aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/tests/test_class.cpp
blob: 890fab736f82cf3ad7755b6f7a7e67a6a8e300cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
#! /bin/sh

. ../../testenv.sh

analyze repro.vhdl
elab tb
if ghdl_has_feature tb fst; then
  simulate tb --fst=tb.fst
fi
if ghdl_has_feature tb vcd; then
  simulate tb --vcd=tb.vcd
fi

clean
rm -f tb.fst tb.vcd

echo "Test successful"
ref='#n201'>201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*
    tests/test_class.cpp -- test py::class_ definitions and basic functionality

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#include "pybind11_tests.h"
#include "constructor_stats.h"
#include "local_bindings.h"
#include <pybind11/stl.h>

#if defined(_MSC_VER)
#  pragma warning(disable: 4324) // warning C4324: structure was padded due to alignment specifier
#endif

// test_brace_initialization
struct NoBraceInitialization {
    NoBraceInitialization(std::vector<int> v) : vec{std::move(v)} {}
    template <typename T>
    NoBraceInitialization(std::initializer_list<T> l) : vec(l) {}

    std::vector<int> vec;
};

TEST_SUBMODULE(class_, m) {
    // test_instance
    struct NoConstructor {
        NoConstructor() = default;
        NoConstructor(const NoConstructor &) = default;
        NoConstructor(NoConstructor &&) = default;
        static NoConstructor *new_instance() {
            auto *ptr = new NoConstructor();
            print_created(ptr, "via new_instance");
            return ptr;
        }
        ~NoConstructor() { print_destroyed(this); }
    };

    py::class_<NoConstructor>(m, "NoConstructor")
        .def_static("new_instance", &NoConstructor::new_instance, "Return an instance");

    // test_inheritance
    class Pet {
    public:
        Pet(const std::string &name, const std::string &species)
            : m_name(name), m_species(species) {}
        std::string name() const { return m_name; }
        std::string species() const { return m_species; }
    private:
        std::string m_name;
        std::string m_species;
    };

    class Dog : public Pet {
    public:
        Dog(const std::string &name) : Pet(name, "dog") {}
        std::string bark() const { return "Woof!"; }
    };

    class Rabbit : public Pet {
    public:
        Rabbit(const std::string &name) : Pet(name, "parrot") {}
    };

    class Hamster : public Pet {
    public:
        Hamster(const std::string &name) : Pet(name, "rodent") {}
    };

    class Chimera : public Pet {
        Chimera() : Pet("Kimmy", "chimera") {}
    };

    py::class_<Pet> pet_class(m, "Pet");
    pet_class
        .def(py::init<std::string, std::string>())
        .def("name", &Pet::name)
        .def("species", &Pet::species);

    /* One way of declaring a subclass relationship: reference parent's class_ object */
    py::class_<Dog>(m, "Dog", pet_class)
        .def(py::init<std::string>());

    /* Another way of declaring a subclass relationship: reference parent's C++ type */
    py::class_<Rabbit, Pet>(m, "Rabbit")
        .def(py::init<std::string>());

    /* And another: list parent in class template arguments */
    py::class_<Hamster, Pet>(m, "Hamster")
        .def(py::init<std::string>());

    /* Constructors are not inherited by default */
    py::class_<Chimera, Pet>(m, "Chimera");

    m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); });
    m.def("dog_bark", [](const Dog &dog) { return dog.bark(); });

    // test_automatic_upcasting
    struct BaseClass {
        BaseClass() = default;
        BaseClass(const BaseClass &) = default;
        BaseClass(BaseClass &&) = default;
        virtual ~BaseClass() = default;
    };
    struct DerivedClass1 : BaseClass { };
    struct DerivedClass2 : BaseClass { };

    py::class_<BaseClass>(m, "BaseClass").def(py::init<>());
    py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>());
    py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>());

    m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); });
    m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); });
    m.def("return_class_n", [](int n) -> BaseClass* {
        if (n == 1) return new DerivedClass1();
        if (n == 2) return new DerivedClass2();
        return new BaseClass();
    });
    m.def("return_none", []() -> BaseClass* { return nullptr; });

    // test_isinstance
    m.def("check_instances", [](py::list l) {
        return py::make_tuple(
            py::isinstance<py::tuple>(l[0]),
            py::isinstance<py::dict>(l[1]),
            py::isinstance<Pet>(l[2]),
            py::isinstance<Pet>(l[3]),
            py::isinstance<Dog>(l[4]),
            py::isinstance<Rabbit>(l[5]),
            py::isinstance<UnregisteredType>(l[6])
        );
    });

    struct Invalid {};

