aboutsummaryrefslogtreecommitdiffstats
path: root/fpga_interchange/site_router.cc
blob: 8870fa32b7aa893cfc94c247bc9dd5117e89007e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2021  Symbiflow Authors
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "nextpnr.h"

#include "design_utils.h"
#include "dynamic_bitarray.h"
#include "hash_table.h"
#include "log.h"
#include "site_routing_cache.h"

#include "site_arch.h"
#include "site_arch.impl.h"

NEXTPNR_NAMESPACE_BEGIN

bool verbose_site_router(const Context *ctx) { return ctx->debug; }

bool verbose_site_router(const SiteArch *ctx) { return verbose_site_router(ctx->ctx); }

void SiteRouter::bindBel(CellInfo *cell)
{
    auto result = cells_in_site.emplace(cell);
    NPNR_ASSERT(result.second);

    dirty = true;
}

void SiteRouter::unbindBel(CellInfo *cell)
{
    NPNR_ASSERT(cells_in_site.erase(cell) == 1);

    dirty = true;
}

bool check_initial_wires(const Context *ctx, SiteInformation *site_info)
{
    // Propagate from BEL pins to first wire, checking for trivial routing
    // conflicts.
    HashTables::HashMap<WireId, NetInfo *> wires;

    for (CellInfo *cell : site_info->cells_in_site) {
        BelId bel = cell->bel;
        for (const auto &pin_pair : cell->cell_bel_pins) {
            if (!cell->ports.count(pin_pair.first))
                log_error("Cell %s:%s is missing expected port %s\n", ctx->nameOf(cell), cell->type.c_str(ctx),
                          pin_pair.first.c_str(ctx));
            const PortInfo &port = cell->ports.at(pin_pair.first);
            NPNR_ASSERT(port.net != nullptr);

            for (IdString bel_pin_name : pin_pair.second) {
                BelPin bel_pin;
                bel_pin.bel = bel;
                bel_pin.pin = bel_pin_name;

                WireId wire = ctx->getBelPinWire(bel_pin.bel, bel_pin.pin);
                auto result = wires.emplace(wire, port.net);
                if (!result.second) {
                    // This wire is already in use, make sure the net bound is
                    // the same net, otherwise there is a trivial net
                    // conflict.
                    const NetInfo *other_net = result.first->second;
                    if (other_net != port.net) {
                        // We have a direct net conflict at the BEL pin,
                        // immediately short circuit the site routing check.
                        if (verbose_site_router(ctx)) {
                            log_info("Direct net conflict detected for cell %s:%s at bel %s, net %s != %s\n",
                                     cell->name.c_str(ctx), cell->type.c_str(ctx), ctx->nameOfBel(cell->bel),
                                     port.net->name.c_str(ctx), other_net->name.c_str(ctx));
                        }

                        return false;
                    }
                }
            }
        }
    }

    return true;
}

static bool is_invalid_site_port(const SiteArch *ctx, const SiteNetInfo *net, const SitePip &pip)
{
    SyntheticType type = ctx->pip_synthetic_type(pip);
    PhysicalNetlist::PhysNetlist::NetType net_type = ctx->ctx->get_net_type(net->net);
    bool is_invalid = false;
    if (type == SYNTH_GND) {
        is_invalid = net_type != PhysicalNetlist::PhysNetlist::NetType::GND;
    } else if (type == SYNTH_VCC) {
        is_invalid = net_type != PhysicalNetlist::PhysNetlist::NetType::VCC;
    }

    return is_invalid;
}

struct SiteExpansionLoop
{
    RouteNodeStorage *const node_storage;

    SiteExpansionLoop(RouteNodeStorage *node_storage) : node_storage(node_storage)
    {
        NPNR_ASSERT(node_storage != nullptr);
    }

    void clear()
    {
        node_storage->free_nodes(used_nodes);
        used_nodes.clear();
        solution.clear();
        net_driver = SiteWire();
    }

    virtual ~SiteExpansionLoop() { node_storage->free_nodes(used_nodes); }

    // Storage for nodes
    std::vector<size_t> used_nodes;

    bool expand_result;
    SiteWire net_driver;
    HashTables::HashSet<SiteWire> net_users;

    SiteRoutingSolution solution;

    Node new_node(const SiteWire &wire, const SitePip &pip, const Node *parent)
    {
        Node node = node_storage->alloc_node();
        used_nodes.push_back(node.get_index());

        node->wire = wire;
        node->pip = pip;
        if (parent != nullptr) {
            node->parent = (*parent).get_index();
            node->flags = (*parent)->flags;
            node->depth = (*parent)->depth + 1;
        }

