBox bb, ElementT elem) : bb_(bb), elem_(elem) {}
};
// The bounding box that this node describes.
BoundingBox bound_;
// How many elements should be contained in this node until it splits into
// sub-nodes.
const size_t max_elems_;
// Four sub-nodes or nullptr if it hasn't split yet.
std::unique_ptr<QuadTreeNode<CoordinateT, ElementT>[]> children_ = nullptr;
// Coordinates of the split.
// Anything < split_x is west.
CoordinateT splitx_;
// Anything < split_y is north.
CoordinateT splity_;
// Elements contained directly within this node and not part of children
// nodes.
std::vector<BoundElement> elems_;
// Depth at which this node is - root is at 0, first level at 1, etc.
int depth_;
// Checks whether a given bounding box fits within this node - used for
// sanity checking on insertion.
// @param b bounding box to check
// @returns whether b fits in this node entirely
bool fits(const BoundingBox &b) const
{
if (b.x0_ < bound_.x0_ || b.x0_ > bound_.x1_) {
return false;
} else if (b.x1_ < bound_.x0_ || b.x1_ > bound_.x1_) {
return false;
} else if (b.y0_ < bound_.y0_ || b.y0_ > bound_.y1_) {
return false;
} else if (b.y1_ < bound_.y0_ || b.y1_ > bound_.y1_) {
return false;
}
return true;
}
// Used to describe one of 5 possible places an element can exist:
// - the node itself (THIS)
// - any of the 4 children nodes.
enum Quadrant
{
THIS_NODE = -1,
NW = 0,
NE = 1,
SW = 2,
SE = 3
};
// Finds the quadrant to which a bounding box should go (if the node
// is / were to be split).
// @param b bounding box to check
// @returns quadrant in which b belongs to if the node is were to be split
Quadrant quadrant(const BoundingBox &b) const
{
if (children_ == nullptr) {
return THIS_NODE;
}
bool west0 = b.x0_ < splitx_;
bool west1 = b.x1_ < splitx_;
bool north0 = b.y0_ < splity_;
bool north1 = b.y1_ < splity_;
if (west0 && west1 && north0 && north1)
return NW;
if (!west0 && !west1 && north0 && north1)
return NE;
if (west0 && west1 && !north0 && !north1)
return SW;
if (!west0 && !west1 && !north0 && !north1)
return SE;
return THIS_NODE;
}
// Checks whether this node should split.
bool should_split() const
{
// The node shouldn't split if it's not large enough to merit it.
if (elems_.size() < max_elems_)
return false;
// The node shouldn't split if its' level is too deep (this is true for
// 100k+ entries, where the amount of splits causes us to lose
// significant CPU time on traversing the tree, or worse yet causes a
// stack overflow).
if (depth_ > 5)
return false;
return true;
}
public:
// Standard constructor for node.
// @param b BoundingBox this node covers.
// @param depth depth at which this node is in the tree
// @max_elems how many elements should this node contain before it splits
QuadTreeNode(BoundingBox b, int depth, size_t max_elems = 4) : bound_(b), max_elems_(max_elems), depth_(depth) {}
// Disallow copies.
QuadTreeNode(const QuadTreeNode &other) = delete;
QuadTreeNode &operator=(const QuadTreeNode &other) = delete;
// Allow moves.
QuadTreeNode(QuadTreeNode &&other)
: bound_(other.bound_), max_elems_(other.max_elems_), children_(std::move(other.children_)),
splitx_(other.splitx_), splity_(other.splity_), elems_(std::move(other.elems_)), depth_(other.depth_)
{
other.children_ = nullptr;
}
QuadTreeNode &operator=(QuadTreeNode &&other)
{
if (this == &other)
return *this;
bound_ = other.bound_;
max_elems_ = other.max_elems_;
children_ = other.max_children_;
children_ = other.children_;
splitx_ = other.splitx_;
splity_ = other.splity_;
elems_ = std::move(other.elems_);
depth_ = other.depth_;
other.children_ = nullptr;
return *this;
}
// Insert an element at a given bounding box.
bool insert(const BoundingBox &k, ElementT v)
{
// Fail early if this BB doesn't fit us at all.
if (!fits(k)) {
return false;
}
// Do we have children?
if (children_ != nullptr) {
// Put the element either recursively into a child if it fits
// entirely or keep it for ourselves if not.
auto quad = quadrant(k);
if (quad == THIS_NODE) {
elems_.push_back(BoundElement(k, std::move(v)));
} else {
return children_[quad].insert(k, std::move(v));
}
} else {
// No children and not about to have any.
if (!should_split()) {
elems_.push_back(BoundElement(k, std::move(v)));
return true;
}
// Splitting. Calculate the split point.
splitx_ = (bound_.x1_ - bound_.x0_) / 2 + bound_.x0_;
splity_ = (bound_.y1_ - bound_.y0_) / 2 + bound_.y0_;
// Create the new children.
children_ = decltype(children_)(new QuadTreeNode<CoordinateT, ElementT>[4] {
// Note: not using [NW] = QuadTreeNode because that seems to
// crash g++ 7.3.0.
