1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef NO_PYTHON
#include "pybindings.h"
#include "arch_pybindings.h"
#include "json_frontend.h"
#include "log.h"
#include "nextpnr.h"
#include <fstream>
#include <memory>
#include <signal.h>
NEXTPNR_NAMESPACE_BEGIN
// Required to determine concatenated module name (which differs for different
// archs)
#define PASTER(x, y) x##_##y
#define EVALUATOR(x, y) PASTER(x, y)
#define MODULE_NAME EVALUATOR(nextpnrpy, ARCHNAME)
#define PYINIT_MODULE_NAME EVALUATOR(&PyInit_nextpnrpy, ARCHNAME)
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
// Architecture-specific bindings should be created in the below function, which
// must be implemented in all architectures
void arch_wrap_python(py::module &m);
bool operator==(const PortRef &a, const PortRef &b) { return (a.cell == b.cell) && (a.port == b.port); }
// Load a JSON file into a design
void parse_json_shim(std::string filename, Context &d)
{
std::ifstream inf(filename);
if (!inf)
throw std::runtime_error("failed to open file " + filename);
parse_json(inf, filename, &d);
}
// Create a new Chip and load design from json file
Context *load_design_shim(std::string filename, ArchArgs args)
{
Context *d = new Context(args);
parse_json_shim(filename, *d);
return d;
}
namespace PythonConversion {
template <> struct string_converter<PortRef &>
{
inline PortRef from_str(Context *ctx, std::string name) { NPNR_ASSERT_FALSE("PortRef from_str not implemented"); }
inline std::string to_str(Context *ctx, const PortRef &pr)
{
return pr.cell->name.str(ctx) + "." + pr.port.str(ctx);
}
};
template <> struct string_converter<Property>
{
inline Property from_str(Context *ctx, std::string s) { return Property::from_string(s); }
inline std::string to_str(Context *ctx, Property p) { return p.to_string(); }
};
} // namespace PythonConversion
PYBIND11_EMBEDDED_MODULE(MODULE_NAME, m)
{
py::register_exception_translator([](std::exception_ptr p) {
try {
if (p)
std::rethrow_exception(p);
} catch (const assertion_failure &e) {
PyErr_SetString(PyExc_AssertionError, e.what());
}
});
using namespace PythonConversion;
py::enum_<GraphicElement::type_t>(m, "GraphicElementType")
.value("TYPE_NONE", GraphicElement::TYPE_NONE)
.value("TYPE_LINE", GraphicElement::TYPE_LINE)
.value("TYPE_ARROW", GraphicElement::TYPE_ARROW)
.value("TYPE_BOX", GraphicElement::TYPE_BOX)
.value("TYPE_CIRCLE", GraphicElement::TYPE_CIRCLE)
.value("TYPE_LABEL", GraphicElement::TYPE_LABEL)
.export_values();
py::enum_<GraphicElement::style_t>(m, "GraphicElementStyle")
.value("STYLE_GRID", GraphicElement::STYLE_GRID)
.value("STYLE_FRAME", GraphicElement::STYLE_FRAME)
.value("STYLE_HIDDEN", GraphicElement::STYLE_HIDDEN)
.value("STYLE_INACTIVE", GraphicElement::STYLE_INACTIVE)
.value("STYLE_ACTIVE", GraphicElement::STYLE_ACTIVE)
.export_values();
py::class_<GraphicElement>(m, "GraphicElement")
.def(py::init<GraphicElement::type_t, GraphicElement::style_t, float, float, float, float, float>(),
py::arg("type"), py::arg("style"), py::arg("x1"), py::arg("y1"), py::arg("x2"), py::arg("y2"),
py::arg("z"))
.def_readwrite("type", &GraphicElement::type)
.def_readwrite("x1", &GraphicElement::x1)
.def_readwrite("y1", &GraphicElement::y1)
.def_readwrite("x2", &GraphicElement::x2)
.def_readwrite("y2", &GraphicElement::y2)