    // test_type
    m.def("check_type", [](int category) {
        // Currently not supported (via a fail at compile time)
        // See https://github.com/pybind/pybind11/issues/2486
        // if (category == 2)
        //     return py::type::of<int>();
        if (category == 1)
            return py::type::of<DerivedClass1>();
        else
            return py::type::of<Invalid>();
    });

    m.def("get_type_of", [](py::object ob) {
        return py::type::of(ob);
    });

    m.def("get_type_classic", [](py::handle h) {
        return h.get_type();
    });

    m.def("as_type", [](py::object ob) {
        return py::type(ob);
    });

    // test_mismatched_holder
    struct MismatchBase1 { };
    struct MismatchDerived1 : MismatchBase1 { };

    struct MismatchBase2 { };
    struct MismatchDerived2 : MismatchBase2 { };

    m.def("mismatched_holder_1", []() {
        auto mod = py::module_::import("__main__");
        py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1");
        py::class_<MismatchDerived1, MismatchBase1>(mod, "MismatchDerived1");
    });
    m.def("mismatched_holder_2", []() {
        auto mod = py::module_::import("__main__");
        py::class_<MismatchBase2>(mod, "MismatchBase2");
        py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>,
                   MismatchBase2>(mod, "MismatchDerived2");
    });

    // test_override_static
    // #511: problem with inheritance + overwritten def_static
    struct MyBase {
        static std::unique_ptr<MyBase> make() {
            return std::unique_ptr<MyBase>(new MyBase());
        }
    };

    struct MyDerived : MyBase {
        static std::unique_ptr<MyDerived> make() {
            return std::unique_ptr<MyDerived>(new MyDerived());
        }
    };

    py::class_<MyBase>(m, "MyBase")
        .def_static("make", &MyBase::make);

    py::class_<MyDerived, MyBase>(m, "MyDerived")
        .def_static("make", &MyDerived::make)
        .def_static("make2", &MyDerived::make);

    // test_implicit_conversion_life_support
    struct ConvertibleFromUserType {
        int i;

        ConvertibleFromUserType(UserType u) : i(u.value()) { }
    };

    py::class_<ConvertibleFromUserType>(m, "AcceptsUserType")
        .def(py::init<UserType>());
    py::implicitly_convertible<UserType, ConvertibleFromUserType>();

    m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; });
    m.def("implicitly_convert_variable", [](py::object o) {
        // `o` is `UserType` and `r` is a reference to a temporary created by implicit
        // conversion. This is valid when called inside a bound function because the temp
        // object is attached to the same life support system as the arguments.
        const auto &r = o.cast<const ConvertibleFromUserType &>();
        return r.i;
    });
    m.add_object("implicitly_convert_variable_fail", [&] {
        auto f = [](PyObject *, PyObject *args) -> PyObject * {
            auto o = py::reinterpret_borrow<py::tuple>(args)[0];
            try { // It should fail here because there is no life support.
                o.cast<const ConvertibleFromUserType &>();
            } catch (const py::cast_error &e) {
                return py::str(e.what()).release().ptr();
            }
            return py::str().release().ptr();
        };

        auto def = new PyMethodDef{"f", f, METH_VARARGS, nullptr};
        return py::reinterpret_steal<py::object>(PyCFunction_NewEx(def, nullptr, m.ptr()));
    }());

    // test_operator_new_delete
    struct HasOpNewDel {
        std::uint64_t i;
        static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; }
        static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); }
    };
    struct HasOpNewDelSize {
        std::uint32_t i;
        static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; }
        static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); }
    };
    struct AliasedHasOpNewDelSize {
        std::uint64_t i;
        static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; }
        static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); }
        virtual ~AliasedHasOpNewDelSize() = default;
        AliasedHasOpNewDelSize() = default;
        AliasedHasOpNewDelSize(const AliasedHasOpNewDelSize&) = delete;
    };
    struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize {
        PyAliasedHasOpNewDelSize() = default;
        PyAliasedHasOpNewDelSize(int) { }
        std::uint64_t j;
    };
    struct HasOpNewDelBoth {
        std::uint32_t i[8];
        static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; }
        static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); }
        static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); }
    };
    py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>());
    py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>());
    py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>());
    py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m, "AliasedHasOpNewDelSize");
    aliased.def(py::init<>());
    aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize));
    aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize));

    // This test is actually part of test_local_bindings (test_duplicate_local), but we need a
    // definition in a different compilation unit within the same module:
    bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local());

