1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "nextpnr.h"
#include "log.h"
NEXTPNR_NAMESPACE_BEGIN
assertion_failure::assertion_failure(std::string msg, std::string expr_str, std::string filename, int line)
: runtime_error("Assertion failure: " + msg + " (" + filename + ":" + std::to_string(line) + ")"), msg(msg),
expr_str(expr_str), filename(filename), line(line)
{
log_flush();
}
void IdString::set(const BaseCtx *ctx, const std::string &s)
{
auto it = ctx->idstring_str_to_idx->find(s);
if (it == ctx->idstring_str_to_idx->end()) {
index = ctx->idstring_idx_to_str->size();
auto insert_rc = ctx->idstring_str_to_idx->insert({s, index});
ctx->idstring_idx_to_str->push_back(&insert_rc.first->first);
} else {
index = it->second;
}
}
const std::string &IdString::str(const BaseCtx *ctx) const { return *ctx->idstring_idx_to_str->at(index); }
const char *IdString::c_str(const BaseCtx *ctx) const { return str(ctx).c_str(); }
void IdString::initialize_add(const BaseCtx *ctx, const char *s, int idx)
{
NPNR_ASSERT(ctx->idstring_str_to_idx->count(s) == 0);
NPNR_ASSERT(int(ctx->idstring_idx_to_str->size()) == idx);
auto insert_rc = ctx->idstring_str_to_idx->insert({s, idx});
ctx->idstring_idx_to_str->push_back(&insert_rc.first->first);
}
TimingConstrObjectId BaseCtx::timingWildcardObject()
{
TimingConstrObjectId id;
id.index = 0;
return id;
}
TimingConstrObjectId BaseCtx::timingClockDomainObject(NetInfo *clockDomain)
{
NPNR_ASSERT(clockDomain->clkconstr != nullptr);
if (clockDomain->clkconstr->domain_tmg_id != TimingConstrObjectId()) {
return clockDomain->clkconstr->domain_tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::CLOCK_DOMAIN;
obj.entity = clockDomain->name;
clockDomain->clkconstr->domain_tmg_id = id;
constraintObjects.push_back(obj);
return id;
}
}
TimingConstrObjectId BaseCtx::timingNetObject(NetInfo *net)
{
if (net->tmg_id != TimingConstrObjectId()) {
return net->tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::NET;
obj.entity = net->name;
constraintObjects.push_back(obj);
net->tmg_id = id;
return id;
}
}
TimingConstrObjectId BaseCtx::timingCellObject(CellInfo *cell)
{
if (cell->tmg_id != TimingConstrObjectId()) {
return cell->tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::CELL;
obj.entity = cell->name;
constraintObjects.push_back(obj);
cell->tmg_id = id;
return id;
}
}
TimingConstrObjectId BaseCtx::timingPortObject(CellInfo *cell, IdString port)
{
if (cell->ports.at(port).tmg_id != TimingConstrObjectId()) {
return cell->ports.at(port).tmg_id;
} else {
TimingConstraintObject obj;
TimingConstrObjectId id;
id.index = int(constraintObjects.size());
obj.id = id;
obj.type = TimingConstraintObject::CELL_PORT;
obj.entity = cell->name;
obj.port = port;
constraintObjects.push_back(obj);
cell->ports.at(port).tmg_id = id;
return id;
}
}
void BaseCtx::addConstraint(std::unique_ptr<TimingConstraint> constr)
{
for (auto fromObj : constr->from)
constrsFrom.emplace(fromObj, constr.get());
for (auto toObj : constr->to)
constrsTo.emplace(toObj, constr.get());
IdString name = constr->name;
constraints[name] = std::move(constr);
}
void BaseCtx::removeConstraint(IdString constrName)
{
TimingConstraint *constr = constraints[constrName].get();
for (auto fromObj : constr->from) {
auto fromConstrs = constrsFrom.equal_range(fromObj);
constrsFrom.erase(std::find(fromConstrs.first, fromConstrs.second, std::make_pair(fromObj, constr)));
}
for (auto toObj : constr->to) {
auto toConstrs = constrsFrom.equal_range(toObj);
constrsFrom.erase(std::find(toConstrs.first, toConstrs.second, std::make_pair(toObj, constr)));
}
constraints.erase(constrName);
}
const char *BaseCtx::nameOfBel(BelId bel) const
{
const Context *ctx = getCtx();
return ctx->getBelName(bel).c_str(ctx);
}
const char *BaseCtx::nameOfWire(WireId wire) const
{
