aboutsummaryrefslogtreecommitdiffstats
path: root/fpga_interchange/cost_map.cc
blob: c20ba11b44bce8b227cb4a35d9608508f8d1b23d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2021  Symbiflow Authors
 *
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "cost_map.h"

#include "context.h"
#include "log.h"

NEXTPNR_NAMESPACE_BEGIN

///@brief Factor to adjust the penalty calculation for deltas outside the segment bounding box:
//      factor < 1.0: penalty has less impact on the final returned delay
//      factor > 1.0: penalty has more impact on the final returned delay
static constexpr float PENALTY_FACTOR = 1.f;

///@brief Minimum penalty cost that is added when penalizing a delta outside the segment bounding box.
static constexpr delay_t PENALTY_MIN = 1;

// also known as the L1 norm
static int manhattan_distance(const std::pair<int32_t, int32_t> &a, const std::pair<int32_t, int32_t> &b)
{
    return std::abs(b.first - a.first) + std::abs(b.second - a.second);
}

static delay_t penalize(const delay_t &entry, int distance, delay_t penalty)
{
    penalty = std::max(penalty, PENALTY_MIN);
    return entry + distance * penalty * PENALTY_FACTOR;
}

delay_t CostMap::get_delay(const Context *ctx, WireId src_wire, WireId dst_wire) const
{
    TypeWirePair type_pair;
    type_pair.src = TypeWireId(ctx, src_wire);
    type_pair.dst = TypeWireId(ctx, dst_wire);

    int src_tile;
    if (src_wire.tile == -1) {
        src_tile = ctx->chip_info->nodes[src_wire.index].tile_wires[0].tile;
    } else {
        src_tile = src_wire.tile;
    }

    int32_t src_x, src_y;
    ctx->get_tile_x_y(src_tile, &src_x, &src_y);

    int dst_tile;
    if (dst_wire.tile == -1) {
        dst_tile = ctx->chip_info->nodes[dst_wire.index].tile_wires[0].tile;
    } else {
        dst_tile = dst_wire.tile;
    }

    int32_t dst_x, dst_y;
    ctx->get_tile_x_y(dst_tile, &dst_x, &dst_y);

    auto iter = cost_map_.find(type_pair);
    if (iter == cost_map_.end()) {
        auto &src_type = ctx->chip_info->tile_types[type_pair.src.type];
        IdString src_tile_type(src_type.name);
        IdString src_wire_name(src_type.wire_data[type_pair.src.index].name);

        auto &dst_type = ctx->chip_info->tile_types[type_pair.dst.type];
        IdString dst_tile_type(dst_type.name);
        IdString dst_wire_name(dst_type.wire_data[type_pair.dst.index].name);

#if 0
        log_warning("Delay matrix is missing %s/%s -> %s/%s\n",
                src_tile_type.c_str(ctx),
                src_wire_name.c_str(ctx),
                dst_tile_type.c_str(ctx),
                dst_wire_name.c_str(ctx));
#endif
        return std::numeric_limits<delay_t>::max();
    }

    const auto &delay_matrix = iter->second;

    int32_t off_x = delay_matrix.offset.first + (dst_x - src_x);
    int32_t off_y = delay_matrix.offset.second + (dst_y - src_y);

    int32_t x_dim = delay_matrix.data.shape()[0];
    int32_t y_dim = delay_matrix.data.shape()[1];
    NPNR_ASSERT(x_dim > 0);
    NPNR_ASSERT(y_dim > 0);

    // Bound closest_x/y to [0, dim)
    int32_t closest_x = std::min(std::max(off_x, 0), x_dim - 1);
    int32_t closest_y = std::min(std::max(off_y, 0), y_dim - 1);

    // Get the cost entry from the cost map at the deltas values
    auto cost = delay_matrix.data[closest_x][closest_y];
    NPNR_ASSERT(cost >= 0);

    // Get the base penalty corresponding to the current segment.
    auto penalty = delay_matrix.penalty;

    // Get the distance between the closest point in the bounding box and the original coordinates.
    // Note that if the original coordinates are within the bounding box, the distance will be equal to zero.
    auto distance = manhattan_distance(std::make_pair(off_x, off_y), std::make_pair(closest_x, closest_y));

    // Return the penalized cost (no penalty is added if the coordinates are within the bounding box).
    return penalize(cost, distance, penalty);
}

void CostMap::set_cost_map(const Context *ctx, const TypeWirePair &wire_pair,
                           const dict<std::pair<int32_t, int32_t>, delay_t> &delays)
{
    CostMapEntry delay_matrix;

    auto &offset = delay_matrix.offset;
    offset.first = 0;
    offset.second = 0;

    int32_t max_x_offset = 0;
    int32_t max_y_offset = 0;

    for (const auto &delay_pair : delays) {
        auto &dx_dy = delay_pair.first;
        offset.first = std::max(-dx_dy.first, offset.first);
        offset.second = std::max(-dx_dy.second, offset.second);
        max_x_offset = std::max(dx_dy.first, max_x_offset);
        max_y_offset = std::max(dx_dy.second, max_y_offset);
    }

    int32_t x_dim = offset.first + max_x_offset + 1;
    int32_t y_dim = offset.second + max_y_offset + 1;

    delay_matrix.data.resize(boost::extents[x_dim][y_dim]);