    // test_bind_protected_functions
    class ProtectedA {
    protected:
        int foo() const { return value; }

    private:
        int value = 42;
    };

    class PublicistA : public ProtectedA {
    public:
        using ProtectedA::foo;
    };

    py::class_<ProtectedA>(m, "ProtectedA")
        .def(py::init<>())
#if !defined(_MSC_VER) || _MSC_VER >= 1910
        .def("foo", &PublicistA::foo);
#else
        .def("foo", static_cast<int (ProtectedA::*)() const>(&PublicistA::foo));
#endif

    class ProtectedB {
    public:
        virtual ~ProtectedB() = default;
        ProtectedB() = default;
        ProtectedB(const ProtectedB &) = delete;

    protected:
        virtual int foo() const { return value; }

    private:
        int value = 42;
    };

    class TrampolineB : public ProtectedB {
    public:
        int foo() const override { PYBIND11_OVERRIDE(int, ProtectedB, foo, ); }
    };

    class PublicistB : public ProtectedB {
    public:
        using ProtectedB::foo;
    };

    py::class_<ProtectedB, TrampolineB>(m, "ProtectedB")
        .def(py::init<>())
#if !defined(_MSC_VER) || _MSC_VER >= 1910
        .def("foo", &PublicistB::foo);
#else
        .def("foo", static_cast<int (ProtectedB::*)() const>(&PublicistB::foo));
#endif

    // test_brace_initialization
    struct BraceInitialization {
        int field1;
        std::string field2;
    };

    py::class_<BraceInitialization>(m, "BraceInitialization")
        .def(py::init<int, const std::string &>())
        .def_readwrite("field1", &BraceInitialization::field1)
        .def_readwrite("field2", &BraceInitialization::field2);
    // We *don't* want to construct using braces when the given constructor argument maps to a
    // constructor, because brace initialization could go to the wrong place (in particular when
    // there is also an `initializer_list<T>`-accept constructor):
    py::class_<NoBraceInitialization>(m, "NoBraceInitialization")
        .def(py::init<std::vector<int>>())
        .def_readonly("vec", &NoBraceInitialization::vec);

    // test_reentrant_implicit_conversion_failure
    // #1035: issue with runaway reentrant implicit conversion
    struct BogusImplicitConversion {
        BogusImplicitConversion(const BogusImplicitConversion &) = default;
    };

    py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion")
        .def(py::init<const BogusImplicitConversion &>());

    py::implicitly_convertible<int, BogusImplicitConversion>();

    // test_qualname
    // #1166: nested class docstring doesn't show nested name
    // Also related: tests that __qualname__ is set properly
    struct NestBase {};
    struct Nested {};
    py::class_<NestBase> base(m, "NestBase");
    base.def(py::init<>());
    py::class_<Nested>(base, "Nested")
        .def(py::init<>())
        .def("fn", [](Nested &, int, NestBase &, Nested &) {})
        .def("fa", [](Nested &, int, NestBase &, Nested &) {},
                "a"_a, "b"_a, "c"_a);
    base.def("g", [](NestBase &, Nested &) {});
    base.def("h", []() { return NestBase(); });

    // test_error_after_conversion
    // The second-pass path through dispatcher() previously didn't
    // remember which overload was used, and would crash trying to
    // generate a useful error message

    struct NotRegistered {};
    struct StringWrapper { std::string str; };
    m.def("test_error_after_conversions", [](int) {});
    m.def("test_error_after_conversions",
          [](StringWrapper) -> NotRegistered { return {}; });
    py::class_<StringWrapper>(m, "StringWrapper").def(py::init<std::string>());
    py::implicitly_convertible<std::string, StringWrapper>();

    #if defined(PYBIND11_CPP17)
        struct alignas(1024) Aligned {
            std::uintptr_t ptr() const { return (uintptr_t) this; }
        };
        py::class_<Aligned>(m, "Aligned")
            .def(py::init<>())
            .def("ptr", &Aligned::ptr);
    #endif

    // test_final
    struct IsFinal final {};
    py::class_<IsFinal>(m, "IsFinal", py::is_final());

    // test_non_final_final
    struct IsNonFinalFinal {};
    py::class_<IsNonFinalFinal>(m, "IsNonFinalFinal", py::is_final());

    // test_exception_rvalue_abort
    struct PyPrintDestructor {
        PyPrintDestructor() = default;
        ~PyPrintDestructor() {
            py::print("Print from destructor");
        }
        void throw_something() { throw std::runtime_error("error"); }
    };
    py::class_<PyPrintDestructor>(m, "PyPrintDestructor")
        .def(py::init<>())
        .def("throw_something", &PyPrintDestructor::throw_something);

    // test_multiple_instances_with_same_pointer
    struct SamePointer {};
    static SamePointer samePointer;
    py::class_<SamePointer, std::unique_ptr<SamePointer, py::nodelete>>(m, "SamePointer")
        .def(py::init([]() { return &samePointer; }))
        .def("__del__", [](SamePointer&) { py::print("__del__ called"); });

    struct Empty {};
    py::class_<Empty>(m, "Empty")
        .def(py::init<>());