.def_readwrite("text", &GraphicElement::text);
py::enum_<PortType>(m, "PortType")
.value("PORT_IN", PORT_IN)
.value("PORT_OUT", PORT_OUT)
.value("PORT_INOUT", PORT_INOUT)
.export_values();
py::enum_<PlaceStrength>(m, "PlaceStrength")
.value("STRENGTH_NONE", STRENGTH_NONE)
.value("STRENGTH_WEAK", STRENGTH_WEAK)
.value("STRENGTH_STRONG", STRENGTH_STRONG)
.value("STRENGTH_FIXED", STRENGTH_FIXED)
.value("STRENGTH_LOCKED", STRENGTH_LOCKED)
.value("STRENGTH_USER", STRENGTH_USER)
.export_values();
py::class_<DelayPair>(m, "DelayPair")
.def(py::init<>())
.def(py::init<delay_t>())
.def(py::init<delay_t, delay_t>())
.def_readwrite("min_delay", &DelayPair::min_delay)
.def_readwrite("max_delay", &DelayPair::max_delay)
.def("minDelay", &DelayPair::minDelay)
.def("maxDelay", &DelayPair::maxDelay);
py::class_<DelayQuad>(m, "DelayQuad")
.def(py::init<>())
.def(py::init<delay_t>())
.def(py::init<delay_t, delay_t>())
.def(py::init<delay_t, delay_t, delay_t, delay_t>())
.def(py::init<DelayPair, DelayPair>())
.def_readwrite("rise", &DelayQuad::rise)
.def_readwrite("fall", &DelayQuad::fall)
.def("minDelay", &DelayQuad::minDelay)
.def("minRiseDelay", &DelayQuad::minRiseDelay)
.def("minFallDelay", &DelayQuad::minFallDelay)
.def("maxDelay", &DelayQuad::maxDelay)
.def("maxRiseDelay", &DelayQuad::maxRiseDelay)
.def("maxFallDelay", &DelayQuad::maxFallDelay)
.def("delayPair", &DelayQuad::delayPair);
typedef dict<IdString, Property> AttrMap;
typedef dict<IdString, PortInfo> PortMap;
typedef dict<IdString, IdString> IdIdMap;
typedef dict<IdString, std::unique_ptr<Region>> RegionMap;
py::class_<BaseCtx>(m, "BaseCtx");
auto loc_cls = py::class_<Loc>(m, "Loc")
.def(py::init<int, int, int>())
.def_readwrite("x", &Loc::x)
.def_readwrite("y", &Loc::y)
.def_readwrite("z", &Loc::z);
auto ci_cls = py::class_<ContextualWrapper<CellInfo &>>(m, "CellInfo");
readwrite_wrapper<CellInfo &, decltype(&CellInfo::name), &CellInfo::name, conv_to_str<IdString>,
conv_from_str<IdString>>::def_wrap(ci_cls, "name");
readwrite_wrapper<CellInfo &, decltype(&CellInfo::type), &CellInfo::type, conv_to_str<IdString>,
conv_from_str<IdString>>::def_wrap(ci_cls, "type");
readonly_wrapper<CellInfo &, decltype(&CellInfo::attrs), &CellInfo::attrs, wrap_context<AttrMap &>>::def_wrap(
ci_cls, "attrs");
readonly_wrapper<CellInfo &, decltype(&CellInfo::params), &CellInfo::params, wrap_context<AttrMap &>>::def_wrap(
ci_cls, "params");
readonly_wrapper<CellInfo &, decltype(&CellInfo::ports), &CellInfo::ports, wrap_context<PortMap &>>::def_wrap(
ci_cls, "ports");
readwrite_wrapper<CellInfo &, decltype(&CellInfo::bel), &CellInfo::bel, conv_to_str<BelId>,
conv_from_str<BelId>>::def_wrap(ci_cls, "bel");
readwrite_wrapper<CellInfo &, decltype(&CellInfo::belStrength), &CellInfo::belStrength, pass_through<PlaceStrength>,
pass_through<PlaceStrength>>::def_wrap(ci_cls, "belStrength");
fn_wrapper_1a_v<CellInfo &, decltype(&CellInfo::addInput), &CellInfo::addInput, conv_from_str<IdString>>::def_wrap(
ci_cls, "addInput");
fn_wrapper_1a_v<CellInfo &, decltype(&CellInfo::addOutput), &CellInfo::addOutput,
conv_from_str<IdString>>::def_wrap(ci_cls, "addOutput");
fn_wrapper_1a_v<CellInfo &, decltype(&CellInfo::addInout), &CellInfo::addInout, conv_from_str<IdString>>::def_wrap(
ci_cls, "addInout");
