aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/googletest/googlemock/test/gmock-generated-matchers_test.cc
blob: 0e9f77f5ebc4f8823fa86c0f737922382769c40e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-

import sys, re
from os.path import abspath
from pathlib import Path
from json import dump, loads


# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, abspath('.'))

# -- General configuration ------------------------------------------------

# If your documentation needs a minimal Sphinx version, state it here.
needs_sphinx = '1.5'

extensions = [
    # Standard Sphinx extensions
    'recommonmark',
    'sphinx.ext.autodoc',
    'sphinx.ext.extlinks',
    'sphinx.ext.intersphinx',
    'sphinx.ext.todo',
    'sphinx.ext.graphviz',
    'sphinx.ext.mathjax',
    'sphinx.ext.ifconfig',
    'sphinx.ext.viewcode',
    # Other
    'exec',
]

autodoc_default_options = {
    "members": True,
    'undoc-members': True,
    #'private-members': True,
    'inherited-members': True,
}

templates_path = ['_templates']

# The suffix(es) of source filenames.
source_suffix = {
    '.rst': 'restructuredtext',
    # '.txt': 'markdown',
    '.md': 'markdown',
}

# The master toctree document.
master_doc = 'index'

# General information about the project.
project = u'GHDL'
copyright = u'2002-2020, Tristan Gingold and contributors'
author = u'Tristan Gingold and contributors'

# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.

try:
    with open('../configure') as verin:
        for line in verin:
            line = re.findall(r'ghdl_version=\"([0-9].+)\"', line)
            if line:
                version = line[0]
                break
except Exception as e:
    print('cannot extract version: %s' % e)
    version = "latest"
    pass

release = version  # The full version, including alpha/beta/rc tags.

# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None

# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = []

# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True
todo_link_only = True

# reST settings
prologPath = "prolog.inc"
try:
    with open(prologPath, "r") as prologFile:
        rst_prolog = prologFile.read()
except Exception as ex:
    print("[ERROR:] While reading '{0!s}'.".format(prologPath))
    print(ex)
    rst_prolog = ""

# -- Options for HTML output ----------------------------------------------

html_theme_options = {
    'logo_only': True,
    'home_breadcrumbs': False,
    'vcs_pageview_mode': 'blob',
}

html_context = {}
ctx = Path(__file__).resolve().parent / 'context.json'
if ctx.is_file():
    html_context.update(loads(ctx.open('r').read()))

html_theme_path = ["."]
html_theme = "_theme"

# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']

# Output file base name for HTML help builder.
htmlhelp_basename = 'GHDLdoc'

# -- Options for LaTeX output ---------------------------------------------

latex_elements = {
    'papersize': 'a4paper',
}

# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto, manual, or own class]).
latex_documents = [
    (master_doc, 'GHDL.tex', u'GHDL Documentation', author, 'manual'),
]

# -- Options for manual page output ---------------------------------------

# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
    (master_doc, 'ghdl', u'GHDL Documentation', [author], 1)
]

# -- Options for Texinfo output -------------------------------------------

# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author, dir menu entry, description, category)
texinfo_documents = [
  (master_doc, 'GHDL', u'GHDL Documentation', author, 'GHDL', 'VHDL simulator.', 'Miscellaneous'),
]

# -- Sphinx.Ext.InterSphinx -----------------------------------------------

intersphinx_mapping = {
   'python': ('https://docs.python.org/3.6/', None),
   'cosim': ('https://ghdl.github.io/ghdl-cosim', None),
   'poc': ('https://poc-library.readthedocs.io/en/release', None)
}

# -- Sphinx.Ext.ExtLinks --------------------------------------------------
extlinks = {
   'wikipedia': ('https://en.wikipedia.org/wiki/%s', None),
   'ghdlsharp': ('https://github.com/ghdl/ghdl/issues/%s', '#'),
   'ghdlissue': ('https://github.com/ghdl/ghdl/issues/%s', 'issue #'),
   'ghdlpull':  ('https://github.com/ghdl/ghdl/pull/%s', 'pull request #'),
   'ghdlsrc':   ('https://github.com/ghdl/ghdl/blob/master/src/%s', None)
}
id='n786' href='#n786'>786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in matchers generated by a script.

#include "gmock/gmock-generated-matchers.h"

#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"

namespace {

using std::list;
using std::map;
using std::pair;
using std::set;
using std::stringstream;
using std::vector;
using testing::get;
using testing::make_tuple;
using testing::tuple;
using testing::_;
using testing::Args;
using testing::Contains;
using testing::ElementsAre;
using testing::ElementsAreArray;
using testing::Eq;
using testing::Ge;
using testing::Gt;
using testing::Le;
using testing::Lt;
using testing::MakeMatcher;
using testing::Matcher;
using testing::MatcherInterface;
using testing::MatchResultListener;
using testing::Ne;
using testing::Not;
using testing::Pointee;
using testing::PrintToString;
using testing::Ref;
using testing::StaticAssertTypeEq;
using testing::StrEq;
using testing::Value;
using testing::internal::ElementsAreArrayMatcher;
using testing::internal::string;

// Returns the description of the given matcher.
template <typename T>
string Describe(const Matcher<T>& m) {
  stringstream ss;
  m.DescribeTo(&ss);
  return ss.str();
}

// Returns the description of the negation of the given matcher.
template <typename T>
string DescribeNegation(const Matcher<T>& m) {
  stringstream ss;
  m.DescribeNegationTo(&ss);
  return ss.str();
}

// Returns the reason why x matches, or doesn't match, m.
template <typename MatcherType, typename Value>
string Explain(const MatcherType& m, const Value& x) {
  stringstream ss;
  m.ExplainMatchResultTo(x, &ss);
  return ss.str();
}

// Tests Args<k0, ..., kn>(m).

