aboutsummaryrefslogtreecommitdiffstats
path: root/ice40
diff options
context:
space:
mode:
authorClifford Wolf <clifford@clifford.at>2018-08-04 19:50:49 +0200
committerClifford Wolf <clifford@clifford.at>2018-08-04 19:50:49 +0200
commitf6b3333a7d34c865e0e371b5585e1ee8151a58b4 (patch)
treeda3ffa0cf09a3ef2f98661e96a052124d24671bd /ice40
parent67347573c29c150c248c40e1145642323183c8ff (diff)
downloadnextpnr-f6b3333a7d34c865e0e371b5585e1ee8151a58b4.tar.gz
nextpnr-f6b3333a7d34c865e0e371b5585e1ee8151a58b4.tar.bz2
nextpnr-f6b3333a7d34c865e0e371b5585e1ee8151a58b4.zip
Add new iCE40 delay estimator and delay predictor
Signed-off-by: Clifford Wolf <clifford@clifford.at>
Diffstat (limited to 'ice40')
-rw-r--r--ice40/arch.cc58
-rw-r--r--ice40/arch.h3
-rw-r--r--ice40/chipdb.py2
-rw-r--r--ice40/delay.cc133
-rw-r--r--ice40/tmfuzz.py268
5 files changed, 343 insertions, 121 deletions
diff --git a/ice40/arch.cc b/ice40/arch.cc
index 3b9a6992..de752b59 100644
--- a/ice40/arch.cc
+++ b/ice40/arch.cc
@@ -639,64 +639,6 @@ std::vector<GroupId> Arch::getGroupGroups(GroupId group) const
// -----------------------------------------------------------------------
-delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
-{
- const auto &driver = net_info->driver;
- auto driver_loc = getBelLocation(driver.cell->bel);
- auto sink_loc = getBelLocation(sink.cell->bel);
-
- if (driver.port == id_cout) {
- if (driver_loc.y == sink_loc.y)
- return 0;
- return 250;
- }
-
-#if 1
- int xd = sink_loc.x - driver_loc.x, yd = sink_loc.y - driver_loc.y;
- int xscale = 120, yscale = 120, offset = 0;
-
- // if (chip_info->wire_data[src.index].type == WIRE_TYPE_SP4_VERT) {
- // yd = yd < -4 ? yd + 4 : (yd < 0 ? 0 : yd);
- // offset = 500;
- // }
-
- if (driver.port == id_o)
- offset += 330;
- if (sink.port == id_i0 || sink.port == id_i1 || sink.port == id_i2 || sink.port == id_i3)
- offset += 260;
-
- return xscale * abs(xd) + yscale * abs(yd) + offset;
-#else
- float model1_param_offset = 902.1066988;
- float model1_param_norm1 = 169.80428447;
- float model1_param_norm2 = -503.28635487;
- float model1_param_norm3 = 402.96583807;
-
- float model2_param_offset = -1.09578873e+03;
- float model2_param_linear = 5.01094876e-01;
- float model2_param_sqrt = 4.71761281e+01;
-
- float dx = fabsf(sink_loc.x - driver_loc.x);
- float dy = fabsf(sink_loc.y - driver_loc.y);
- float norm1 = dx + dy;
-
- float dx2 = dx * dx;
- float dy2 = dy * dy;
- float norm2 = sqrtf(dx2 + dy2);
-
- float dx3 = dx2 * dx;
- float dy3 = dy2 * dy;
- float norm3 = powf(dx3 + dy3, 1.0/3.0);
-
- float v = model1_param_offset;
- v += model1_param_norm1 * norm1;
- v += model1_param_norm2 * norm2;
- v += model1_param_norm3 * norm3;
-
- return model2_param_offset + model2_param_linear * v + model2_param_sqrt * sqrtf(v);
-#endif
-}
-
delay_t Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t budget) const
{
const auto &driver = net_info->driver;
