aboutsummaryrefslogtreecommitdiffstats
path: root/common/timing_opt.cc
blob: dba96bf1a9da227b4bc56a443bc0ea732011cd05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  David Shah <david@symbioticeda.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/*
 * Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells
 * on a critical path
 *
 * Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
 * https://www.cerc.utexas.edu/utda/publications/C205.pdf
 *
 * Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles,
 * and deal with the fact that not every cell on the crit path may be swappable.
 */

#include "timing_opt.h"
#include <boost/range/adaptor/reversed.hpp>
#include <queue>
#include "nextpnr.h"
#include "timing.h"
#include "util.h"

#include "hash_table.h"

NEXTPNR_NAMESPACE_BEGIN

class TimingOptimiser
{
  public:
    TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg), tmg(ctx){};
    bool optimise()
    {
        log_info("Running timing-driven placement optimisation...\n");
        ctx->lock();
        if (ctx->verbose)
            timing_analysis(ctx, false, true, false, false);
        tmg.setup();
        for (int i = 0; i < 30; i++) {
            log_info("   Iteration %d...\n", i);
            tmg.run();
            setup_delay_limits();
            auto crit_paths = find_crit_paths(0.98, 50000);
            for (auto &path : crit_paths)
                optimise_path(path);
            if (ctx->verbose)
                timing_analysis(ctx, false, true, false, false);
        }
        ctx->unlock();
        return true;
    }

  private:
    void setup_delay_limits()
    {
        max_net_delay.clear();
        for (auto net : sorted(ctx->nets)) {
            NetInfo *ni = net.second;
            if (ni->driver.cell == nullptr)
                continue;
            for (auto usr : ni->users) {
                max_net_delay[std::make_pair(usr.cell->name, usr.port)] = std::numeric_limits<delay_t>::max();
            }
            for (size_t i = 0; i < ni->users.size(); i++) {
                auto &usr = ni->users.at(i);
                delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr);
                delay_t slack = tmg.get_setup_slack(CellPortKey(usr));
                delay_t domain_slack = tmg.get_domain_setup_slack(CellPortKey(usr));
                if (slack == std::numeric_limits<delay_t>::max())
                    continue;
                max_net_delay[std::make_pair(usr.cell->name, usr.port)] = net_delay + ((slack - domain_slack) / 10);
            }
        }
    }

    bool check_cell_delay_limits(CellInfo *cell)
    {
        for (const auto &port : cell->ports) {
            int nc;
            if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE)
                continue;
            NetInfo *net = port.second.net;
            if (net == nullptr)
                continue;
            if (port.second.type == PORT_IN) {
                if (net->driver.cell == nullptr || net->driver.cell->bel == BelId())
                    continue;
                for (auto user : net->users) {
                    if (user.cell == cell && user.port == port.first) {
                        if (ctx->predictDelay(net, user) >
                            1.1 * max_net_delay.at(std::make_pair(cell->name, port.first)))
                            return false;
                    }
                }

            } else if (port.second.type == PORT_OUT) {
                for (auto user : net->users) {
                    // This could get expensive for high-fanout nets??
                    BelId dstBel = user.cell->bel;
                    if (dstBel == BelId())
                        continue;
                    if (ctx->predictDelay(net, user) >
                        1.1 * max_net_delay.at(std::make_pair(user.cell->name, user.port))) {

                        return false;
                    }
                }
            }
        }
        return true;
    }

    BelId cell_swap_bel(CellInfo *cell, BelId newBel)
    {
        BelId oldBel = cell->bel;
        if (oldBel == newBel)
            return oldBel;
        CellInfo *other_cell = ctx->getBoundBelCell(newBel);
        NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK);
        ctx->unbindBel(oldBel);
        if (other_cell != nullptr) {
            ctx->unbindBel(newBel);
            ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
        }
        ctx->bindBel(newBel, cell, STRENGTH_WEAK);
        return oldBel;
    }