const Context *ctx = getCtx();
return ctx->getWireName(wire).c_str(ctx);
}
const char *BaseCtx::nameOfPip(PipId pip) const
{
const Context *ctx = getCtx();
return ctx->getPipName(pip).c_str(ctx);
}
const char *BaseCtx::nameOfGroup(GroupId group) const
{
const Context *ctx = getCtx();
return ctx->getGroupName(group).c_str(ctx);
}
WireId Context::getNetinfoSourceWire(const NetInfo *net_info) const
{
if (net_info->driver.cell == nullptr)
return WireId();
auto src_bel = net_info->driver.cell->bel;
if (src_bel == BelId())
return WireId();
IdString driver_port = net_info->driver.port;
auto driver_port_it = net_info->driver.cell->pins.find(driver_port);
if (driver_port_it != net_info->driver.cell->pins.end())
driver_port = driver_port_it->second;
return getBelPinWire(src_bel, driver_port);
}
WireId Context::getNetinfoSinkWire(const NetInfo *net_info, const PortRef &user_info) const
{
auto dst_bel = user_info.cell->bel;
if (dst_bel == BelId())
return WireId();
IdString user_port = user_info.port;
auto user_port_it = user_info.cell->pins.find(user_port);
if (user_port_it != user_info.cell->pins.end())
user_port = user_port_it->second;
return getBelPinWire(dst_bel, user_port);
}
delay_t Context::getNetinfoRouteDelay(const NetInfo *net_info, const PortRef &user_info) const
{
#ifdef ARCH_ECP5
if (net_info->is_global)
return 0;
#endif
if (net_info->wires.empty())
return predictDelay(net_info, user_info);
WireId src_wire = getNetinfoSourceWire(net_info);
if (src_wire == WireId())
return 0;
WireId dst_wire = getNetinfoSinkWire(net_info, user_info);
WireId cursor = dst_wire;
delay_t delay = 0;
while (cursor != WireId() && cursor != src_wire) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end())
break;
PipId pip = it->second.pip;
delay += getPipDelay(pip).maxDelay();
delay += getWireDelay(cursor).maxDelay();
cursor = getPipSrcWire(pip);
}
if (cursor == src_wire)
return delay + getWireDelay(src_wire).maxDelay();
return predictDelay(net_info, user_info);
}
static uint32_t xorshift32(uint32_t x)
{
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return x;
}
uint32_t Context::checksum() const
{
uint32_t cksum = xorshift32(123456789);
uint32_t cksum_nets_sum = 0;
for (auto &it : nets) {
auto &ni = *it.second;
uint32_t x = 123456789;
x = xorshift32(x + xorshift32(it.first.index));
x = xorshift32(x + xorshift32(ni.name.index));
if (ni.driver.cell)
x = xorshift32(x + xorshift32(ni.driver.cell->name.index));
x = xorshift32(x + xorshift32(ni.driver.port.index));
x = xorshift32(x + xorshift32(getDelayChecksum(ni.driver.budget)));
for (auto &u : ni.users) {
if (u.cell)
x = xorshift32(x + xorshift32(u.cell->name.index));
x = xorshift32(x + xorshift32(u.port.index));
x = xorshift32(x + xorshift32(getDelayChecksum(u.budget)));
}
uint32_t attr_x_sum = 0;
for (auto &a : ni.attrs) {
uint32_t attr_x = 123456789;
attr_x = xorshift32(attr_x + xorshift32(a.first.index));
for (uint8_t ch : a.second)
attr_x = xorshift32(attr_x + xorshift32(ch));
attr_x_sum += attr_x;
}
x = xorshift32(x + xorshift32(attr_x_sum));
uint32_t wire_x_sum = 0;
for (auto &w : ni.wires) {
uint32_t wire_x = 123456789;
wire_x = xorshift32(wire_x + xorshift32(getWireChecksum(w.first)));
wire_x = xorshift32(wire_x + xorshift32(getPipChecksum(w.second.pip)));
wire_x = xorshift32(wire_x + xorshift32(int(w.second.strength)));
wire_x_sum += wire_x;
}
x = xorshift32(x + xorshift32(wire_x_sum));
cksum_nets_sum += x;
}
cksum = xorshift32(cksum + xorshift32(cksum_nets_sum));
uint32_t cksum_cells_sum = 0;
for (auto &it : cells) {
auto &ci = *it.second;
uint32_t x = 123456789;
x = xorshift32(x + xorshift32(it.first.index));
x = xorshift32(x + xorshift32(ci.name.index));
x = xorshift32(x + xorshift32(ci.type.index));
uint32_t port_x_sum = 0;
for (auto &p : ci.ports) {
uint32_t port_x = 123456789;