    // Fill matrix with sentinel of -1 to know where the holes in the matrix
    // are.
    std::fill_n(delay_matrix.data.data(), delay_matrix.data.num_elements(), -1);

    for (const auto &delay_pair : delays) {
        auto &dx_dy = delay_pair.first;
        int32_t off_x = dx_dy.first + offset.first;
        int32_t off_y = dx_dy.second + offset.second;
        NPNR_ASSERT(off_x >= 0);
        NPNR_ASSERT(off_x < x_dim);
        NPNR_ASSERT(off_y >= 0);
        NPNR_ASSERT(off_y < y_dim);

        delay_matrix.data[off_x][off_y] = delay_pair.second;
    }

    delay_matrix.penalty = get_penalty(delay_matrix.data);
    fill_holes(ctx, wire_pair, delay_matrix.data, delay_matrix.penalty);

    {
        cost_map_mutex_.lock();
        auto result = cost_map_.emplace(wire_pair, delay_matrix);
        NPNR_ASSERT(result.second);
        cost_map_mutex_.unlock();
    }
}

static void assign_min_entry(delay_t *dst, const delay_t &src)
{
    if (src >= 0) {
        if (*dst < 0) {
            *dst = src;
        } else if (src < *dst) {
            *dst = src;
        }
    }
}

std::pair<delay_t, int> CostMap::get_nearby_cost_entry(const boost::multi_array<delay_t, 2> &matrix, int cx, int cy,
                                                       const ArcBounds &bounds)
{
#ifdef DEBUG_FILL
    log_info("Filling %d, %d within (%d, %d, %d, %d)\n", cx, cy, bounds.x0, bounds.y0, bounds.x1, bounds.y1);
#endif

    // spiral around (cx, cy) looking for a nearby entry
    bool in_bounds = bounds.contains(cx, cy);
    if (!in_bounds) {
#ifdef DEBUG_FILL
        log_info("Already out of bounds, return!\n");
#endif
        return std::make_pair(-1, 0);
    }
    int n = 0;
    delay_t fill(matrix[cx][cy]);

    while (in_bounds && (fill < 0)) {
        n++;
#ifdef DEBUG_FILL
        log_info("At n = %d\n", n);
#endif
        in_bounds = false;
        delay_t min_entry = -1;
        for (int ox = -n; ox <= n; ox++) {
            int x = cx + ox;
            int oy = n - abs(ox);
            int yp = cy + oy;
            int yn = cy - oy;
#ifdef DEBUG_FILL
            log_info("Testing %d, %d\n", x, yp);
#endif
            if (bounds.contains(x, yp)) {
                assign_min_entry(&min_entry, matrix[x][yp]);
                in_bounds = true;
#ifdef DEBUG_FILL
                log_info("matrix[%d, %d] = %d, min_entry = %d\n", x, yp, matrix[x][yp], min_entry);
#endif
            }
#ifdef DEBUG_FILL
            log_info("Testing %d, %d\n", x, yn);
#endif
            if (bounds.contains(x, yn)) {
                assign_min_entry(&min_entry, matrix[x][yn]);
                in_bounds = true;
#ifdef DEBUG_FILL
                log_info("matrix[%d, %d] = %d, min_entry = %d\n", x, yn, matrix[x][yn], min_entry);
#endif
            }
        }

        if (fill < 0 && min_entry >= 0) {
            fill = min_entry;
        }
    }

    return std::make_pair(fill, n);
}

void CostMap::fill_holes(const Context *ctx, const TypeWirePair &type_pair, boost::multi_array<delay_t, 2> &matrix,
                         delay_t delay_penalty)
{
    // find missing cost entries and fill them in by copying a nearby cost entry
    std::vector<std::tuple<unsigned, unsigned, delay_t>> missing;
    bool couldnt_fill = false;
    auto shifted_bounds = ArcBounds(0, 0, matrix.shape()[0] - 1, matrix.shape()[1] - 1);
    int max_fill = 0;
    for (unsigned ix = 0; ix < matrix.shape()[0]; ix++) {
        for (unsigned iy = 0; iy < matrix.shape()[1]; iy++) {
            delay_t &cost_entry = matrix[ix][iy];
            if (cost_entry < 0) {
                // maximum search radius
                delay_t filler;
                int distance;
                std::tie(filler, distance) = get_nearby_cost_entry(matrix, ix, iy, shifted_bounds);
                if (filler >= 0) {
                    missing.push_back(std::make_tuple(ix, iy, penalize(filler, distance, delay_penalty)));
                    max_fill = std::max(max_fill, distance);
                } else {
                    couldnt_fill = true;
                }
            }
        }
        if (couldnt_fill) {
            // give up trying to fill an empty matrix
            break;
        }
    }

    if (!couldnt_fill && max_fill > 0) {
        if (ctx->verbose) {
            auto &src_type_data = ctx->chip_info->tile_types[type_pair.src.type];
            IdString src_type(src_type_data.name);
            IdString src_wire(src_type_data.wire_data[type_pair.src.index].name);

            auto &dst_type_data = ctx->chip_info->tile_types[type_pair.dst.type];
            IdString dst_type(dst_type_data.name);
            IdString dst_wire(dst_type_data.wire_data[type_pair.dst.index].name);