    // Check that a series of moves are both legal and remain within maximum delay bounds
    // Moves are specified as a vector of pairs <cell, oldBel>
    bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true)
    {
        for (auto &entry : move) {
            if (!ctx->isBelLocationValid(entry.first->bel))
                return false;
            if (!ctx->isBelLocationValid(entry.second))
                return false;
            if (!check_delays)
                continue;
            if (!check_cell_delay_limits(entry.first))
                return false;
            // We might have swapped another cell onto the original bel. Check this for max delay violations
            // too
            CellInfo *swapped = ctx->getBoundBelCell(entry.second);
            if (swapped != nullptr && !check_cell_delay_limits(swapped))
                return false;
        }
        return true;
    }

    int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap)
    {
        BelId curr = cell->bel;
        Loc curr_loc = ctx->getBelLocation(curr);
        int found_count = 0;
        cell_neighbour_bels[cell->name] = std::unordered_set<BelId>{};
        for (int dy = -d; dy <= d; dy++) {
            for (int dx = -d; dx <= d; dx++) {
                // Go through all the Bels at this location
                // First, find all bels of the correct type that are either unbound or bound normally
                // Strongly bound bels are ignored
                // FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
                std::vector<BelId> free_bels_at_loc;
                std::vector<BelId> bound_bels_at_loc;
                for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
                    if (!ctx->isValidBelForCellType(cell->type, bel))
                        continue;
                    CellInfo *bound = ctx->getBoundBelCell(bel);
                    if (bound == nullptr) {
                        free_bels_at_loc.push_back(bel);
                    } else if (bound->belStrength <= STRENGTH_WEAK && bound->constr_parent == nullptr &&
                               bound->constr_children.empty()) {
                        bound_bels_at_loc.push_back(bel);
                    }
                }
                BelId candidate;

                while (!free_bels_at_loc.empty() || !bound_bels_at_loc.empty()) {
                    BelId try_bel;
                    if (!free_bels_at_loc.empty()) {
                        int try_idx = ctx->rng(int(free_bels_at_loc.size()));
                        try_bel = free_bels_at_loc.at(try_idx);
                        free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx);
                    } else {
                        int try_idx = ctx->rng(int(bound_bels_at_loc.size()));
                        try_bel = bound_bels_at_loc.at(try_idx);
                        bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx);
                    }
                    if (bel_candidate_cells.count(try_bel) && !allow_swap) {
                        // Overlap is only allowed if it is with the previous cell (this is handled by removing those
                        // edges in the graph), or if allow_swap is true to deal with cases where overlap means few
                        // neighbours are identified
                        if (bel_candidate_cells.at(try_bel).size() > 1 ||
                            (bel_candidate_cells.at(try_bel).size() == 1 &&
                             *(bel_candidate_cells.at(try_bel).begin()) != prev_cell))
                            continue;
                    }
                    // TODO: what else to check here?
                    candidate = try_bel;
                    break;
                }

                if (candidate != BelId()) {
                    cell_neighbour_bels[cell->name].insert(candidate);
                    bel_candidate_cells[candidate].insert(cell->name);
                    // Work out if we need to delete any overlap
                    std::vector<IdString> overlap;
                    for (auto other : bel_candidate_cells[candidate])
                        if (other != cell->name && other != prev_cell)
                            overlap.push_back(other);
                    if (overlap.size() > 0)
                        NPNR_ASSERT(allow_swap);
                    for (auto ov : overlap) {
                        bel_candidate_cells[candidate].erase(ov);
                        cell_neighbour_bels[ov].erase(candidate);
                    }
                }
            }
        }
        return found_count;
    }

    std::vector<std::vector<PortRef *>> find_crit_paths(float crit_thresh, size_t max_count)
    {
        std::vector<std::vector<PortRef *>> crit_paths;
        std::vector<std::pair<NetInfo *, int>> crit_nets;
        std::vector<IdString> netnames;
        std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames),
                       [](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv) { return kv.first; });
        ctx->sorted_shuffle(netnames);
        for (auto net : netnames) {
            if (crit_nets.size() >= max_count)
                break;
            float highest_crit = 0;
            size_t crit_user_idx = 0;
            NetInfo *ni = ctx->nets.at(net).get();
            for (size_t i = 0; i < ni->users.size(); i++) {
                float crit = tmg.get_criticality(CellPortKey(ni->users.at(i)));
                if (crit > highest_crit) {
                    highest_crit = crit;
                    crit_user_idx = i;
                }
            }
            if (highest_crit > crit_thresh)
                crit_nets.push_back(std::make_pair(ni, crit_user_idx));
        }

        auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t {
            NPNR_ASSERT(port.net != nullptr);
            for (size_t i = 0; i < port.net->users.size(); i++) {
                auto &usr = port.net->users.at(i);
                if (usr.cell == cell && usr.port == port.name)
                    return i;
            }
            NPNR_ASSERT_FALSE("port user not found on net");
        };
        std::unordered_set<PortRef *> used_ports;

        for (auto crit_net : crit_nets) {

            if (used_ports.count(&(crit_net.first->users.at(crit_net.second))))
                continue;

            std::deque<PortRef *> crit_path;

            // FIXME: This will fail badly on combinational loops

            // Iterate backwards following greatest criticality
            NetInfo *back_cursor = crit_net.first;
            while (back_cursor != nullptr) {
                float max_crit = 0;
                std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
                CellInfo *cell = back_cursor->driver.cell;
                if (cell == nullptr)
                    break;
                for (auto port : cell->ports) {
                    if (port.second.type != PORT_IN)
                        continue;
                    NetInfo *pn = port.second.net;
                    if (pn == nullptr)
                        continue;
                    int ccount;
                    DelayQuad combDelay;
                    TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
                    if (tpclass != TMG_COMB_INPUT)
                        continue;
                    bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay);
                    if (!is_path)
                        continue;
                    size_t user_idx = port_user_index(cell, port.second);
                    float usr_crit = tmg.get_criticality(CellPortKey(cell->name, port.first));
                    if (used_ports.count(&(pn->users.at(user_idx))))
                        continue;
                    if (usr_crit >= max_crit) {
                        max_crit = usr_crit;
                        crit_sink = std::make_pair(pn, user_idx);
                    }
                }

                if (crit_sink.first != nullptr) {
                    crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second)));
                    used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
                }
                back_cursor = crit_sink.first;
            }
            // Iterate forwards following greatest criticiality
            PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second));
            while (fwd_cursor != nullptr) {
                crit_path.push_back(fwd_cursor);
                float max_crit = 0;
                std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
                CellInfo *cell = fwd_cursor->cell;
                for (auto port : cell->ports) {
                    if (port.second.type != PORT_OUT)
                        continue;
                    NetInfo *pn = port.second.net;
                    if (pn == nullptr)
                        continue;

                    int ccount;
                    DelayQuad combDelay;
                    TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
                    if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT)
                        continue;
                    bool is_path = ctx->getCellDelay(cell, fwd_cursor->port, port.first, combDelay);
                    if (!is_path)
                        continue;
                    for (size_t i = 0; i < pn->users.size(); i++) {
                        if (used_ports.count(&(pn->users.at(i))))
                            continue;
                        float crit = tmg.get_criticality(CellPortKey(pn->users.at(i)));
                        if (crit >= max_crit) {
                            max_crit = crit;
                            crit_sink = std::make_pair(pn, i);
                        }
                    }
                }
                if (crit_sink.first != nullptr) {
                    fwd_cursor = &(crit_sink.first->users.at(crit_sink.second));
                    used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
                } else {
                    fwd_cursor = nullptr;
                }
            }

            std::vector<PortRef *> crit_path_vec;
            std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec));
            crit_paths.push_back(crit_path_vec);
        }

        return crit_paths;
    }

    void optimise_path(std::vector<PortRef *> &path)
    {
        path_cells.clear();
        cell_neighbour_bels.clear();
        bel_candidate_cells.clear();
        if (ctx->debug)
            log_info("Optimising the following path: \n");