port_x = xorshift32(port_x + xorshift32(p.first.index));
port_x = xorshift32(port_x + xorshift32(p.second.name.index));
if (p.second.net)
port_x = xorshift32(port_x + xorshift32(p.second.net->name.index));
port_x = xorshift32(port_x + xorshift32(p.second.type));
port_x_sum += port_x;
}
x = xorshift32(x + xorshift32(port_x_sum));
uint32_t attr_x_sum = 0;
for (auto &a : ci.attrs) {
uint32_t attr_x = 123456789;
attr_x = xorshift32(attr_x + xorshift32(a.first.index));
for (uint8_t ch : a.second)
attr_x = xorshift32(attr_x + xorshift32(ch));
attr_x_sum += attr_x;
}
x = xorshift32(x + xorshift32(attr_x_sum));
uint32_t param_x_sum = 0;
for (auto &p : ci.params) {
uint32_t param_x = 123456789;
param_x = xorshift32(param_x + xorshift32(p.first.index));
for (uint8_t ch : p.second)
param_x = xorshift32(param_x + xorshift32(ch));
param_x_sum += param_x;
}
x = xorshift32(x + xorshift32(param_x_sum));
x = xorshift32(x + xorshift32(getBelChecksum(ci.bel)));
x = xorshift32(x + xorshift32(ci.belStrength));
uint32_t pin_x_sum = 0;
for (auto &a : ci.pins) {
uint32_t pin_x = 123456789;
pin_x = xorshift32(pin_x + xorshift32(a.first.index));
pin_x = xorshift32(pin_x + xorshift32(a.second.index));
pin_x_sum += pin_x;
}
x = xorshift32(x + xorshift32(pin_x_sum));
cksum_cells_sum += x;
}
cksum = xorshift32(cksum + xorshift32(cksum_cells_sum));
return cksum;
}
void Context::check() const
{
for (auto &n : nets) {
auto ni = n.second.get();
NPNR_ASSERT(n.first == ni->name);
for (auto &w : ni->wires) {
NPNR_ASSERT(ni == getBoundWireNet(w.first));
if (w.second.pip != PipId()) {
NPNR_ASSERT(w.first == getPipDstWire(w.second.pip));
NPNR_ASSERT(ni == getBoundPipNet(w.second.pip));
}
}
if (ni->driver.cell != nullptr)
NPNR_ASSERT(ni->driver.cell->ports.at(ni->driver.port).net == ni);
for (auto user : ni->users) {
NPNR_ASSERT(user.cell->ports.at(user.port).net == ni);
}
}
for (auto w : getWires()) {
auto ni = getBoundWireNet(w);
if (ni != nullptr) {
NPNR_ASSERT(ni->wires.count(w));
}
}
for (auto &c : cells) {
auto ci = c.second.get();
NPNR_ASSERT(c.first == ci->name);
if (ci->bel != BelId())
NPNR_ASSERT(getBoundBelCell(c.second->bel) == ci);
for (auto &port : c.second->ports) {
NetInfo *net = port.second.net;
if (net != nullptr) {
NPNR_ASSERT(nets.find(net->name) != nets.end());
if (port.second.type == PORT_OUT) {
NPNR_ASSERT(net->driver.cell == c.second.get() && net->driver.port == port.first);
} else if (port.second.type == PORT_IN) {
NPNR_ASSERT(std::count_if(net->users.begin(), net->users.end(), [&](const PortRef &pr) {
return pr.cell == c.second.get() && pr.port == port.first;
}) == 1);
}
}
}
}
}
void BaseCtx::addClock(IdString net, float freq)
{
std::unique_ptr<ClockConstraint> cc(new ClockConstraint());
cc->period = getCtx()->getDelayFromNS(1000 / freq);
cc->high = getCtx()->getDelayFromNS(500 / freq);
cc->low = getCtx()->getDelayFromNS(500 / freq);
if (!nets.count(net)) {
log_warning("net '%s' does not exist in design, ignoring clock constraint\n", net.c_str(this));
} else {
nets.at(net)->clkconstr = std::move(cc);
log_info("constraining clock net '%s' to %.02f MHz\n", net.c_str(this), freq);
}
}
void BaseCtx::createRectangularRegion(IdString name, int x0, int y0, int x1, int y1)
{
std::unique_ptr<Region> new_region(new Region());
new_region->name = name;
new_region->constr_bels = true;
new_region->constr_pips = false;
new_region->constr_wires = false;
for (int x = x0; x <= x1; x++) {
for (int y = y0; y <= y1; y++) {
for (auto bel : getCtx()->getBelsByTile(x, y))
new_region->bels.insert(bel);
}
}
region[name] = std::move(new_region);
}
void BaseCtx::addBelToRegion(IdString name, BelId bel) { region[name]->bels.insert(bel); }
void BaseCtx::constrainCellToRegion(IdString cell, IdString region_name)
{
cells[cell]->region = region[region_name].get();
}
NEXTPNR_NAMESPACE_END
|