TEST(ArgsTest, AcceptsZeroTemplateArg) {
  const tuple<int, bool> t(5, true);
  EXPECT_THAT(t, Args<>(Eq(tuple<>())));
  EXPECT_THAT(t, Not(Args<>(Ne(tuple<>()))));
}

TEST(ArgsTest, AcceptsOneTemplateArg) {
  const tuple<int, bool> t(5, true);
  EXPECT_THAT(t, Args<0>(Eq(make_tuple(5))));
  EXPECT_THAT(t, Args<1>(Eq(make_tuple(true))));
  EXPECT_THAT(t, Not(Args<1>(Eq(make_tuple(false)))));
}

TEST(ArgsTest, AcceptsTwoTemplateArgs) {
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT

  EXPECT_THAT(t, (Args<0, 1>(Lt())));
  EXPECT_THAT(t, (Args<1, 2>(Lt())));
  EXPECT_THAT(t, Not(Args<0, 2>(Gt())));
}

TEST(ArgsTest, AcceptsRepeatedTemplateArgs) {
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
  EXPECT_THAT(t, (Args<0, 0>(Eq())));
  EXPECT_THAT(t, Not(Args<1, 1>(Ne())));
}

TEST(ArgsTest, AcceptsDecreasingTemplateArgs) {
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
  EXPECT_THAT(t, (Args<2, 0>(Gt())));
  EXPECT_THAT(t, Not(Args<2, 1>(Lt())));
}

// The MATCHER*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4.  Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma.  Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif

MATCHER(SumIsZero, "") {
  return get<0>(arg) + get<1>(arg) + get<2>(arg) == 0;
}

TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) {
  EXPECT_THAT(make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero())));
  EXPECT_THAT(make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero())));
}

TEST(ArgsTest, CanBeNested) {
  const tuple<short, int, long, int> t(4, 5, 6L, 6);  // NOLINT
  EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq()))));
  EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt()))));
}

TEST(ArgsTest, CanMatchTupleByValue) {
  typedef tuple<char, int, int> Tuple3;
  const Matcher<Tuple3> m = Args<1, 2>(Lt());
  EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2)));
  EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2)));
}

TEST(ArgsTest, CanMatchTupleByReference) {
  typedef tuple<char, char, int> Tuple3;
  const Matcher<const Tuple3&> m = Args<0, 1>(Lt());
  EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2)));
  EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2)));
}

// Validates that arg is printed as str.
MATCHER_P(PrintsAs, str, "") {
  return testing::PrintToString(arg) == str;
}

TEST(ArgsTest, AcceptsTenTemplateArgs) {
  EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
              (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
                  PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
  EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
              Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
                      PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
}

TEST(ArgsTest, DescirbesSelfCorrectly) {
  const Matcher<tuple<int, bool, char> > m = Args<2, 0>(Lt());
  EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where "
            "the first < the second",
            Describe(m));
}

TEST(ArgsTest, DescirbesNestedArgsCorrectly) {
  const Matcher<const tuple<int, bool, char, int>&> m =
      Args<0, 2, 3>(Args<2, 0>(Lt()));
  EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple "
            "whose fields (#2, #0) are a pair where the first < the second",
            Describe(m));
}

TEST(ArgsTest, DescribesNegationCorrectly) {
  const Matcher<tuple<int, char> > m = Args<1, 0>(Gt());
  EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair "
            "where the first > the second",
            DescribeNegation(m));
}

TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) {
  const Matcher<tuple<bool, int, int> > m = Args<1, 2>(Eq());
  EXPECT_EQ("whose fields (#1, #2) are (42, 42)",
            Explain(m, make_tuple(false, 42, 42)));
  EXPECT_EQ("whose fields (#1, #2) are (42, 43)",
            Explain(m, make_tuple(false, 42, 43)));
}

// For testing Args<>'s explanation.
class LessThanMatcher : public MatcherInterface<tuple<char, int> > {
 public:
  virtual void DescribeTo(::std::ostream* os) const {}

  virtual bool MatchAndExplain(tuple<char, int> value,
                               MatchResultListener* listener) const {
    const int diff = get<0>(value) - get<1>(value);
    if (diff > 0) {
      *listener << "where the first value is " << diff
                << " more than the second";
    }
    return diff < 0;
  }
};

Matcher<tuple<char, int> > LessThan() {
  return MakeMatcher(new LessThanMatcher);
}

TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) {
  const Matcher<tuple<char, int, int> > m = Args<0, 2>(LessThan());
  EXPECT_EQ("whose fields (#0, #2) are ('a' (97, 0x61), 42), "
            "where the first value is 55 more than the second",
            Explain(m, make_tuple('a', 42, 42)));
  EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)",
            Explain(m, make_tuple('\0', 42, 43)));
}

// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> {
 public:
  explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}

  virtual void DescribeTo(::std::ostream* os) const {
    *os << "is greater than " << rhs_;
  }

  virtual bool MatchAndExplain(int lhs,
                               MatchResultListener* listener) const {
    const int diff = lhs - rhs_;
    if (diff > 0) {
      *listener << "which is " << diff << " more than " << rhs_;
    } else if (diff == 0) {
      *listener << "which is the same as " << rhs_;
    } else {
      *listener << "which is " << -diff << " less than " << rhs_;
    }

    return lhs > rhs_;
  }

 private:
  int rhs_;
};

Matcher<int> GreaterThan(int n) {
  return MakeMatcher(new GreaterThanMatcher(n));
}

// Tests for ElementsAre().