        auto front_port = path.front();
        NetInfo *front_net = front_port->cell->ports.at(front_port->port).net;
        if (front_net != nullptr && front_net->driver.cell != nullptr) {
            auto front_cell = front_net->driver.cell;
            if (front_cell->belStrength <= STRENGTH_WEAK && cfg.cellTypes.count(front_cell->type) &&
                front_cell->constr_parent == nullptr && front_cell->constr_children.empty()) {
                path_cells.push_back(front_cell->name);
            }
        }

        for (auto port : path) {
            if (ctx->debug) {
                float crit = tmg.get_criticality(CellPortKey(*port));
                log_info("    %s.%s at %s crit %0.02f\n", port->cell->name.c_str(ctx), port->port.c_str(ctx),
                         ctx->nameOfBel(port->cell->bel), crit);
            }
            if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end())
                continue;
            if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type) ||
                port->cell->constr_parent != nullptr || !port->cell->constr_children.empty())
                continue;
            if (ctx->debug)
                log_info("        can move\n");
            path_cells.push_back(port->cell->name);
        }

        if (path_cells.size() < 2) {
            if (ctx->debug) {
                log_info("Too few moveable cells; skipping path\n");
                log_break();
            }

            return;
        }

        // Calculate original delay before touching anything
        delay_t original_delay = 0;

        for (size_t i = 0; i < path.size(); i++) {
            NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
            for (size_t j = 0; j < pn->users.size(); j++) {
                auto &usr = pn->users.at(j);
                if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
                    original_delay += ctx->predictDelay(pn, usr);
                    break;
                }
            }
        }

        IdString last_cell;
        const int d = 2; // FIXME: how to best determine d
        for (auto cell : path_cells) {
            // FIXME: when should we allow swapping due to a lack of candidates
            find_neighbours(ctx->cells[cell].get(), last_cell, d, false);
            last_cell = cell;
        }

        if (ctx->debug) {
            for (auto cell : path_cells) {
                log_info("Candidate neighbours for %s (%s):\n", cell.c_str(ctx), ctx->nameOfBel(ctx->cells[cell]->bel));
                for (auto neigh : cell_neighbour_bels.at(cell)) {
                    log_info("    %s\n", ctx->nameOfBel(neigh));
                }
            }
        }

        // Actual BFS path optimisation algorithm
        std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs;
        std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>, PairHash> backtrace;
        std::queue<std::pair<int, BelId>> visit;
        std::unordered_set<std::pair<int, BelId>, PairHash> to_visit;

        for (auto startbel : cell_neighbour_bels[path_cells.front()]) {
            // Swap for legality check
            CellInfo *cell = ctx->cells.at(path_cells.front()).get();
            BelId origBel = cell_swap_bel(cell, startbel);
            std::vector<std::pair<CellInfo *, BelId>> move{std::make_pair(cell, origBel)};
            if (acceptable_move(move)) {
                auto entry = std::make_pair(0, startbel);
                visit.push(entry);
                cumul_costs[path_cells.front()][startbel] = 0;
            }
            // Swap back
            cell_swap_bel(cell, origBel);
        }

        while (!visit.empty()) {
            auto entry = visit.front();
            visit.pop();
            auto cellname = path_cells.at(entry.first);
            if (entry.first == int(path_cells.size()) - 1)
                continue;
            std::vector<std::pair<CellInfo *, BelId>> move;
            // Apply the entire backtrace for accurate legality and delay checks
            // This is probably pretty expensive (but also probably pales in comparison to the number of swaps
            // SA will make...)
            std::vector<std::pair<IdString, BelId>> route_to_entry;
            auto cursor = std::make_pair(cellname, entry.second);
            route_to_entry.push_back(cursor);
            while (backtrace.count(cursor)) {
                cursor = backtrace.at(cursor);
                route_to_entry.push_back(cursor);
            }
            for (auto rt_entry : boost::adaptors::reverse(route_to_entry)) {
                CellInfo *cell = ctx->cells.at(rt_entry.first).get();
                BelId origBel = cell_swap_bel(cell, rt_entry.second);
                move.push_back(std::make_pair(cell, origBel));
            }