    // test_base_and_derived_nested_scope
    struct BaseWithNested {
        struct Nested {};
    };

    struct DerivedWithNested : BaseWithNested {
        struct Nested {};
    };

    py::class_<BaseWithNested> baseWithNested_class(m, "BaseWithNested");
    py::class_<DerivedWithNested, BaseWithNested> derivedWithNested_class(m, "DerivedWithNested");
    py::class_<BaseWithNested::Nested>(baseWithNested_class, "Nested")
        .def_static("get_name", []() { return "BaseWithNested::Nested"; });
    py::class_<DerivedWithNested::Nested>(derivedWithNested_class, "Nested")
        .def_static("get_name", []() { return "DerivedWithNested::Nested"; });

    // test_register_duplicate_class
    struct Duplicate {};
    struct OtherDuplicate {};
    struct DuplicateNested {};
    struct OtherDuplicateNested {};
    m.def("register_duplicate_class_name", [](py::module_ m) {
        py::class_<Duplicate>(m, "Duplicate");
        py::class_<OtherDuplicate>(m, "Duplicate");
    });
    m.def("register_duplicate_class_type", [](py::module_ m) {
        py::class_<OtherDuplicate>(m, "OtherDuplicate");
        py::class_<OtherDuplicate>(m, "YetAnotherDuplicate");
    });
    m.def("register_duplicate_nested_class_name", [](py::object gt) {
        py::class_<DuplicateNested>(gt, "DuplicateNested");
        py::class_<OtherDuplicateNested>(gt, "DuplicateNested");
    });
    m.def("register_duplicate_nested_class_type", [](py::object gt) {
        py::class_<OtherDuplicateNested>(gt, "OtherDuplicateNested");
        py::class_<OtherDuplicateNested>(gt, "YetAnotherDuplicateNested");
    });
}

template <int N> class BreaksBase { public:
    virtual ~BreaksBase() = default;
    BreaksBase() = default;
    BreaksBase(const BreaksBase&) = delete;
};
template <int N> class BreaksTramp : public BreaksBase<N> {};
// These should all compile just fine:
using DoesntBreak1 = py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>>;
using DoesntBreak2 = py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>>;
using DoesntBreak3 = py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>>;
using DoesntBreak4 = py::class_<BreaksBase<4>, BreaksTramp<4>>;
using DoesntBreak5 = py::class_<BreaksBase<5>>;
using DoesntBreak6 = py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>>;
using DoesntBreak7 = py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>>;
using DoesntBreak8 = py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>>;
#define CHECK_BASE(N) static_assert(std::is_same<typename DoesntBreak##N::type, BreaksBase<N>>::value, \
        "DoesntBreak" #N " has wrong type!")
CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8);
#define CHECK_ALIAS(N) static_assert(DoesntBreak##N::has_alias && std::is_same<typename DoesntBreak##N::type_alias, BreaksTramp<N>>::value, \
        "DoesntBreak" #N " has wrong type_alias!")
#define CHECK_NOALIAS(N) static_assert(!DoesntBreak##N::has_alias && std::is_void<typename DoesntBreak##N::type_alias>::value, \
        "DoesntBreak" #N " has type alias, but shouldn't!")
CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8);
#define CHECK_HOLDER(N, TYPE) static_assert(std::is_same<typename DoesntBreak##N::holder_type, std::TYPE##_ptr<BreaksBase<N>>>::value, \
        "DoesntBreak" #N " has wrong holder_type!")
CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique);
CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared);

// There's no nice way to test that these fail because they fail to compile; leave them here,
// though, so that they can be manually tested by uncommenting them (and seeing that compilation
// failures occurs).

// We have to actually look into the type: the typedef alone isn't enough to instantiate the type:
#define CHECK_BROKEN(N) static_assert(std::is_same<typename Breaks##N::type, BreaksBase<-N>>::value, \
        "Breaks1 has wrong type!");

//// Two holder classes:
//typedef py::class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>> Breaks1;
//CHECK_BROKEN(1);
//// Two aliases:
//typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2;
//CHECK_BROKEN(2);
//// Holder + 2 aliases
//typedef py::class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3;
//CHECK_BROKEN(3);
//// Alias + 2 holders
//typedef py::class_<BreaksBase<-4>, std::unique_ptr<BreaksBase<-4>>, BreaksTramp<-4>, std::shared_ptr<BreaksBase<-4>>> Breaks4;
//CHECK_BROKEN(4);
//// Invalid option (not a subclass or holder)
//typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5;
//CHECK_BROKEN(5);
//// Invalid option: multiple inheritance not supported:
//template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {};
//typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8;
//CHECK_BROKEN(8);