TEST(ElementsAreTest, CanDescribeExpectingNoElement) {
  Matcher<const vector<int>&> m = ElementsAre();
  EXPECT_EQ("is empty", Describe(m));
}

TEST(ElementsAreTest, CanDescribeExpectingOneElement) {
  Matcher<vector<int> > m = ElementsAre(Gt(5));
  EXPECT_EQ("has 1 element that is > 5", Describe(m));
}

TEST(ElementsAreTest, CanDescribeExpectingManyElements) {
  Matcher<list<string> > m = ElementsAre(StrEq("one"), "two");
  EXPECT_EQ("has 2 elements where\n"
            "element #0 is equal to \"one\",\n"
            "element #1 is equal to \"two\"", Describe(m));
}

TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) {
  Matcher<vector<int> > m = ElementsAre();
  EXPECT_EQ("isn't empty", DescribeNegation(m));
}

TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) {
  Matcher<const list<int>& > m = ElementsAre(Gt(5));
  EXPECT_EQ("doesn't have 1 element, or\n"
            "element #0 isn't > 5", DescribeNegation(m));
}

TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) {
  Matcher<const list<string>& > m = ElementsAre("one", "two");
  EXPECT_EQ("doesn't have 2 elements, or\n"
            "element #0 isn't equal to \"one\", or\n"
            "element #1 isn't equal to \"two\"", DescribeNegation(m));
}

TEST(ElementsAreTest, DoesNotExplainTrivialMatch) {
  Matcher<const list<int>& > m = ElementsAre(1, Ne(2));

  list<int> test_list;
  test_list.push_back(1);
  test_list.push_back(3);
  EXPECT_EQ("", Explain(m, test_list));  // No need to explain anything.
}

TEST(ElementsAreTest, ExplainsNonTrivialMatch) {
  Matcher<const vector<int>& > m =
      ElementsAre(GreaterThan(1), 0, GreaterThan(2));

  const int a[] = { 10, 0, 100 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_EQ("whose element #0 matches, which is 9 more than 1,\n"
            "and whose element #2 matches, which is 98 more than 2",
            Explain(m, test_vector));
}

TEST(ElementsAreTest, CanExplainMismatchWrongSize) {
  Matcher<const list<int>& > m = ElementsAre(1, 3);

  list<int> test_list;
  // No need to explain when the container is empty.
  EXPECT_EQ("", Explain(m, test_list));

  test_list.push_back(1);
  EXPECT_EQ("which has 1 element", Explain(m, test_list));
}

TEST(ElementsAreTest, CanExplainMismatchRightSize) {
  Matcher<const vector<int>& > m = ElementsAre(1, GreaterThan(5));

  vector<int> v;
  v.push_back(2);
  v.push_back(1);
  EXPECT_EQ("whose element #0 doesn't match", Explain(m, v));

  v[0] = 1;
  EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5",
            Explain(m, v));
}

TEST(ElementsAreTest, MatchesOneElementVector) {
  vector<string> test_vector;
  test_vector.push_back("test string");

  EXPECT_THAT(test_vector, ElementsAre(StrEq("test string")));
}

TEST(ElementsAreTest, MatchesOneElementList) {
  list<string> test_list;
  test_list.push_back("test string");

  EXPECT_THAT(test_list, ElementsAre("test string"));
}

TEST(ElementsAreTest, MatchesThreeElementVector) {
  vector<string> test_vector;
  test_vector.push_back("one");
  test_vector.push_back("two");
  test_vector.push_back("three");

  EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _));
}

TEST(ElementsAreTest, MatchesOneElementEqMatcher) {
  vector<int> test_vector;
  test_vector.push_back(4);

  EXPECT_THAT(test_vector, ElementsAre(Eq(4)));
}

TEST(ElementsAreTest, MatchesOneElementAnyMatcher) {
  vector<int> test_vector;
  test_vector.push_back(4);

  EXPECT_THAT(test_vector, ElementsAre(_));
}

TEST(ElementsAreTest, MatchesOneElementValue) {
  vector<int> test_vector;
  test_vector.push_back(4);

  EXPECT_THAT(test_vector, ElementsAre(4));
}

TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) {
  vector<int> test_vector;
  test_vector.push_back(1);
  test_vector.push_back(2);
  test_vector.push_back(3);

  EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _));
}

TEST(ElementsAreTest, MatchesTenElementVector) {
  const int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));

  EXPECT_THAT(test_vector,
              // The element list can contain values and/or matchers
              // of different types.
              ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _));
}

TEST(ElementsAreTest, DoesNotMatchWrongSize) {
  vector<string> test_vector;
  test_vector.push_back("test string");
  test_vector.push_back("test string");