diff --git a/ice40/arch.h b/ice40/arch.h
index 324915eb..ff52c1a5 100644
--- a/ice40/arch.h
+++ b/ice40/arch.h
@@ -120,9 +120,8 @@ NPNR_PACKED_STRUCT(struct WireInfoPOD {
int32_t fast_delay;
int32_t slow_delay;
- int8_t x, y;
+ int8_t x, y, z;
WireType type;
- int8_t padding_0;
});
NPNR_PACKED_STRUCT(struct PackagePinPOD {
diff --git a/ice40/chipdb.py b/ice40/chipdb.py
index 7c60a336..b0d9e567 100644
--- a/ice40/chipdb.py
+++ b/ice40/chipdb.py
@@ -1123,8 +1123,8 @@ for wire, info in enumerate(wireinfo):
bba.u8(info["x"], "x")
bba.u8(info["y"], "y")
+ bba.u8(0, "z") # FIXME
bba.u8(wiretypes[wire_type(info["name"])], "type")
- bba.u8(0, "padding")
for wire in range(num_wires):
if len(wire_segments[wire]):
diff --git a/ice40/delay.cc b/ice40/delay.cc
index d63af5d1..342b7f0b 100644
--- a/ice40/delay.cc
+++ b/ice40/delay.cc
@@ -23,7 +23,7 @@
NEXTPNR_NAMESPACE_BEGIN
-#define NUM_FUZZ_ROUTES 100000
+#define NUM_FUZZ_ROUTES 1000
void ice40DelayFuzzerMain(Context *ctx)
{
@@ -101,20 +101,145 @@ void ice40DelayFuzzerMain(Context *ctx)
}
}
+namespace {
+
+struct model_params_t {
+ int neighbourhood;
+
+ int model0_offset;
+ int model0_norm1;
+
+ int model1_offset;
+ int model1_norm1;
+ int model1_norm2;
+ int model1_norm3;
+
+ int model2_offset;
+ int model2_linear;
+ int model2_sqrt;
+
+ int delta_local;
+ int delta_lutffin;
+ int delta_sp4;
+ int delta_sp12;
+
+ static const model_params_t &get(ArchArgs args)
+ {
+ static const model_params_t model_hx8k = {
+ 588, 129253, 8658,
+ 118333, 23915, -73105, 57696,
+ -86797, 89, 3706,
+ -316, -575, -158, -296
+ };
+
+ static const model_params_t model_lp8k = {
+ 867, 206236, 11043,
+ 191910, 31074, -95972, 75739,
+ -309793, 30, 11056,
+ -474, -856, -363, -536
+ };
+
+ static const model_params_t model_up5k = {
+ 1761, 305798, 16705,
+ 296830, 24430, -40369, 33038,
+ -162662, 94, 4705,
+ -1099, -1761, -418, -838
+ };
+
+ if (args.type == ArchArgs::HX1K || args.type == ArchArgs::HX8K)
+ return model_hx8k;
+
+ if (args.type == ArchArgs::LP384 || args.type == ArchArgs::LP1K || args.type == ArchArgs::LP8K)
+ return model_lp8k;
+
+ if (args.type == ArchArgs::UP5K)
+ return model_up5k;
+
+ NPNR_ASSERT(0);
+ }
+};
+
+} // namespace
+
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
NPNR_ASSERT(src != WireId());
int x1 = chip_info->wire_data[src.index].x;
int y1 = chip_info->wire_data[src.index].y;
+ int z1 = chip_info->wire_data[src.index].z;
+ int type = chip_info->wire_data[src.index].type;
NPNR_ASSERT(dst != WireId());
int x2 = chip_info->wire_data[dst.index].x;
int y2 = chip_info->wire_data[dst.index].y;
+ int z2 = chip_info->wire_data[dst.index].z;
+
+ int dx = abs(x2 - x1);
+ int dy = abs(y2 - y1);
+
+ const model_params_t &p = model_params_t::get(args);
+ delay_t v = p.neighbourhood;
+
+ if (dx > 1 || dy > 1)
+ v = (p.model0_offset + p.model0_norm1 * (dx + dy)) / 128;
+
+ if (type == WireInfoPOD::WIRE_TYPE_LOCAL)
+ v += p.delta_local;