fn_wrapper_2a_v<CellInfo &, decltype(&CellInfo::setParam), &CellInfo::setParam, conv_from_str<IdString>,
conv_from_str<Property>>::def_wrap(ci_cls, "setParam");
fn_wrapper_1a_v<CellInfo &, decltype(&CellInfo::unsetParam), &CellInfo::unsetParam,
conv_from_str<IdString>>::def_wrap(ci_cls, "unsetParam");
fn_wrapper_2a_v<CellInfo &, decltype(&CellInfo::setAttr), &CellInfo::setAttr, conv_from_str<IdString>,
conv_from_str<Property>>::def_wrap(ci_cls, "setAttr");
fn_wrapper_1a_v<CellInfo &, decltype(&CellInfo::unsetAttr), &CellInfo::unsetAttr,
conv_from_str<IdString>>::def_wrap(ci_cls, "unsetAttr");
auto pi_cls = py::class_<ContextualWrapper<PortInfo &>>(m, "PortInfo");
readwrite_wrapper<PortInfo &, decltype(&PortInfo::name), &PortInfo::name, conv_to_str<IdString>,
conv_from_str<IdString>>::def_wrap(pi_cls, "name");
readonly_wrapper<PortInfo &, decltype(&PortInfo::net), &PortInfo::net, deref_and_wrap<NetInfo>>::def_wrap(pi_cls,
"net");
readwrite_wrapper<PortInfo &, decltype(&PortInfo::type), &PortInfo::type, pass_through<PortType>,
pass_through<PortType>>::def_wrap(pi_cls, "type");
typedef std::vector<PortRef> PortRefVector;
typedef dict<WireId, PipMap> WireMap;
typedef pool<BelId> BelSet;
typedef pool<WireId> WireSet;
auto ni_cls = py::class_<ContextualWrapper<NetInfo &>>(m, "NetInfo");
readwrite_wrapper<NetInfo &, decltype(&NetInfo::name), &NetInfo::name, conv_to_str<IdString>,
conv_from_str<IdString>>::def_wrap(ni_cls, "name");
readwrite_wrapper<NetInfo &, decltype(&NetInfo::driver), &NetInfo::driver, wrap_context<PortRef &>,
unwrap_context<PortRef &>>::def_wrap(ni_cls, "driver");
readonly_wrapper<NetInfo &, decltype(&NetInfo::users), &NetInfo::users, wrap_context<PortRefVector &>>::def_wrap(
ni_cls, "users");
readonly_wrapper<NetInfo &, decltype(&NetInfo::wires), &NetInfo::wires, wrap_context<WireMap &>>::def_wrap(ni_cls,
"wires");
auto pr_cls = py::class_<ContextualWrapper<PortRef &>>(m, "PortRef");
readonly_wrapper<PortRef &, decltype(&PortRef::cell), &PortRef::cell, deref_and_wrap<CellInfo>>::def_wrap(pr_cls,
"cell");
readwrite_wrapper<PortRef &, decltype(&PortRef::port), &PortRef::port, conv_to_str<IdString>,
conv_from_str<IdString>>::def_wrap(pr_cls, "port");
readwrite_wrapper<PortRef &, decltype(&PortRef::budget), &PortRef::budget, pass_through<delay_t>,
pass_through<delay_t>>::def_wrap(pr_cls, "budget");
auto pm_cls = py::class_<ContextualWrapper<PipMap &>>(m, "PipMap");
readwrite_wrapper<PipMap &, decltype(&PipMap::pip), &PipMap::pip, conv_to_str<PipId>,
conv_from_str<PipId>>::def_wrap(pm_cls, "pip");
readwrite_wrapper<PipMap &, decltype(&PipMap::strength), &PipMap::strength, pass_through<PlaceStrength>,
pass_through<PlaceStrength>>::def_wrap(pm_cls, "strength");
m.def("parse_json", parse_json_shim);
m.def("load_design", load_design_shim, py::return_value_policy::take_ownership);
auto region_cls = py::class_<ContextualWrapper<Region &>>(m, "Region");
readwrite_wrapper<Region &, decltype(&Region::name), &Region::name, conv_to_str<IdString>,
conv_from_str<IdString>>::def_wrap(region_cls, "name");
readwrite_wrapper<Region &, decltype(&Region::constr_bels), &Region::constr_bels, pass_through<bool>,
pass_through<bool>>::def_wrap(region_cls, "constr_bels");
readwrite_wrapper<Region &, decltype(&Region::constr_wires), &Region::constr_wires, pass_through<bool>,