  Matcher<vector<string> > m = ElementsAre(StrEq("test string"));
  EXPECT_FALSE(m.Matches(test_vector));
}

TEST(ElementsAreTest, DoesNotMatchWrongValue) {
  vector<string> test_vector;
  test_vector.push_back("other string");

  Matcher<vector<string> > m = ElementsAre(StrEq("test string"));
  EXPECT_FALSE(m.Matches(test_vector));
}

TEST(ElementsAreTest, DoesNotMatchWrongOrder) {
  vector<string> test_vector;
  test_vector.push_back("one");
  test_vector.push_back("three");
  test_vector.push_back("two");

  Matcher<vector<string> > m = ElementsAre(
    StrEq("one"), StrEq("two"), StrEq("three"));
  EXPECT_FALSE(m.Matches(test_vector));
}

TEST(ElementsAreTest, WorksForNestedContainer) {
  const char* strings[] = {
    "Hi",
    "world"
  };

  vector<list<char> > nested;
  for (size_t i = 0; i < GTEST_ARRAY_SIZE_(strings); i++) {
    nested.push_back(list<char>(strings[i], strings[i] + strlen(strings[i])));
  }

  EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')),
                                  ElementsAre('w', 'o', _, _, 'd')));
  EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'),
                                      ElementsAre('w', 'o', _, _, 'd'))));
}

TEST(ElementsAreTest, WorksWithByRefElementMatchers) {
  int a[] = { 0, 1, 2 };
  vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));

  EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2])));
  EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2]))));
}

TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) {
  int a[] = { 0, 1, 2 };
  vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));

  EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _)));
  EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3))));
}

TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) {
  int array[] = { 0, 1, 2 };
  EXPECT_THAT(array, ElementsAre(0, 1, _));
  EXPECT_THAT(array, Not(ElementsAre(1, _, _)));
  EXPECT_THAT(array, Not(ElementsAre(0, _)));
}

class NativeArrayPassedAsPointerAndSize {
 public:
  NativeArrayPassedAsPointerAndSize() {}

  MOCK_METHOD2(Helper, void(int* array, int size));

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize);
};

TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) {
  int array[] = { 0, 1 };
  ::testing::tuple<int*, size_t> array_as_tuple(array, 2);
  EXPECT_THAT(array_as_tuple, ElementsAre(0, 1));
  EXPECT_THAT(array_as_tuple, Not(ElementsAre(0)));

  NativeArrayPassedAsPointerAndSize helper;
  EXPECT_CALL(helper, Helper(_, _))
      .With(ElementsAre(0, 1));
  helper.Helper(array, 2);
}

TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) {
  const char a2[][3] = { "hi", "lo" };
  EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'),
                              ElementsAre('l', 'o', '\0')));
  EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo")));
  EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')),
                              ElementsAre('l', 'o', '\0')));
}

TEST(ElementsAreTest, AcceptsStringLiteral) {
  string array[] = { "hi", "one", "two" };
  EXPECT_THAT(array, ElementsAre("hi", "one", "two"));
  EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too")));
}

#ifndef _MSC_VER

// The following test passes a value of type const char[] to a
// function template that expects const T&.  Some versions of MSVC
// generates a compiler error C2665 for that.  We believe it's a bug
// in MSVC.  Therefore this test is #if-ed out for MSVC.

// Declared here with the size unknown.  Defined AFTER the following test.
extern const char kHi[];

TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) {
  // The size of kHi is not known in this test, but ElementsAre() should
  // still accept it.

  string array1[] = { "hi" };
  EXPECT_THAT(array1, ElementsAre(kHi));

  string array2[] = { "ho" };
  EXPECT_THAT(array2, Not(ElementsAre(kHi)));
}

const char kHi[] = "hi";

#endif  // _MSC_VER

TEST(ElementsAreTest, MakesCopyOfArguments) {
  int x = 1;
  int y = 2;
  // This should make a copy of x and y.
  ::testing::internal::ElementsAreMatcher<testing::tuple<int, int> >
          polymorphic_matcher = ElementsAre(x, y);
  // Changing x and y now shouldn't affect the meaning of the above matcher.
  x = y = 0;
  const int array1[] = { 1, 2 };
  EXPECT_THAT(array1, polymorphic_matcher);
  const int array2[] = { 0, 0 };
  EXPECT_THAT(array2, Not(polymorphic_matcher));
}


// Tests for ElementsAreArray().  Since ElementsAreArray() shares most
// of the implementation with ElementsAre(), we don't test it as
// thoroughly here.

TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) {
  const int a[] = { 1, 2, 3 };

  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(a));

  test_vector[2] = 0;
  EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) {
  const char* a[] = { "one", "two", "three" };

  vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(a, GTEST_ARRAY_SIZE_(a)));

  const char** p = a;
  test_vector[0] = "1";
  EXPECT_THAT(test_vector, Not(ElementsAreArray(p, GTEST_ARRAY_SIZE_(a))));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) {
  const char* a[] = { "one", "two", "three" };

  vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(a));

  test_vector[0] = "1";
  EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) {
  const Matcher<string> kMatcherArray[] =
    { StrEq("one"), StrEq("two"), StrEq("three") };

  vector<string> test_vector;
  test_vector.push_back("one");
  test_vector.push_back("two");
  test_vector.push_back("three");
  EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray));

  test_vector.push_back("three");
  EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithVector) {
  const int a[] = { 1, 2, 3 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(expected));
  test_vector.push_back(4);
  EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
}