        if (pip.type == SitePip::SITE_PORT) {
            // Site ports should always have a parent!
            NPNR_ASSERT(parent != nullptr);
            if (wire.type == SiteWire::SITE_PORT_SINK) {
                NPNR_ASSERT((*parent)->wire.type == SiteWire::SITE_WIRE);
                NPNR_ASSERT(node->can_leave_site());
                node->mark_left_site();
            } else if (wire.type == SiteWire::SITE_PORT_SOURCE) {
                // This is a backward walk, so this is considered entering
                // the site.
                NPNR_ASSERT((*parent)->wire.type == SiteWire::SITE_WIRE);
                NPNR_ASSERT(node->can_enter_site());
                node->mark_entered_site();
            } else {
                // See if this is a forward or backward walk.
                NPNR_ASSERT(wire.type == SiteWire::SITE_WIRE);
                if ((*parent)->wire.type == SiteWire::SITE_PORT_SINK) {
                    // This is a backward walk, so this is considered leaving
                    // the site.
                    NPNR_ASSERT(node->can_leave_site());
                    node->mark_left_site();
                } else {
                    NPNR_ASSERT((*parent)->wire.type == SiteWire::SITE_PORT_SOURCE);
                    NPNR_ASSERT(node->can_enter_site());
                    node->mark_entered_site();
                }
            }
        }

        return node;
    }

    // Expand from wire specified, always downhill.
    bool expand_net(const SiteArch *ctx, SiteRoutingCache *site_routing_cache, const SiteNetInfo *net)
    {
        if (net->driver == net_driver && net->users == net_users) {
            return expand_result;
        }

        clear();

        net_driver = net->driver;
        net_users = net->users;

        if (site_routing_cache->get_solution(ctx, *net, &solution)) {
            expand_result = true;
            return expand_result;
        }

        if (verbose_site_router(ctx)) {
            log_info("Expanding net %s from %s\n", ctx->nameOfNet(net), ctx->nameOfWire(net->driver));
        }

        auto node = new_node(net->driver, SitePip(), /*parent=*/nullptr);

        HashTables::HashSet<SiteWire> targets;
        targets.insert(net->users.begin(), net->users.end());

        if (verbose_site_router(ctx)) {
            log_info("%zu targets:\n", targets.size());
            for (auto &target : targets) {
                log_info(" - %s\n", ctx->nameOfWire(target));
            }
        }

        int32_t max_depth = 0;
        int32_t max_depth_seen = 0;
        std::vector<Node> nodes_to_expand;
        nodes_to_expand.push_back(node);

        std::vector<size_t> completed_routes;
        while (!nodes_to_expand.empty()) {
            Node parent_node = nodes_to_expand.back();
            nodes_to_expand.pop_back();

            max_depth_seen = std::max(max_depth_seen, parent_node->depth);

            for (SitePip pip : ctx->getPipsDownhill(parent_node->wire)) {
                if (is_invalid_site_port(ctx, net, pip)) {
                    if (verbose_site_router(ctx)) {
                        log_info("Pip %s is not a valid site port for net %s, skipping\n", ctx->nameOfPip(pip),
                                 ctx->nameOfNet(net));
                    }
                    continue;
                }

                SiteWire wire = ctx->getPipDstWire(pip);

                if (pip.type == SitePip::SITE_PORT) {
                    if (wire.type == SiteWire::SITE_PORT_SINK) {
                        if (!parent_node->can_leave_site()) {
                            // This path has already left the site once, don't leave it again!
                            if (verbose_site_router(ctx)) {
                                log_info("Pip %s is not a valid for this path because it has already left the site\n",
                                         ctx->nameOfPip(pip));
                            }
                            continue;
                        }
                    } else {
                        NPNR_ASSERT(parent_node->wire.type == SiteWire::SITE_PORT_SOURCE);

                        if (!parent_node->can_enter_site()) {
                            // This path has already entered the site once,
                            // don't enter it again!
                            if (verbose_site_router(ctx)) {
                                log_info(
                                        "Pip %s is not a valid for this path because it has already entered the site\n",
                                        ctx->nameOfPip(pip));
                            }
                            continue;
                        }
                    }
                }

                auto wire_iter = ctx->wire_to_nets.find(wire);
                if (wire_iter != ctx->wire_to_nets.end() && wire_iter->second.net != net) {
                    if (verbose_site_router(ctx)) {
                        log_info("Wire %s is already tied to net %s, not exploring for net %s\n", ctx->nameOfWire(wire),
                                 ctx->nameOfNet(wire_iter->second.net), ctx->nameOfNet(net));
                    }
                    continue;
                }

                auto node = new_node(wire, pip, &parent_node);
                if (targets.count(wire)) {
                    completed_routes.push_back(node.get_index());
                    max_depth = std::max(max_depth, node->depth);
                }

                nodes_to_expand.push_back(node);
            }
        }

        // Make sure expansion reached all targets, otherwise this site is
        // already unroutable!
        solution.clear();
        solution.store_solution(ctx, node_storage, net->driver, completed_routes);
        solution.verify(ctx, *net);
        for (size_t route : completed_routes) {
            SiteWire wire = node_storage->get_node(route)->wire;
            targets.erase(wire);
        }

        if (targets.empty()) {
            site_routing_cache->add_solutions(ctx, *net, solution);
        }

