aboutsummaryrefslogtreecommitdiffstats
path: root/fpga_interchange/globals.cc
blob: a4528c909ce13aec4adfcbcf479443b9510598da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2021  gatecat <gatecat@ds0.me>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "log.h"
#include "nextpnr.h"
#include "util.h"

#include <queue>

NEXTPNR_NAMESPACE_BEGIN

namespace {

struct GlobalVist
{
    PipId downhill = PipId();
    int total_hops = 0;
    int global_hops = 0;
    bool operator<(const GlobalVist &other) const
    {
        return (total_hops < other.total_hops) ||
               ((total_hops == other.total_hops) && (global_hops > other.global_hops));
    }
};

static bool route_global_arc(Context *ctx, NetInfo *net, size_t usr_idx, size_t phys_port_idx, int max_hops)
{
    auto &usr = net->users.at(usr_idx);
    WireId src = ctx->getNetinfoSourceWire(net);
    WireId dest = ctx->getNetinfoSinkWire(net, usr, phys_port_idx);
    if (dest == WireId()) {
        log_error("Arc %d.%d (%s.%s) of net %s has no sink wire!\n", int(usr_idx), int(phys_port_idx),
                  ctx->nameOf(usr.cell), ctx->nameOf(usr.port), ctx->nameOf(net));
    }
    // Consider any existing routing put in place by the site router, etc
    int start_hops = 0;
    while (net->wires.count(dest) && dest != src) {
        dest = ctx->getPipSrcWire(net->wires.at(dest).pip);
        ++start_hops;
    }
    // The main BFS implementation
    // Currently this is a backwards-BFS from sink to source (or pre-existing routing) that avoids general routing. It
    // currently aims for minimum hops as a primary goal and maximum global resource usage as a secondary goal. More
    // advanced heuristics will likely be needed for more complex situation
    WireId startpoint;
    GlobalVist best_visit;
    std::queue<WireId> visit_queue;
    std::unordered_map<WireId, GlobalVist> visits;

    visit_queue.push(dest);
    visits[dest].downhill = PipId();
    visits[dest].total_hops = start_hops;

    while (!visit_queue.empty()) {
        WireId cursor = visit_queue.front();
        visit_queue.pop();
        auto &curr_visit = visits.at(cursor);
        // We're now at least one layer deeper than a valid visit, any further exploration is futile
        if (startpoint != WireId() && curr_visit.total_hops > best_visit.total_hops)
            break;
        // Valid end of routing
        if ((cursor == src) || (ctx->getBoundWireNet(cursor) == net)) {
            if (startpoint == WireId() || curr_visit < best_visit) {
                startpoint = cursor;
                best_visit = curr_visit;
            }
        }
        // Explore uphill
        for (auto pip : ctx->getPipsUphill(cursor)) {
            if (!ctx->checkPipAvailForNet(pip, net))
                continue;
            WireId pip_src = ctx->getPipSrcWire(pip);
            if (!ctx->checkWireAvail(pip_src) && ctx->getBoundWireNet(pip_src) != net)
                continue;
            auto cat = ctx->get_wire_category(pip_src);
            if (cat == WIRE_CAT_GENERAL)
                continue; // never allow general routing
            GlobalVist next_visit;
            next_visit.downhill = pip;
            next_visit.total_hops = curr_visit.total_hops + 1;
            if (max_hops != -1 && next_visit.total_hops > max_hops)
                continue;
            next_visit.global_hops = curr_visit.global_hops + ((cat == WIRE_CAT_GLOBAL) ? 1 : 0);
            auto fnd_src = visits.find(pip_src);
            if (fnd_src == visits.end() || next_visit < fnd_src->second) {
                visit_queue.push(pip_src);
                visits[pip_src] = next_visit;
            }
        }
    }

    if (startpoint == WireId())
        return false;

    if (ctx->getBoundWireNet(startpoint) == nullptr)
        ctx->bindWire(startpoint, net, STRENGTH_LOCKED);

    WireId cursor = startpoint;
    std::vector<PipId> pips;
    // Create a list of pips on the routed path
    while (true) {
        PipId pip = visits.at(cursor).downhill;
        if (pip == PipId())
            break;
        pips.push_back(pip);
        cursor = ctx->getPipDstWire(pip);
    }
    // Reverse that list
    std::reverse(pips.begin(), pips.end());
    // Bind pips until we hit already-bound routing
    for (PipId pip : pips) {
        WireId dst = ctx->getPipDstWire(pip);
        if (ctx->getBoundWireNet(dst) == net)
            break;
        ctx->bindPip(pip, net, STRENGTH_LOCKED);
    }
    return true;
}
}; // namespace

const GlobalCellPOD *Arch::global_cell_info(IdString cell_type) const
{
    for (const auto &glb_cell : chip_info->global_cells)
        if (IdString(glb_cell.cell_type) == cell_type)
            return &glb_cell;

    return nullptr;
}

void Arch::route_globals()
{
    log_info("Routing globals...\n");

    Context *ctx = getCtx();
    IdString gnd_net_name(chip_info->constants->gnd_net_name);
    IdString vcc_net_name(chip_info->constants->vcc_net_name);

    for (auto cell : sorted(ctx->cells)) {
        CellInfo *ci = cell.second;
        const GlobalCellPOD *glb_cell = global_cell_info(ci->type);
        if (glb_cell == nullptr)
            continue;
        for (const auto &pin : glb_cell->pins) {
            IdString pin_name(pin.name);
            if (!ci->ports.count(pin_name))
                continue;
            auto &port = ci->ports.at(pin_name);

            // TOOD: routing of input ports, too
            // output ports are generally the first priority though
            if (port.type != PORT_OUT)
                continue;

            NetInfo *net = port.net;
            if (net == nullptr || net->name == gnd_net_name || net->name == vcc_net_name)
                continue;

            int total_sinks = 0;
            int global_sinks = 0;

            for (size_t i = 0; i < net->users.size(); i++) {
                auto &usr = net->users.at(i);
                for (size_t j = 0; j < ctx->getNetinfoSinkWireCount(net, usr); j++) {
                    bool routed_global = route_global_arc(ctx, net, i, j, pin.max_hops);
                    ++total_sinks;
                    if (routed_global)
                        ++global_sinks;
                    if (!routed_global && pin.force_routing)
                        log_error("Failed to route arc %d.%d (%s.%s) of net %s using dedicated global routing!\n",
                                  int(i), int(j), ctx->nameOf(usr.cell), ctx->nameOf(usr.port), ctx->nameOf(net));
                }
            }

            log_info("    routed %d/%d sinks of net %s using dedicated routing.\n", global_sinks, total_sinks,
                     ctx->nameOf(net));
        }
    }
}

NEXTPNR_NAMESPACE_END