#if GTEST_HAS_STD_INITIALIZER_LIST_

TEST(ElementsAreArrayTest, TakesInitializerList) {
  const int a[5] = { 1, 2, 3, 4, 5 };
  EXPECT_THAT(a, ElementsAreArray({ 1, 2, 3, 4, 5 }));
  EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 5, 4 })));
  EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 4, 6 })));
}

TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) {
  const string a[5] = { "a", "b", "c", "d", "e" };
  EXPECT_THAT(a, ElementsAreArray({ "a", "b", "c", "d", "e" }));
  EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "e", "d" })));
  EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "d", "ef" })));
}

TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) {
  const int a[5] = { 1, 2, 3, 4, 5 };
  EXPECT_THAT(a, ElementsAreArray(
      { Eq(1), Eq(2), Eq(3), Eq(4), Eq(5) }));
  EXPECT_THAT(a, Not(ElementsAreArray(
      { Eq(1), Eq(2), Eq(3), Eq(4), Eq(6) })));
}

TEST(ElementsAreArrayTest,
     TakesInitializerListOfDifferentTypedMatchers) {
  const int a[5] = { 1, 2, 3, 4, 5 };
  // The compiler cannot infer the type of the initializer list if its
  // elements have different types.  We must explicitly specify the
  // unified element type in this case.
  EXPECT_THAT(a, ElementsAreArray<Matcher<int> >(
      { Eq(1), Ne(-2), Ge(3), Le(4), Eq(5) }));
  EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int> >(
      { Eq(1), Ne(-2), Ge(3), Le(4), Eq(6) })));
}

#endif  // GTEST_HAS_STD_INITIALIZER_LIST_

TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) {
  const int a[] = { 1, 2, 3 };
  const Matcher<int> kMatchers[] = { Eq(1), Eq(2), Eq(3) };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  const vector<Matcher<int> > expected(
      kMatchers, kMatchers + GTEST_ARRAY_SIZE_(kMatchers));
  EXPECT_THAT(test_vector, ElementsAreArray(expected));
  test_vector.push_back(4);
  EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) {
  const int a[] = { 1, 2, 3 };
  const vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end()));
  // Pointers are iterators, too.
  EXPECT_THAT(test_vector, ElementsAreArray(a, a + GTEST_ARRAY_SIZE_(a)));
  // The empty range of NULL pointers should also be okay.
  int* const null_int = NULL;
  EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int)));
  EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int));
}

// Since ElementsAre() and ElementsAreArray() share much of the
// implementation, we only do a sanity test for native arrays here.
TEST(ElementsAreArrayTest, WorksWithNativeArray) {
  ::std::string a[] = { "hi", "ho" };
  ::std::string b[] = { "hi", "ho" };

  EXPECT_THAT(a, ElementsAreArray(b));
  EXPECT_THAT(a, ElementsAreArray(b, 2));
  EXPECT_THAT(a, Not(ElementsAreArray(b, 1)));
}

TEST(ElementsAreArrayTest, SourceLifeSpan) {
  const int a[] = { 1, 2, 3 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  vector<int> expect(a, a + GTEST_ARRAY_SIZE_(a));
  ElementsAreArrayMatcher<int> matcher_maker =
      ElementsAreArray(expect.begin(), expect.end());
  EXPECT_THAT(test_vector, matcher_maker);
  // Changing in place the values that initialized matcher_maker should not
  // affect matcher_maker anymore. It should have made its own copy of them.
  typedef vector<int>::iterator Iter;
  for (Iter it = expect.begin(); it != expect.end(); ++it) { *it += 10; }
  EXPECT_THAT(test_vector, matcher_maker);
  test_vector.push_back(3);
  EXPECT_THAT(test_vector, Not(matcher_maker));
}

// Tests for the MATCHER*() macro family.

// Tests that a simple MATCHER() definition works.

MATCHER(IsEven, "") { return (arg % 2) == 0; }

TEST(MatcherMacroTest, Works) {
  const Matcher<int> m = IsEven();
  EXPECT_TRUE(m.Matches(6));
  EXPECT_FALSE(m.Matches(7));

  EXPECT_EQ("is even", Describe(m));
  EXPECT_EQ("not (is even)", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 6));
  EXPECT_EQ("", Explain(m, 7));
}

// This also tests that the description string can reference 'negation'.
MATCHER(IsEven2, negation ? "is odd" : "is even") {
  if ((arg % 2) == 0) {
    // Verifies that we can stream to result_listener, a listener
    // supplied by the MATCHER macro implicitly.
    *result_listener << "OK";
    return true;
  } else {
    *result_listener << "% 2 == " << (arg % 2);
    return false;
  }
}

// This also tests that the description string can reference matcher
// parameters.
MATCHER_P2(EqSumOf, x, y,
           string(negation ? "doesn't equal" : "equals") + " the sum of " +
           PrintToString(x) + " and " + PrintToString(y)) {
  if (arg == (x + y)) {
    *result_listener << "OK";
    return true;
  } else {
    // Verifies that we can stream to the underlying stream of
    // result_listener.
    if (result_listener->stream() != NULL) {
      *result_listener->stream() << "diff == " << (x + y - arg);
    }
    return false;
  }
}