        // Return nodes back to the storage system.
        node_storage->free_nodes(used_nodes);
        used_nodes.clear();

        expand_result = targets.empty();
        return expand_result;
    }

    size_t num_solutions() const { return solution.num_solutions(); }

    const SiteWire &solution_sink(size_t idx) const { return solution.solution_sink(idx); }
    std::vector<SitePip>::const_iterator solution_begin(size_t idx) const { return solution.solution_begin(idx); }

    std::vector<SitePip>::const_iterator solution_end(size_t idx) const { return solution.solution_end(idx); }
    bool solution_inverted(size_t idx) const { return solution.solution_inverted(idx); }
    bool solution_can_invert(size_t idx) const { return solution.solution_can_invert(idx); }
};

void print_current_state(const SiteArch *site_arch)
{
    const Context *ctx = site_arch->ctx;
    auto &cells_in_site = site_arch->site_info->cells_in_site;
    const CellInfo *cell = *cells_in_site.begin();
    BelId bel = cell->bel;
    const auto &bel_data = bel_info(ctx->chip_info, bel);
    const auto &site_inst = site_inst_info(ctx->chip_info, bel.tile, bel_data.site);

    log_info("Site %s\n", site_inst.name.get());

    log_info(" Cells in site:\n");
    for (CellInfo *cell : cells_in_site) {
        log_info("  - %s (%s) => %s\n", cell->name.c_str(ctx), cell->type.c_str(ctx), ctx->nameOfBel(cell->bel));
    }

    log_info(" Nets in site:\n");
    for (auto &net_pair : site_arch->nets) {
        auto *net = net_pair.first;
        log_info("  - %s, pins in site:\n", net->name.c_str(ctx));
        if (net->driver.cell && cells_in_site.count(net->driver.cell)) {
            log_info("    - %s/%s (%s)\n", net->driver.cell->name.c_str(ctx), net->driver.port.c_str(ctx),
                     net->driver.cell->type.c_str(ctx));
        }

        for (const auto user : net->users) {
            if (user.cell && cells_in_site.count(user.cell)) {
                log_info("    - %s/%s (%s)\n", user.cell->name.c_str(ctx), user.port.c_str(ctx),
                         user.cell->type.c_str(ctx));
            }
        }
    }

    log_info(" Consumed wires:\n");
    for (auto &wire_pair : site_arch->wire_to_nets) {
        const SiteWire &site_wire = wire_pair.first;
        if (site_wire.type != SiteWire::SITE_WIRE) {
            continue;
        }
        WireId wire = site_wire.wire;
        const NetInfo *net = wire_pair.second.net->net;
        log_info("  - %s is bound to %s\n", ctx->nameOfWire(wire), net->name.c_str(ctx));
    }
}

struct PossibleSolutions
{
    bool tested = false;
    SiteNetInfo *net = nullptr;
    std::vector<SitePip>::const_iterator pips_begin;
    std::vector<SitePip>::const_iterator pips_end;
    bool inverted = false;
    bool can_invert = false;
    PhysicalNetlist::PhysNetlist::NetType prefered_constant_net_type = PhysicalNetlist::PhysNetlist::NetType::SIGNAL;
};

bool test_solution(SiteArch *ctx, SiteNetInfo *net, std::vector<SitePip>::const_iterator pips_begin,
                   std::vector<SitePip>::const_iterator pips_end)
{
    bool valid = true;
    std::vector<SitePip>::const_iterator good_pip_end = pips_begin;
    std::vector<SitePip>::const_iterator iter = pips_begin;
    SitePip pip;
    while (iter != pips_end) {
        pip = *iter;
        if (!ctx->bindPip(pip, net)) {
            valid = false;
            break;
        }

        ++iter;
        good_pip_end = iter;
    }

    // Unwind a bad solution
    if (!valid) {
        for (auto iter = pips_begin; iter != good_pip_end; ++iter) {
            ctx->unbindPip(*iter);
        }
    } else {
        NPNR_ASSERT(net->driver == ctx->getPipSrcWire(pip));
    }

    return valid;
}

void remove_solution(SiteArch *ctx, std::vector<SitePip>::const_iterator pips_begin,
                     std::vector<SitePip>::const_iterator pips_end)
{
    for (auto iter = pips_begin; iter != pips_end; ++iter) {
        ctx->unbindPip(*iter);
    }
}

struct SolutionPreference
{
    const SiteArch *ctx;
    const std::vector<PossibleSolutions> &solutions;

    SolutionPreference(const SiteArch *ctx, const std::vector<PossibleSolutions> &solutions)
            : ctx(ctx), solutions(solutions)
    {
    }

    bool non_inverting_preference(const PossibleSolutions &lhs, const PossibleSolutions &rhs) const
    {
        // If the LHS is non-inverting and the RHS is inverting, then put the
        // LHS first.
        if (!lhs.inverted && rhs.inverted) {
            return true;
        }

        // Better to have a path that can invert over a path that has no
        // option to invert.
        return (!lhs.can_invert) < (!rhs.can_invert);
    }

    bool inverting_preference(const PossibleSolutions &lhs, const PossibleSolutions &rhs) const
    {
        // If the LHS is inverting and the RHS is non-inverting, then put the
        // LHS first (because this is the inverting preferred case).
        if (lhs.inverted && !rhs.inverted) {
            return true;
        }

        // Better to have a path that can invert over a path that has no
        // option to invert.
        return (!lhs.can_invert) < (!rhs.can_invert);
    }

    bool operator()(size_t lhs_solution_idx, size_t rhs_solution_idx) const
    {
        const PossibleSolutions &lhs = solutions.at(lhs_solution_idx);
        const PossibleSolutions &rhs = solutions.at(rhs_solution_idx);