            // Have a look at where we can travel from here
            for (auto neighbour : cell_neighbour_bels.at(path_cells.at(entry.first + 1))) {
                // Edges between overlapping bels are deleted
                if (neighbour == entry.second)
                    continue;
                // Experimentally swap the next path cell onto the neighbour bel we are trying
                IdString ncname = path_cells.at(entry.first + 1);
                CellInfo *next_cell = ctx->cells.at(ncname).get();
                BelId origBel = cell_swap_bel(next_cell, neighbour);
                move.push_back(std::make_pair(next_cell, origBel));

                delay_t total_delay = 0;

                for (size_t i = 0; i < path.size(); i++) {
                    NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
                    for (size_t j = 0; j < pn->users.size(); j++) {
                        auto &usr = pn->users.at(j);
                        if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
                            total_delay += ctx->predictDelay(pn, usr);
                            break;
                        }
                    }
                    if (path.at(i)->cell == next_cell)
                        break;
                }

                // First, check if the move is actually worthwhile from a delay point of view before the expensive
                // legality check
                if (!cumul_costs.count(ncname) || !cumul_costs.at(ncname).count(neighbour) ||
                    cumul_costs.at(ncname).at(neighbour) > total_delay) {
                    // Now check that the swaps we have made to get here are legal and meet max delay requirements
                    if (acceptable_move(move)) {
                        cumul_costs[ncname][neighbour] = total_delay;
                        backtrace[std::make_pair(ncname, neighbour)] = std::make_pair(cellname, entry.second);
                        if (!to_visit.count(std::make_pair(entry.first + 1, neighbour)))
                            visit.push(std::make_pair(entry.first + 1, neighbour));
                    }
                }
                // Revert the experimental swap
                cell_swap_bel(move.back().first, move.back().second);
                move.pop_back();
            }

            // Revert move by swapping cells back to their original order
            // Execute swaps in reverse order to how we made them originally
            for (auto move_entry : boost::adaptors::reverse(move)) {
                cell_swap_bel(move_entry.first, move_entry.second);
            }
        }

        // Did we find a solution??
        if (cumul_costs.count(path_cells.back())) {
            // Find the end position with the lowest total delay
            auto &end_options = cumul_costs.at(path_cells.back());
            auto lowest = std::min_element(end_options.begin(), end_options.end(),
                                           [](const std::pair<BelId, delay_t> &a, const std::pair<BelId, delay_t> &b) {
                                               return a.second < b.second;
                                           });
            NPNR_ASSERT(lowest != end_options.end());

            std::vector<std::pair<IdString, BelId>> route_to_solution;
            auto cursor = std::make_pair(path_cells.back(), lowest->first);
            route_to_solution.push_back(cursor);
            while (backtrace.count(cursor)) {
                cursor = backtrace.at(cursor);
                route_to_solution.push_back(cursor);
            }
            if (ctx->debug)
                log_info("Found a solution with cost %.02f ns (existing path %.02f ns)\n",
                         ctx->getDelayNS(lowest->second), ctx->getDelayNS(original_delay));
            for (auto rt_entry : boost::adaptors::reverse(route_to_solution)) {
                CellInfo *cell = ctx->cells.at(rt_entry.first).get();
                cell_swap_bel(cell, rt_entry.second);
                if (ctx->debug)
                    log_info("    %s at %s\n", rt_entry.first.c_str(ctx), ctx->nameOfBel(rt_entry.second));
            }

        } else {
            if (ctx->debug)
                log_info("Solution was not found\n");
        }
        if (ctx->debug)
            log_break();
    }

    // Current candidate Bels for cells (linked in both direction>
    std::vector<IdString> path_cells;
    std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels;
    std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells;
    // Map cell ports to net delay limit
    std::unordered_map<std::pair<IdString, IdString>, delay_t, PairHash> max_net_delay;
    Context *ctx;
    TimingOptCfg cfg;
    TimingAnalyser tmg;
};

bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx, cfg).optimise(); }

NEXTPNR_NAMESPACE_END