// Tests that the matcher description can reference 'negation' and the
// matcher parameters.
TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) {
  const Matcher<int> m1 = IsEven2();
  EXPECT_EQ("is even", Describe(m1));
  EXPECT_EQ("is odd", DescribeNegation(m1));

  const Matcher<int> m2 = EqSumOf(5, 9);
  EXPECT_EQ("equals the sum of 5 and 9", Describe(m2));
  EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2));
}

// Tests explaining match result in a MATCHER* macro.
TEST(MatcherMacroTest, CanExplainMatchResult) {
  const Matcher<int> m1 = IsEven2();
  EXPECT_EQ("OK", Explain(m1, 4));
  EXPECT_EQ("% 2 == 1", Explain(m1, 5));

  const Matcher<int> m2 = EqSumOf(1, 2);
  EXPECT_EQ("OK", Explain(m2, 3));
  EXPECT_EQ("diff == -1", Explain(m2, 4));
}

// Tests that the body of MATCHER() can reference the type of the
// value being matched.

MATCHER(IsEmptyString, "") {
  StaticAssertTypeEq< ::std::string, arg_type>();
  return arg == "";
}

MATCHER(IsEmptyStringByRef, "") {
  StaticAssertTypeEq<const ::std::string&, arg_type>();
  return arg == "";
}

TEST(MatcherMacroTest, CanReferenceArgType) {
  const Matcher< ::std::string> m1 = IsEmptyString();
  EXPECT_TRUE(m1.Matches(""));

  const Matcher<const ::std::string&> m2 = IsEmptyStringByRef();
  EXPECT_TRUE(m2.Matches(""));
}

// Tests that MATCHER() can be used in a namespace.

namespace matcher_test {
MATCHER(IsOdd, "") { return (arg % 2) != 0; }
}  // namespace matcher_test

TEST(MatcherMacroTest, WorksInNamespace) {
  Matcher<int> m = matcher_test::IsOdd();
  EXPECT_FALSE(m.Matches(4));
  EXPECT_TRUE(m.Matches(5));
}

// Tests that Value() can be used to compose matchers.
MATCHER(IsPositiveOdd, "") {
  return Value(arg, matcher_test::IsOdd()) && arg > 0;
}

TEST(MatcherMacroTest, CanBeComposedUsingValue) {
  EXPECT_THAT(3, IsPositiveOdd());
  EXPECT_THAT(4, Not(IsPositiveOdd()));
  EXPECT_THAT(-1, Not(IsPositiveOdd()));
}

// Tests that a simple MATCHER_P() definition works.

MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; }

TEST(MatcherPMacroTest, Works) {
  const Matcher<int> m = IsGreaterThan32And(5);
  EXPECT_TRUE(m.Matches(36));
  EXPECT_FALSE(m.Matches(5));

  EXPECT_EQ("is greater than 32 and 5", Describe(m));
  EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 36));
  EXPECT_EQ("", Explain(m, 5));
}

// Tests that the description is calculated correctly from the matcher name.
MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; }

TEST(MatcherPMacroTest, GeneratesCorrectDescription) {
  const Matcher<int> m = _is_Greater_Than32and_(5);

  EXPECT_EQ("is greater than 32 and 5", Describe(m));
  EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 36));
  EXPECT_EQ("", Explain(m, 5));
}

// Tests that a MATCHER_P matcher can be explicitly instantiated with
// a reference parameter type.

class UncopyableFoo {
 public:
  explicit UncopyableFoo(char value) : value_(value) {}
 private:
  UncopyableFoo(const UncopyableFoo&);
  void operator=(const UncopyableFoo&);

  char value_;
};

MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; }

TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) {
  UncopyableFoo foo1('1'), foo2('2');
  const Matcher<const UncopyableFoo&> m =
      ReferencesUncopyable<const UncopyableFoo&>(foo1);

  EXPECT_TRUE(m.Matches(foo1));
  EXPECT_FALSE(m.Matches(foo2));

  // We don't want the address of the parameter printed, as most
  // likely it will just annoy the user.  If the address is
  // interesting, the user should consider passing the parameter by
  // pointer instead.
  EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m));
}


// Tests that the body of MATCHER_Pn() can reference the parameter
// types.

MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") {
  StaticAssertTypeEq<int, foo_type>();
  StaticAssertTypeEq<long, bar_type>();  // NOLINT
  StaticAssertTypeEq<char, baz_type>();
  return arg == 0;
}

TEST(MatcherPnMacroTest, CanReferenceParamTypes) {
  EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a'));
}

// Tests that a MATCHER_Pn matcher can be explicitly instantiated with
// reference parameter types.

MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") {
  return &arg == &variable1 || &arg == &variable2;
}

TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) {
  UncopyableFoo foo1('1'), foo2('2'), foo3('3');
  const Matcher<const UncopyableFoo&> m =
      ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);

  EXPECT_TRUE(m.Matches(foo1));
  EXPECT_TRUE(m.Matches(foo2));
  EXPECT_FALSE(m.Matches(foo3));
}

TEST(MatcherPnMacroTest,
     GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) {
  UncopyableFoo foo1('1'), foo2('2');
  const Matcher<const UncopyableFoo&> m =
      ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);

  // We don't want the addresses of the parameters printed, as most
  // likely they will just annoy the user.  If the addresses are
  // interesting, the user should consider passing the parameters by
  // pointers instead.
  EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)",
            Describe(m));
}

// Tests that a simple MATCHER_P2() definition works.

MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; }

TEST(MatcherPnMacroTest, Works) {
  const Matcher<const long&> m = IsNotInClosedRange(10, 20);  // NOLINT
  EXPECT_TRUE(m.Matches(36L));
  EXPECT_FALSE(m.Matches(15L));

  EXPECT_EQ("is not in closed range (10, 20)", Describe(m));
  EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 36L));
  EXPECT_EQ("", Explain(m, 15L));
}

// Tests that MATCHER*() definitions can be overloaded on the number
// of parameters; also tests MATCHER_Pn() where n >= 3.

MATCHER(EqualsSumOf, "") { return arg == 0; }
MATCHER_P(EqualsSumOf, a, "") { return arg == a; }
MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; }
MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; }
MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; }
MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; }
MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") {
  return arg == a + b + c + d + e + f;
}
MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") {
  return arg == a + b + c + d + e + f + g;
}
MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") {
  return arg == a + b + c + d + e + f + g + h;
}
MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") {
  return arg == a + b + c + d + e + f + g + h + i;
}
MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") {
  return arg == a + b + c + d + e + f + g + h + i + j;
}

TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) {
  EXPECT_THAT(0, EqualsSumOf());
  EXPECT_THAT(1, EqualsSumOf(1));
  EXPECT_THAT(12, EqualsSumOf(10, 2));
  EXPECT_THAT(123, EqualsSumOf(100, 20, 3));
  EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4));
  EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5));
  EXPECT_THAT("abcdef",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'));
  EXPECT_THAT("abcdefg",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'));
  EXPECT_THAT("abcdefgh",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                          "h"));
  EXPECT_THAT("abcdefghi",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                          "h", 'i'));
  EXPECT_THAT("abcdefghij",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                          "h", 'i', ::std::string("j")));

  EXPECT_THAT(1, Not(EqualsSumOf()));
  EXPECT_THAT(-1, Not(EqualsSumOf(1)));
  EXPECT_THAT(-12, Not(EqualsSumOf(10, 2)));
  EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3)));
  EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4)));
  EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5)));
  EXPECT_THAT("abcdef ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')));
  EXPECT_THAT("abcdefg ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f',
                              'g')));
  EXPECT_THAT("abcdefgh ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                              "h")));
  EXPECT_THAT("abcdefghi ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                              "h", 'i')));
  EXPECT_THAT("abcdefghij ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                              "h", 'i', ::std::string("j"))));
}

// Tests that a MATCHER_Pn() definition can be instantiated with any
// compatible parameter types.
TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) {
  EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3)));
  EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d"));

  EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3))));
  EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d")));
}

// Tests that the matcher body can promote the parameter types.

MATCHER_P2(EqConcat, prefix, suffix, "") {
  // The following lines promote the two parameters to desired types.
  std::string prefix_str(prefix);
  char suffix_char = static_cast<char>(suffix);
  return arg == prefix_str + suffix_char;
}

TEST(MatcherPnMacroTest, SimpleTypePromotion) {
  Matcher<std::string> no_promo =
      EqConcat(std::string("foo"), 't');
  Matcher<const std::string&> promo =
      EqConcat("foo", static_cast<int>('t'));
  EXPECT_FALSE(no_promo.Matches("fool"));
  EXPECT_FALSE(promo.Matches("fool"));
  EXPECT_TRUE(no_promo.Matches("foot"));
  EXPECT_TRUE(promo.Matches("foot"));
}

// Verifies the type of a MATCHER*.

TEST(MatcherPnMacroTest, TypesAreCorrect) {
  // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable.
  EqualsSumOfMatcher a0 = EqualsSumOf();

  // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable.
  EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1);

  // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk
  // variable, and so on.
  EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2');
  EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3');
  EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4');
  EqualsSumOfMatcherP5<int, int, int, int, char> a5 =
      EqualsSumOf(1, 2, 3, 4, '5');
  EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 =
      EqualsSumOf(1, 2, 3, 4, 5, '6');
  EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, '7');
  EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8');
  EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9');
  EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');

  // Avoid "unused variable" warnings.
  (void)a0;
  (void)a1;
  (void)a2;
  (void)a3;
  (void)a4;
  (void)a5;
  (void)a6;
  (void)a7;
  (void)a8;
  (void)a9;
  (void)a10;
}

// Tests that matcher-typed parameters can be used in Value() inside a
// MATCHER_Pn definition.

// Succeeds if arg matches exactly 2 of the 3 matchers.
MATCHER_P3(TwoOf, m1, m2, m3, "") {
  const int count = static_cast<int>(Value(arg, m1))
      + static_cast<int>(Value(arg, m2)) + static_cast<int>(Value(arg, m3));
  return count == 2;
}

TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) {
  EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10)));
  EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0))));
}

// Tests Contains().