#ifdef DEBUG_FILL
            log_info("At %s/%s -> %s/%s: max_fill = %d, delay_penalty = %d\n", src_type.c_str(ctx), src_wire.c_str(ctx),
                     dst_type.c_str(ctx), dst_wire.c_str(ctx), max_fill, delay_penalty);
#endif
        }
    }

    // write back the missing entries
    for (auto &xy_entry : missing) {
        matrix[std::get<0>(xy_entry)][std::get<1>(xy_entry)] = std::get<2>(xy_entry);
    }

    if (couldnt_fill) {
        auto &src_type_data = ctx->chip_info->tile_types[type_pair.src.type];
        IdString src_type(src_type_data.name);
        IdString src_wire(src_type_data.wire_data[type_pair.src.index].name);

        auto &dst_type_data = ctx->chip_info->tile_types[type_pair.dst.type];
        IdString dst_type(dst_type_data.name);
        IdString dst_wire(dst_type_data.wire_data[type_pair.dst.index].name);

        log_warning("Couldn't fill holes in the cost matrix %s/%s -> %s/%s %d x %d bounding box\n", src_type.c_str(ctx),
                    src_wire.c_str(ctx), dst_type.c_str(ctx), dst_wire.c_str(ctx), shifted_bounds.x1,
                    shifted_bounds.y1);
        for (unsigned y = 0; y < matrix.shape()[1]; y++) {
            for (unsigned x = 0; x < matrix.shape()[0]; x++) {
                NPNR_ASSERT(matrix[x][y] >= 0);
            }
        }
    }
}

delay_t CostMap::get_penalty(const boost::multi_array<delay_t, 2> &matrix) const
{
    delay_t min_delay = std::numeric_limits<delay_t>::max();
    delay_t max_delay = std::numeric_limits<delay_t>::min();

    std::pair<int32_t, int32_t> min_location(0, 0), max_location(0, 0);
    for (unsigned ix = 0; ix < matrix.shape()[0]; ix++) {
        for (unsigned iy = 0; iy < matrix.shape()[1]; iy++) {
            const delay_t &cost_entry = matrix[ix][iy];
            if (cost_entry >= 0) {
                if (cost_entry < min_delay) {
                    min_delay = cost_entry;
                    min_location = std::make_pair(ix, iy);
                }
                if (cost_entry > max_delay) {
                    max_delay = cost_entry;
                    max_location = std::make_pair(ix, iy);
                }
            }
        }
    }

    delay_t delay_penalty =
            (max_delay - min_delay) / static_cast<float>(std::max(1, manhattan_distance(max_location, min_location)));

    return delay_penalty;
}

void CostMap::from_reader(lookahead_storage::CostMap::Reader reader)
{
    for (auto cost_entry : reader.getCostMap()) {
        TypeWirePair key(cost_entry.getKey());

        auto result = cost_map_.emplace(key, CostMapEntry());
        NPNR_ASSERT(result.second);

        CostMapEntry &entry = result.first->second;
        auto data = cost_entry.getData();
        auto in_iter = data.begin();

        entry.data.resize(boost::extents[cost_entry.getXDim()][cost_entry.getYDim()]);
        if (entry.data.num_elements() != data.size()) {
            log_error("entry.data.num_elements() %zu != data.size() %u", entry.data.num_elements(), data.size());
        }

        delay_t *out = entry.data.origin();
        for (; in_iter != data.end(); ++in_iter, ++out) {
            *out = *in_iter;
        }

        entry.penalty = cost_entry.getPenalty();

        entry.offset.first = cost_entry.getXOffset();
        entry.offset.second = cost_entry.getYOffset();
    }
}

void CostMap::to_builder(lookahead_storage::CostMap::Builder builder) const
{
    auto cost_map = builder.initCostMap(cost_map_.size());
    auto entry_iter = cost_map.begin();
    auto in = cost_map_.begin();
    for (; entry_iter != cost_map.end(); ++entry_iter, ++in) {
        NPNR_ASSERT(in != cost_map_.end());

        in->first.to_builder(entry_iter->getKey());
        const CostMapEntry &entry = in->second;

        auto data = entry_iter->initData(entry.data.num_elements());
        const delay_t *data_in = entry.data.origin();
        for (size_t i = 0; i < entry.data.num_elements(); ++i) {
            data.set(i, data_in[i]);
        }

        entry_iter->setXDim(entry.data.shape()[0]);
        entry_iter->setYDim(entry.data.shape()[1]);
        entry_iter->setXOffset(entry.offset.first);
        entry_iter->setYOffset(entry.offset.second);
        entry_iter->setPenalty(entry.penalty);
    }
}

NEXTPNR_NAMESPACE_END