        NPNR_ASSERT(lhs.net == rhs.net);

        PhysicalNetlist::PhysNetlist::NetType net_type = ctx->ctx->get_net_type(lhs.net->net);
        if (net_type == PhysicalNetlist::PhysNetlist::NetType::SIGNAL) {
            return non_inverting_preference(lhs, rhs);
        }

        // All GND/VCC nets use out of site sources.  Local constant sources
        // are still connected via synthetic edges to the global GND/VCC
        // network.
        NPNR_ASSERT(lhs.net->driver.type == SiteWire::OUT_OF_SITE_SOURCE);

        bool lhs_match_preference = net_type == lhs.prefered_constant_net_type;
        bool rhs_match_preference = net_type == rhs.prefered_constant_net_type;

        if (lhs_match_preference && !rhs_match_preference) {
            // Prefer solutions where the net type already matches the
            // prefered constant type.
            return true;
        }

        if (!lhs_match_preference && rhs_match_preference) {
            // Prefer solutions where the net type already matches the
            // prefered constant type. In this case the RHS is better, which
            // means that RHS < LHS, hence false here.
            return false;
        }

        NPNR_ASSERT(lhs_match_preference == rhs_match_preference);

        if (!lhs_match_preference) {
            // If the net type does not match the preference, then prefer
            // inverted solutions.
            return inverting_preference(lhs, rhs);
        } else {
            // If the net type does match the preference, then prefer
            // non-inverted solutions.
            return non_inverting_preference(lhs, rhs);
        }
    }
};

static bool find_solution_via_backtrack(SiteArch *ctx, std::vector<PossibleSolutions> *solutions,
                                        std::vector<std::vector<size_t>> sinks_to_solutions,
                                        const std::vector<SiteWire> &sinks, bool explain)
{
    std::vector<uint8_t> routed_sinks;
    std::vector<size_t> solution_indicies;
    std::vector<std::pair<size_t, size_t>> solution_order;
    routed_sinks.resize(sinks_to_solutions.size(), 0);
    solution_indicies.resize(sinks_to_solutions.size(), 0);

    // Scan solutions, and remove any solutions that are invalid immediately
    for (size_t solution_idx = 0; solution_idx < solutions->size(); ++solution_idx) {
        PossibleSolutions &solution = (*solutions)[solution_idx];
        if (verbose_site_router(ctx) || explain) {
            log_info("Testing solution %zu\n", solution_idx);
        }
        if (test_solution(ctx, solution.net, solution.pips_begin, solution.pips_end)) {
            if (verbose_site_router(ctx) || explain) {
                log_info("Solution %zu is good\n", solution_idx);
            }
            remove_solution(ctx, solution.pips_begin, solution.pips_end);
        } else {
            if (verbose_site_router(ctx) || explain) {
                log_info("Solution %zu is not useable\n", solution_idx);
            }
            solution.tested = true;
        }
    }

    // Sort sinks_to_solutions so that preferred solutions are tested earlier
    // than less preferred solutions.
    for (size_t sink_idx = 0; sink_idx < sinks_to_solutions.size(); ++sink_idx) {
        std::vector<size_t> &solutions_for_sink = sinks_to_solutions.at(sink_idx);
        std::stable_sort(solutions_for_sink.begin(), solutions_for_sink.end(), SolutionPreference(ctx, *solutions));

        if (verbose_site_router(ctx) || explain) {
            log_info("Solutions for sink %s (%zu)\n", ctx->nameOfWire(sinks.at(sink_idx)), sink_idx);
            for (size_t solution_idx : solutions_for_sink) {
                const PossibleSolutions &solution = solutions->at(solution_idx);
                log_info("%zu: inverted = %d, can_invert = %d, tested = %d\n", solution_idx, solution.inverted,
                         solution.can_invert, solution.tested);
                for (auto iter = solution.pips_begin; iter != solution.pips_end; ++iter) {
                    log_info(" - %s\n", ctx->nameOfPip(*iter));
                }
            }
        }
    }

    for (size_t sink_idx = 0; sink_idx < sinks_to_solutions.size(); ++sink_idx) {
        size_t solution_count = 0;
        for (size_t solution_idx : sinks_to_solutions[sink_idx]) {
            if (!(*solutions)[solution_idx].tested) {
                solution_count += 1;
            }
        }

        if (solution_count == 0) {
            if (verbose_site_router(ctx) || explain) {
                log_info("Sink %s has no solution in site\n", ctx->nameOfWire(sinks.at(sink_idx)));
            }
            return false;
        }

        solution_order.emplace_back(sink_idx, solution_count);
    }

    // Sort solutions by the number of possible solutions first.  This allows
    // the backtrack to avoid the wide searches first.
    std::sort(solution_order.begin(), solution_order.end(),
              [](const std::pair<size_t, size_t> &a, const std::pair<size_t, size_t> &b) -> bool {
                  return a.second < b.second;
              });

    std::vector<size_t> solution_stack;
    solution_stack.reserve(sinks_to_solutions.size());

    if (verbose_site_router(ctx)) {
        log_info("Solving via backtrace with %zu solutions and %zu sinks\n", solutions->size(),
                 sinks_to_solutions.size());
    }