TEST(ContainsTest, ListMatchesWhenElementIsInContainer) {
  list<int> some_list;
  some_list.push_back(3);
  some_list.push_back(1);
  some_list.push_back(2);
  EXPECT_THAT(some_list, Contains(1));
  EXPECT_THAT(some_list, Contains(Gt(2.5)));
  EXPECT_THAT(some_list, Contains(Eq(2.0f)));

  list<string> another_list;
  another_list.push_back("fee");
  another_list.push_back("fie");
  another_list.push_back("foe");
  another_list.push_back("fum");
  EXPECT_THAT(another_list, Contains(string("fee")));
}

TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) {
  list<int> some_list;
  some_list.push_back(3);
  some_list.push_back(1);
  EXPECT_THAT(some_list, Not(Contains(4)));
}

TEST(ContainsTest, SetMatchesWhenElementIsInContainer) {
  set<int> some_set;
  some_set.insert(3);
  some_set.insert(1);
  some_set.insert(2);
  EXPECT_THAT(some_set, Contains(Eq(1.0)));
  EXPECT_THAT(some_set, Contains(Eq(3.0f)));
  EXPECT_THAT(some_set, Contains(2));

  set<const char*> another_set;
  another_set.insert("fee");
  another_set.insert("fie");
  another_set.insert("foe");
  another_set.insert("fum");
  EXPECT_THAT(another_set, Contains(Eq(string("fum"))));
}

TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) {
  set<int> some_set;
  some_set.insert(3);
  some_set.insert(1);
  EXPECT_THAT(some_set, Not(Contains(4)));

  set<const char*> c_string_set;
  c_string_set.insert("hello");
  EXPECT_THAT(c_string_set, Not(Contains(string("hello").c_str())));
}

TEST(ContainsTest, ExplainsMatchResultCorrectly) {
  const int a[2] = { 1, 2 };
  Matcher<const int (&)[2]> m = Contains(2);
  EXPECT_EQ("whose element #1 matches", Explain(m, a));

  m = Contains(3);
  EXPECT_EQ("", Explain(m, a));

  m = Contains(GreaterThan(0));
  EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a));

  m = Contains(GreaterThan(10));
  EXPECT_EQ("", Explain(m, a));
}

TEST(ContainsTest, DescribesItselfCorrectly) {
  Matcher<vector<int> > m = Contains(1);
  EXPECT_EQ("contains at least one element that is equal to 1", Describe(m));

  Matcher<vector<int> > m2 = Not(m);
  EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2));
}

TEST(ContainsTest, MapMatchesWhenElementIsInContainer) {
  map<const char*, int> my_map;
  const char* bar = "a string";
  my_map[bar] = 2;
  EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2)));

  map<string, int> another_map;
  another_map["fee"] = 1;
  another_map["fie"] = 2;
  another_map["foe"] = 3;
  another_map["fum"] = 4;
  EXPECT_THAT(another_map, Contains(pair<const string, int>(string("fee"), 1)));
  EXPECT_THAT(another_map, Contains(pair<const string, int>("fie", 2)));
}

TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) {
  map<int, int> some_map;
  some_map[1] = 11;
  some_map[2] = 22;
  EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23))));
}

TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) {
  const char* string_array[] = { "fee", "fie", "foe", "fum" };
  EXPECT_THAT(string_array, Contains(Eq(string("fum"))));
}

TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) {
  int int_array[] = { 1, 2, 3, 4 };
  EXPECT_THAT(int_array, Not(Contains(5)));
}

TEST(ContainsTest, AcceptsMatcher) {
  const int a[] = { 1, 2, 3 };
  EXPECT_THAT(a, Contains(Gt(2)));
  EXPECT_THAT(a, Not(Contains(Gt(4))));
}

TEST(ContainsTest, WorksForNativeArrayAsTuple) {
  const int a[] = { 1, 2 };
  const int* const pointer = a;
  EXPECT_THAT(make_tuple(pointer, 2), Contains(1));
  EXPECT_THAT(make_tuple(pointer, 2), Not(Contains(Gt(3))));
}

TEST(ContainsTest, WorksForTwoDimensionalNativeArray) {
  int a[][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
  EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6)));
  EXPECT_THAT(a, Contains(Contains(5)));
  EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5))));
  EXPECT_THAT(a, Contains(Not(Contains(5))));
}

TEST(AllOfTest, HugeMatcher) {
  // Verify that using AllOf with many arguments doesn't cause
  // the compiler to exceed template instantiation depth limit.
  EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _,
                                testing::AllOf(_, _, _, _, _, _, _, _, _, _)));
}

TEST(AnyOfTest, HugeMatcher) {
  // Verify that using AnyOf with many arguments doesn't cause
  // the compiler to exceed template instantiation depth limit.
  EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _,
                                testing::AnyOf(_, _, _, _, _, _, _, _, _, _)));
}

namespace adl_test {

// Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf
// don't issue unqualified recursive calls.  If they do, the argument dependent
// name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found
// as a candidate and the compilation will break due to an ambiguous overload.

// The matcher must be in the same namespace as AllOf/AnyOf to make argument
// dependent lookup find those.
MATCHER(M, "") { return true; }

template <typename T1, typename T2>
bool AllOf(const T1& t1, const T2& t2) { return true; }

TEST(AllOfTest, DoesNotCallAllOfUnqualified) {
  EXPECT_THAT(42, testing::AllOf(
      M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
}

template <typename T1, typename T2> bool
AnyOf(const T1& t1, const T2& t2) { return true; }

TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) {
  EXPECT_THAT(42, testing::AnyOf(
      M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
}

}  // namespace adl_test

#ifdef _MSC_VER
# pragma warning(pop)
#endif

}  // namespace