pass_through<bool>>::def_wrap(region_cls, "constr_bels");
readwrite_wrapper<Region &, decltype(&Region::constr_pips), &Region::constr_pips, pass_through<bool>,
pass_through<bool>>::def_wrap(region_cls, "constr_pips");
readonly_wrapper<Region &, decltype(&Region::bels), &Region::bels, wrap_context<BelSet &>>::def_wrap(region_cls,
"bels");
readonly_wrapper<Region &, decltype(&Region::wires), &Region::wires, wrap_context<WireSet &>>::def_wrap(region_cls,
"wires");
auto hierarchy_cls = py::class_<ContextualWrapper<HierarchicalCell &>>(m, "HierarchicalCell");
readwrite_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::name), &HierarchicalCell::name,
conv_to_str<IdString>, conv_from_str<IdString>>::def_wrap(hierarchy_cls, "name");
readwrite_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::type), &HierarchicalCell::type,
conv_to_str<IdString>, conv_from_str<IdString>>::def_wrap(hierarchy_cls, "type");
readwrite_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::parent), &HierarchicalCell::parent,
conv_to_str<IdString>, conv_from_str<IdString>>::def_wrap(hierarchy_cls, "parent");
readwrite_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::fullpath), &HierarchicalCell::fullpath,
conv_to_str<IdString>, conv_from_str<IdString>>::def_wrap(hierarchy_cls, "fullpath");
readonly_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::leaf_cells), &HierarchicalCell::leaf_cells,
wrap_context<IdIdMap &>>::def_wrap(hierarchy_cls, "leaf_cells");
readonly_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::nets), &HierarchicalCell::nets,
wrap_context<IdIdMap &>>::def_wrap(hierarchy_cls, "nets");
readonly_wrapper<HierarchicalCell &, decltype(&HierarchicalCell::hier_cells), &HierarchicalCell::hier_cells,
wrap_context<IdIdMap &>>::def_wrap(hierarchy_cls, "hier_cells");
WRAP_MAP(m, AttrMap, conv_to_str<Property>, "AttrMap");
WRAP_MAP(m, PortMap, wrap_context<PortInfo &>, "PortMap");
WRAP_MAP(m, IdIdMap, conv_to_str<IdString>, "IdIdMap");
WRAP_MAP(m, WireMap, wrap_context<PipMap &>, "WireMap");
WRAP_MAP_UPTR(m, RegionMap, "RegionMap");
WRAP_VECTOR(m, PortRefVector, wrap_context<PortRef &>);
arch_wrap_python(m);
}
#ifdef MAIN_EXECUTABLE
static wchar_t *program;
#endif
void init_python(const char *executable)
{
#ifdef MAIN_EXECUTABLE
program = Py_DecodeLocale(executable, NULL);
if (program == NULL) {
fprintf(stderr, "Fatal error: cannot decode executable filename\n");
exit(1);
}
Py_SetProgramName(program);
py::initialize_interpreter();
py::module::import(TOSTRING(MODULE_NAME));
PyRun_SimpleString("from " TOSTRING(MODULE_NAME) " import *");
signal(SIGINT, SIG_DFL);
#endif
}
void deinit_python()
{
#ifdef MAIN_EXECUTABLE
py::finalize_interpreter();
PyMem_RawFree(program);
#endif
}
void execute_python_file(const char *python_file)
{
try {
FILE *fp = fopen(python_file, "r");
if (fp == NULL) {
fprintf(stderr, "Fatal error: file not found %s\n", python_file);
exit(1);
}
int result = PyRun_SimpleFile(fp, python_file);
fclose(fp);
if (result == -1) {
log_error("Error occurred while executing Python script %s\n", python_file);
}
} catch (py::error_already_set const &) {
// Parse and output the exception
std::string perror_str = parse_python_exception();
log_error("Error in Python: %s\n", perror_str.c_str());
}
}
NEXTPNR_NAMESPACE_END
#endif // NO_PYTHON
|