    // Simple backtrack explorer:
    //  - Apply the next solution at stack index.
    //  - If solution is valid, push solution onto stack, and advance stack
    //    index at solution 0.
    //  - If solution is not valid, pop the stack.
    //    - At this level of the stack, advance to the next solution.  If
    //      there are not more solutions at this level, pop again.
    //    - If stack is now empty, mark root solution as tested and invalid.
    //      If root of stack has no more solutions, no solution is possible.
    while (true) {
        // Which sink is next to be tested?
        size_t sink_idx = solution_order[solution_stack.size()].first;

        size_t next_solution_to_test = solution_indicies[sink_idx];
        if (verbose_site_router(ctx) || explain) {
            log_info("next %zu : %zu (of %zu)\n", sink_idx, next_solution_to_test, sinks_to_solutions[sink_idx].size());
        }
        if (next_solution_to_test >= sinks_to_solutions[sink_idx].size()) {
            // We have exausted all solutions at this level of the stack!
            if (solution_stack.empty()) {
                // Search is done, failed!!!
                if (verbose_site_router(ctx) || explain) {
                    log_info("No solution found via backtrace with %zu solutions and %zu sinks\n", solutions->size(),
                             sinks_to_solutions.size());
                }
                return false;
            } else {
                // This level of the stack is completely tapped out, pop back
                // to the next level up.
                size_t sink_idx = solution_order[solution_stack.size() - 1].first;
                size_t solution_idx = solution_stack.back();
                if (verbose_site_router(ctx) || explain) {
                    log_info("pop  %zu : %zu\n", sink_idx, solution_idx);
                }
                solution_stack.pop_back();

                // Remove the now tested bad solution at the previous level of
                // the stack.
                auto &solution = solutions->at(solution_idx);
                remove_solution(ctx, solution.pips_begin, solution.pips_end);

                // Because we had to pop up the stack, advance the index at
                // the level below us and start again.
                solution_indicies[sink_idx] += 1;
                continue;
            }
        }

        size_t solution_idx = sinks_to_solutions[sink_idx].at(next_solution_to_test);
        auto &solution = solutions->at(solution_idx);
        if (solution.tested) {
            // This solution was already determined to be no good, skip it.
            if (verbose_site_router(ctx) || explain) {
                log_info("skip %zu : %zu\n", sink_idx, solution_idx);
            }
            solution_indicies[sink_idx] += 1;
            continue;
        }

        if (verbose_site_router(ctx) || explain) {
            log_info("test %zu : %zu\n", sink_idx, solution_idx);
        }

        if (!test_solution(ctx, solution.net, solution.pips_begin, solution.pips_end)) {
            // This solution was no good, try the next one at this level of
            // the stack.
            solution_indicies[sink_idx] += 1;
        } else {
            // This solution was good, push onto the stack.
            if (verbose_site_router(ctx) || explain) {
                log_info("push %zu : %zu\n", sink_idx, solution_idx);
            }
            solution_stack.push_back(solution_idx);
            if (solution_stack.size() == sinks_to_solutions.size()) {
                // Found a valid solution, done!
                if (verbose_site_router(ctx)) {
                    log_info("Solved via backtrace with %zu solutions and %zu sinks\n", solutions->size(),
                             sinks_to_solutions.size());
                }
                return true;
            } else {
                // Because we pushing to a new level of stack, restart the
                // search at this level.
                sink_idx = solution_order[solution_stack.size()].first;
                solution_indicies[sink_idx] = 0;
            }
        }
    }

    // Unreachable!!!
    NPNR_ASSERT(false);
}

bool route_site(SiteArch *ctx, SiteRoutingCache *site_routing_cache, RouteNodeStorage *node_storage, bool explain)
{
    std::vector<SiteExpansionLoop *> expansions;
    expansions.reserve(ctx->nets.size());

    for (auto &net_pair : ctx->nets) {
        SiteNetInfo *net = &net_pair.second;

        if (net->net->loop == nullptr) {
            net->net->loop = new SiteExpansionLoop(node_storage);
        }
        expansions.push_back(net->net->loop);

        SiteExpansionLoop *router = expansions.back();
        if (!router->expand_net(ctx, site_routing_cache, net)) {
            if (verbose_site_router(ctx) || explain) {
                log_info("Net %s expansion failed to reach all users, site is unroutable!\n", ctx->nameOfNet(net));
            }

            return false;
        }
    }

    // First convert remaining solutions into a flat solution set.
    std::vector<PossibleSolutions> solutions;
    std::vector<SiteWire> sinks;
    HashTables::HashMap<SiteWire, size_t> sink_map;
    std::vector<std::vector<size_t>> sinks_to_solutions;
    for (const auto *expansion : expansions) {
        for (const SiteWire &unrouted_sink : expansion->net_users) {
            auto result = sink_map.emplace(unrouted_sink, sink_map.size());
            NPNR_ASSERT(result.second);
            sinks.push_back(unrouted_sink);
        }
    }

    if (sink_map.empty()) {
        // All nets are trivially routed!
        return true;
    }

    sinks_to_solutions.resize(sink_map.size());