/* NW */ QuadTreeNode<CoordinateT, ElementT>(BoundingBox(bound_.x0_, bound_.y0_, splitx_, splity_),
depth_ + 1, max_elems_),
/* NE */
QuadTreeNode<CoordinateT, ElementT>(BoundingBox(splitx_, bound_.y0_, bound_.x1_, splity_),
depth_ + 1, max_elems_),
/* SW */
QuadTreeNode<CoordinateT, ElementT>(BoundingBox(bound_.x0_, splity_, splitx_, bound_.y1_),
depth_ + 1, max_elems_),
/* SE */
QuadTreeNode<CoordinateT, ElementT>(BoundingBox(splitx_, splity_, bound_.x1_, bound_.y1_),
depth_ + 1, max_elems_),
});
// Move all elements to where they belong.
auto it = elems_.begin();
while (it != elems_.end()) {
auto quad = quadrant(it->bb_);
if (quad != THIS_NODE) {
// Move to one of the children.
if (!children_[quad].insert(it->bb_, std::move(it->elem_)))
return false;
// Delete from ourselves.
it = elems_.erase(it);
} else {
// Keep for ourselves.
it++;
}
}
// Insert the actual element now that we've split.
return insert(k, std::move(v));
}
return true;
}
// Dump a human-readable representation of the tree to stdout.
void dump(int level) const
{
for (int i = 0; i < level; i++)
printf(" ");
printf("loc: % 3d % 3d % 3d % 3d\n", bound_.x0_, bound_.y0_, bound_.x1_, bound_.y1_);
if (elems_.size() != 0) {
for (int i = 0; i < level; i++)
printf(" ");
printf("elems: %zu\n", elems_.size());
}
if (children_ != nullptr) {
for (int i = 0; i < level; i++)
printf(" ");
printf("children:\n");
children_[NW].dump(level + 1);
children_[NE].dump(level + 1);
children_[SW].dump(level + 1);
children_[SE].dump(level + 1);
}
}
// Return count of BoundingBoxes/Elements contained.
// @returns count of elements contained.
size_t size() const
{
size_t res = elems_.size();
if (children_ != nullptr) {
res += children_[NW].size();
res += children_[NE].size();
res += children_[SW].size();
res += children_[SE].size();
}
return res;
}
// Retrieve elements whose bounding boxes cover the given coordinates.
//
// @param x X coordinate of points to query.
// @param y Y coordinate of points to query.
// @returns vector of found bounding boxes
void get(CoordinateT x, CoordinateT y, std::vector<ElementT> &res) const
{
if (!bound_.contains(x, y))
return;
for (const auto &elem : elems_) {
const auto &bb = elem.bb_;
if (bb.contains(x, y)) {
res.push_back(elem.elem_);
}
}
if (children_ != nullptr) {
children_[NW].get(x, y, res);
children_[NE].get(x, y, res);
children_[SW].get(x, y, res);
children_[SE].get(x, y, res);
}
}
};
// User facing method to manage a quad tree.
//
// @param CoodinateT scalar type of the coordinate system - int, float, ...
// @param ElementT type of the contained element. Must be movable or copiable.
template <typename CoordinateT, typename ElementT> class QuadTree
{
private:
// Root of the tree.
QuadTreeNode<CoordinateT, ElementT> root_;
public:
// To let user create bounding boxes of the correct type.
// Bounding boxes are composed of two 2D points, which designate their
// top-left and bottom-right corners. All its' edges are axis aligned.
using BoundingBox = typename QuadTreeNode<CoordinateT, ElementT>::BoundingBox;
// Standard constructor.
//
// @param b Bounding box of the entire tree - all committed elements must
// fit within in.
QuadTree(BoundingBox b) : root_(b, 0) {}
// Inserts a new value at a given bounding box.e
// BoundingBoxes are not deduplicated - if two are pushed with the same
// coordinates, the first one will take precedence.
//
// @param k Bounding box at which to store value.
// @param v Value at a given bounding box.
// @returns Whether the insert was successful.
bool insert(BoundingBox k, ElementT v)
{
k.fixup();
return root_.insert(k, v);
}
// Dump a human-readable representation of the tree to stdout.
void dump() const { root_.dump(0); }
// Return count of BoundingBoxes/Elements contained.
// @returns count of elements contained.
size_t size() const { return root_.size(); }
// Retrieve elements whose bounding boxes cover the given coordinates.
//
// @param x X coordinate of points to query.
// @param y Y coordinate of points to query.
// @returns vector of found bounding boxes
std::vector<ElementT> get(CoordinateT x, CoordinateT y) const
{
std::vector<ElementT> res;
root_.get(x, y, res);
return res;
}
};
NEXTPNR_NAMESPACE_END
#endif
|