    for (const auto *expansion : expansions) {
        for (size_t idx = 0; idx < expansion->num_solutions(); ++idx) {
            SiteWire wire = expansion->solution_sink(idx);
            auto begin = expansion->solution_begin(idx);
            auto end = expansion->solution_end(idx);
            NPNR_ASSERT(begin != end);

            size_t sink_idx = sink_map.at(wire);
            sinks_to_solutions.at(sink_idx).push_back(solutions.size());

            solutions.emplace_back();
            auto &solution = solutions.back();
            solution.net = ctx->wire_to_nets.at(wire).net;
            solution.pips_begin = begin;
            solution.pips_end = end;
            solution.inverted = expansion->solution_inverted(idx);
            solution.can_invert = expansion->solution_can_invert(idx);

            for (auto iter = begin; iter != end; ++iter) {
                const SitePip &site_pip = *iter;
                NPNR_ASSERT(ctx->getPipDstWire(site_pip) == wire);
                wire = ctx->getPipSrcWire(site_pip);

                // If there is a input site port, mark on the solution what the
                // prefered constant net type is for this site port.
                if (site_pip.type == SitePip::SITE_PORT && wire.type == SiteWire::SITE_PORT_SOURCE) {
                    solution.prefered_constant_net_type = ctx->prefered_constant_net_type(site_pip);
                }
            }

            NPNR_ASSERT(expansion->net_driver == wire);
        }
    }

    return find_solution_via_backtrack(ctx, &solutions, sinks_to_solutions, sinks, explain);
}

void check_routing(const SiteArch &site_arch)
{
    for (auto &net_pair : site_arch.nets) {
        const NetInfo *net = net_pair.first;
        const SiteNetInfo &net_info = net_pair.second;

        for (const auto &user : net_info.users) {
            NPNR_ASSERT(site_arch.wire_to_nets.at(user).net->net == net);
            SiteWire cursor = user;
            while (cursor != net_info.driver) {
                auto iter = net_info.wires.find(cursor);
                if (iter == net_info.wires.end()) {
                    log_error("Wire %s has no pip, but didn't reach driver wire %s\n", site_arch.nameOfWire(cursor),
                              site_arch.nameOfWire(net_info.driver));
                }
                const SitePip &site_pip = iter->second.pip;
                cursor = site_arch.getPipSrcWire(site_pip);
            }

            NPNR_ASSERT(cursor == net_info.driver);
            NPNR_ASSERT(site_arch.wire_to_nets.at(cursor).net->net == net);
        }
    }
}

static void apply_simple_routing(Context *ctx, const SiteArch &site_arch, NetInfo *net, const SiteNetInfo *site_net,
                                 const SiteWire &user)
{
    SiteWire wire = user;
    while (wire != site_net->driver) {
        SitePip site_pip = site_net->wires.at(wire).pip;
        NPNR_ASSERT(site_arch.getPipDstWire(site_pip) == wire);

        if (site_pip.type == SitePip::SITE_PIP || site_pip.type == SitePip::SITE_PORT) {
            NetInfo *bound_net = ctx->getBoundPipNet(site_pip.pip);
            if (bound_net == nullptr) {
                ctx->bindPip(site_pip.pip, net, STRENGTH_PLACER);
            } else {
                NPNR_ASSERT(bound_net == net);
            }
        }

        wire = site_arch.getPipSrcWire(site_pip);
    }
}

static void apply_constant_routing(Context *ctx, const SiteArch &site_arch, NetInfo *net, const SiteNetInfo *site_net)
{
    IdString gnd_net_name(ctx->chip_info->constants->gnd_net_name);
    NetInfo *gnd_net = ctx->nets.at(gnd_net_name).get();

    IdString vcc_net_name(ctx->chip_info->constants->vcc_net_name);
    NetInfo *vcc_net = ctx->nets.at(vcc_net_name).get();

    // This function is designed to operate only on the gnd or vcc net, and
    // assumes that the GND and VCC nets have been unified.
    NPNR_ASSERT(net == vcc_net || net == gnd_net);

    for (auto &user : site_net->users) {
        // FIXME: Handle case where pip is "can_invert", and that
        // inversion helps with accomidating "best constant".
        bool is_path_inverting = false;

        SiteWire wire = user;
        PipId inverting_pip;
        while (wire != site_net->driver) {
            SitePip pip = site_net->wires.at(wire).pip;
            NPNR_ASSERT(site_arch.getPipDstWire(pip) == wire);

            if (site_arch.isInverting(pip)) {
                // FIXME: Should be able to handle the general case of
                // multiple inverters, but that is harder (and annoying). Also
                // most sites won't allow for a double inversion, so just
                // disallow for now.
                NPNR_ASSERT(!is_path_inverting);
                is_path_inverting = true;
                NPNR_ASSERT(pip.type == SitePip::SITE_PIP);
                inverting_pip = pip.pip;
            }

            wire = site_arch.getPipSrcWire(pip);
        }

        if (!is_path_inverting) {
            // This routing is boring, use base logic.
            apply_simple_routing(ctx, site_arch, net, site_net, user);
            continue;
        }

        NPNR_ASSERT(inverting_pip != PipId());

        // This net is going to become two nets.
        // The portion of the net prior to the inverter is going to be bound
        // to the opposite net.  For example, if the original net was gnd_net,
        // the portion prior to the inverter will not be the vcc_net.
        //
        // A new cell will be generated to sink the connection from the
        // opposite net.
        NetInfo *net_before_inverter;
        if (net == gnd_net) {
            net_before_inverter = vcc_net;
        } else {
            NPNR_ASSERT(net == vcc_net);
            net_before_inverter = gnd_net;
        }

        // First find a name for the new cell
        int count = 0;
        CellInfo *new_cell = nullptr;
        while (true) {
            std::string new_cell_name = stringf("%s_%s.%d", net->name.c_str(ctx), site_arch.nameOfWire(user), count);
            IdString new_cell_id = ctx->id(new_cell_name);
            if (ctx->cells.count(new_cell_id)) {
                count += 1;
            } else {
                new_cell = ctx->createCell(new_cell_id, ctx->id("$nextpnr_inv"));
                break;
            }
        }

        auto &tile_type = loc_info(ctx->chip_info, inverting_pip);
        auto &pip_data = tile_type.pip_data[inverting_pip.index];
        NPNR_ASSERT(pip_data.site != -1);
        auto &bel_data = tile_type.bel_data[pip_data.bel];

        BelId inverting_bel;
        inverting_bel.tile = inverting_pip.tile;
        inverting_bel.index = pip_data.bel;

        IdString in_port(bel_data.ports[pip_data.extra_data]);
        NPNR_ASSERT(bel_data.types[pip_data.extra_data] == PORT_IN);

        IdString id_I = ctx->id("I");
        new_cell->addInput(id_I);
        new_cell->cell_bel_pins[id_I].push_back(in_port);

        new_cell->bel = inverting_bel;
        new_cell->belStrength = STRENGTH_PLACER;
        ctx->tileStatus.at(inverting_bel.tile).boundcells[inverting_bel.index] = new_cell;

        connect_port(ctx, net_before_inverter, new_cell, id_I);

        // The original BEL pin is now routed, but only through the inverter.
        // Because the cell/net model doesn't allow for multiple source pins
        // and the fact that the portion of the net after the inverter is
        // currently routed, all BEL pins on this site wire are going to be
        // masked from the router.
        NPNR_ASSERT(user.type == SiteWire::SITE_WIRE);
        ctx->mask_bel_pins_on_site_wire(net, user.wire);

        // Bind wires and pips to the two nets.
        bool after_inverter = true;
        wire = user;
        while (wire != site_net->driver) {
            SitePip site_pip = site_net->wires.at(wire).pip;
            NPNR_ASSERT(site_arch.getPipDstWire(site_pip) == wire);

            if (site_arch.isInverting(site_pip)) {
                NPNR_ASSERT(after_inverter);
                after_inverter = false;

                // Because this wire is just after the inverter, bind it to
                // the net without the pip, as this is a "source".
                NPNR_ASSERT(wire.type == SiteWire::SITE_WIRE);
                ctx->bindWire(wire.wire, net, STRENGTH_PLACER);
            } else {
                if (site_pip.type == SitePip::SITE_PIP || site_pip.type == SitePip::SITE_PORT) {
                    if (after_inverter) {
                        ctx->bindPip(site_pip.pip, net, STRENGTH_PLACER);
                    } else {
                        ctx->bindPip(site_pip.pip, net_before_inverter, STRENGTH_PLACER);
                    }
                }
            }

            wire = site_arch.getPipSrcWire(site_pip);
        }
    }
}

static void apply_routing(Context *ctx, const SiteArch &site_arch)
{
    IdString gnd_net_name(ctx->chip_info->constants->gnd_net_name);
    NetInfo *gnd_net = ctx->nets.at(gnd_net_name).get();

    IdString vcc_net_name(ctx->chip_info->constants->vcc_net_name);
    NetInfo *vcc_net = ctx->nets.at(vcc_net_name).get();

    for (auto &net_pair : site_arch.nets) {
        NetInfo *net = net_pair.first;
        const SiteNetInfo *site_net = &net_pair.second;

        if (net == gnd_net || net == vcc_net) {
            apply_constant_routing(ctx, site_arch, net, site_net);
        } else {
            // If the driver wire is a site wire, bind it.
            if (site_net->driver.type == SiteWire::SITE_WIRE) {
                WireId driver_wire = site_net->driver.wire;
                if (ctx->getBoundWireNet(driver_wire) != net) {
                    ctx->bindWire(driver_wire, net, STRENGTH_PLACER);
                }
            }

            for (auto &wire_pair : site_net->wires) {
                const SitePip &site_pip = wire_pair.second.pip;
                if (site_pip.type != SitePip::SITE_PIP && site_pip.type != SitePip::SITE_PORT) {
                    continue;
                }

                ctx->bindPip(site_pip.pip, net, STRENGTH_PLACER);
            }
        }
    }
}

bool SiteRouter::checkSiteRouting(const Context *ctx, const TileStatus &tile_status) const
{
    if (!dirty) {
        return site_ok;
    }

    dirty = false;

    if (cells_in_site.size() == 0) {
        site_ok = true;
        return site_ok;
    }

    site_ok = false;

    // Make sure all cells in this site belong!
    auto iter = cells_in_site.begin();
    NPNR_ASSERT((*iter)->bel != BelId());
    auto tile = (*iter)->bel.tile;

    if (verbose_site_router(ctx)) {
        log_info("Checking site routing for site %s\n", ctx->get_site_name(tile, site));
    }

    for (CellInfo *cell : cells_in_site) {
        // All cells in the site must be placed.
        NPNR_ASSERT(cell->bel != BelId());

        // Sanity check that all cells in this site are part of the same site.
        NPNR_ASSERT(tile == cell->bel.tile);
        NPNR_ASSERT(site == bel_info(ctx->chip_info, cell->bel).site);

        // As a first pass make sure each assigned cell in site is valid by
        // constraints.
        if (!ctx->is_cell_valid_constraints(cell, tile_status, verbose_site_router(ctx))) {
            if (verbose_site_router(ctx)) {
                log_info("Sanity check failed, cell_type %s at %s has an invalid constraints, so site is not good\n",
                         cell->type.c_str(ctx), ctx->nameOfBel(cell->bel));
            }
            site_ok = false;
            return site_ok;
        }
    }

    auto tile_type_idx = ctx->chip_info->tiles[tile].type;
    const std::vector<LutElement> &lut_elements = ctx->lut_elements.at(tile_type_idx);
    std::vector<LutMapper> lut_mappers;
    lut_mappers.reserve(lut_elements.size());
    for (size_t i = 0; i < lut_elements.size(); ++i) {
        lut_mappers.push_back(LutMapper(lut_elements[i]));
    }

    for (CellInfo *cell : cells_in_site) {
        if (cell->lut_cell.pins.empty()) {
            continue;
        }

        BelId bel = cell->bel;
        const auto &bel_data = bel_info(ctx->chip_info, bel);
        if (bel_data.lut_element != -1) {
            lut_mappers[bel_data.lut_element].cells.push_back(cell);
        }
    }

    for (LutMapper lut_mapper : lut_mappers) {
        if (lut_mapper.cells.empty()) {
            continue;
        }

        if (!lut_mapper.remap_luts(ctx)) {
            site_ok = false;
            return site_ok;
        }
    }

    SiteInformation site_info(ctx, tile, site, cells_in_site);

    // Push from cell pins to the first WireId from each cell pin.
    if (!check_initial_wires(ctx, &site_info)) {
        site_ok = false;
        return site_ok;
    }

    SiteArch site_arch(&site_info);
    // site_arch.archcheck();

    site_ok = route_site(&site_arch, &ctx->site_routing_cache, &ctx->node_storage, /*explain=*/false);
    if (verbose_site_router(ctx)) {
        if (site_ok) {
            log_info("Site %s is routable\n", ctx->get_site_name(tile, site));
        } else {
            log_info("Site %s is not routable\n", ctx->get_site_name(tile, site));
        }
    }

    if (site_ok) {
        check_routing(site_arch);
    }
    return site_ok;
}

void SiteRouter::bindSiteRouting(Context *ctx)
{
    NPNR_ASSERT(!dirty);
    NPNR_ASSERT(site_ok);

    // Make sure all cells in this site belong!
    auto iter = cells_in_site.begin();
    NPNR_ASSERT((*iter)->bel != BelId());

    auto tile = (*iter)->bel.tile;
    auto &tile_type = loc_info(ctx->chip_info, (*iter)->bel);

    // Unbind all bound site wires
    WireId wire;
    wire.tile = tile;
    for (size_t wire_index = 0; wire_index < tile_type.wire_data.size(); ++wire_index) {
        const TileWireInfoPOD &wire_data = tile_type.wire_data[wire_index];

        if (wire_data.site != this->site) {
            continue;
        }

        wire.index = wire_index;

        NetInfo *net = ctx->getBoundWireNet(wire);
        if (net == nullptr) {
            continue;
        }

        auto &pip_map = net->wires.at(wire);
        if (pip_map.strength <= STRENGTH_STRONG) {
            ctx->unbindWire(wire);
        }
    }

    SiteInformation site_info(ctx, tile, site, cells_in_site);
    SiteArch site_arch(&site_info);
    NPNR_ASSERT(route_site(&site_arch, &ctx->site_routing_cache, &ctx->node_storage, /*explain=*/false));
    check_routing(site_arch);
    apply_routing(ctx, site_arch);
    if (verbose_site_router(ctx)) {
        print_current_state(&site_arch);
    }
}

void SiteRouter::explain(const Context *ctx) const
{
    NPNR_ASSERT(!dirty);
    if (site_ok) {
        return;
    }

    // Make sure all cells in this site belong!
    auto iter = cells_in_site.begin();
    NPNR_ASSERT((*iter)->bel != BelId());

    auto tile = (*iter)->bel.tile;

    SiteInformation site_info(ctx, tile, site, cells_in_site);
    SiteArch site_arch(&site_info);
    bool route_status = route_site(&site_arch, &ctx->site_routing_cache, &ctx->node_storage, /*explain=*/true);
    if (!route_status) {
        print_current_state(&site_arch);
    }
}

ArchNetInfo::~ArchNetInfo() { delete loop; }

Arch::~Arch()
{
    for (auto &net_pair : nets) {
        if (net_pair.second->loop) {
            net_pair.second->loop->clear();
        }
    }
}

NEXTPNR_NAMESPACE_END