+
+ if (type == WireInfoPOD::WIRE_TYPE_LUTFF_IN || type == WireInfoPOD::WIRE_TYPE_LUTFF_IN_LUT)
+ v += (z1 == z2) ? p.delta_lutffin : 1000;
+
+ if (type == WireInfoPOD::WIRE_TYPE_SP4_V || type == WireInfoPOD::WIRE_TYPE_SP4_H)
+ v += p.delta_sp4;
+
+ if (type == WireInfoPOD::WIRE_TYPE_SP12_V || type == WireInfoPOD::WIRE_TYPE_SP12_H)
+ v += p.delta_sp12;
+
+ return v;
+}
+
+delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
+{
+ const auto &driver = net_info->driver;
+ auto driver_loc = getBelLocation(driver.cell->bel);
+ auto sink_loc = getBelLocation(sink.cell->bel);
+
+ if (driver.port == id_cout) {
+ if (driver_loc.y == sink_loc.y)
+ return 0;
+ return 250;
+ }
+
+ int dx = abs(sink_loc.x - driver_loc.x);
+ int dy = abs(sink_loc.y - driver_loc.y);
+
+ const model_params_t &p = model_params_t::get(args);
+
+ if (dx <= 1 && dy <= 1)
+ return p.neighbourhood;
+
+ float norm1 = dx + dy;
+
+ float dx2 = dx * dx;
+ float dy2 = dy * dy;
+ float norm2 = sqrtf(dx2 + dy2);
+
+ float dx3 = dx2 * dx;
+ float dy3 = dy2 * dy;
+ float norm3 = powf(dx3 + dy3, 1.0/3.0);
+
+ // Model #1
+ float v = p.model1_offset;
+ v += p.model1_norm1 * norm1;
+ v += p.model1_norm2 * norm2;
+ v += p.model1_norm3 * norm3;
+ v /= 128;
- int xd = x2 - x1, yd = y2 - y1;
- int xscale = 120, yscale = 120, offset = 0;
+ // Model #2
+ v = p.model2_offset + p.model2_linear * v + p.model2_sqrt * sqrtf(v);
+ v /= 128;
- return xscale * abs(xd) + yscale * abs(yd) + offset;
+ return v;
}
NEXTPNR_NAMESPACE_END
diff --git a/ice40/tmfuzz.py b/ice40/tmfuzz.py
index caf3bc80..4ec2a546 100644
--- a/ice40/tmfuzz.py
+++ b/ice40/tmfuzz.py
@@ -1,12 +1,17 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ../nextpnr-ice40 --hx8k --tmfuzz > tmfuzz_hx8k.txt
+# ../nextpnr-ice40 --lp8k --tmfuzz > tmfuzz_lp8k.txt
+# ../nextpnr-ice40 --up5k --tmfuzz > tmfuzz_up5k.txt
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
device = "hx8k"
+# device = "lp8k"
+# device = "up5k"
+
sel_src_type = "LUTFF_OUT"
sel_dst_type = "LUTFF_IN_LUT"
@@ -15,10 +20,17 @@ sel_dst_type = "LUTFF_IN_LUT"
src_dst_pairs = defaultdict(lambda: 0)
delay_data = list()
+all_delay_data = list()
+
delay_map_sum = np.zeros((41, 41))
delay_map_sum2 = np.zeros((41, 41))
delay_map_count = np.zeros((41, 41))
+same_tile_delays = list()
+neighbour_tile_delays = list()
+
+type_delta_data = dict()
+
with open("tmfuzz_%s.txt" % device, "r") as f:
for line in f:
line = line.split()
@@ -35,23 +47,52 @@ with open("tmfuzz_%s.txt" % device, "r") as f:
delay = int(line[5])
estdelay = int(line[6])
+ all_delay_data.append((delay, estdelay))
+
src_dst_pairs[src_type, dst_type] += 1
+ dx = dst_xy[0] - src_xy[0]
+ dy = dst_xy[1] - src_xy[1]
+
if src_type == sel_src_type and dst_type == sel_dst_type:
- delay_data.append((delay, estdelay))
- relx = 20 + dst_xy[0] - src_xy[0]
- rely = 20 + dst_xy[1] - src_xy[1]
+ if dx == 0 and dy == 0:
+ same_tile_delays.append(delay)
+
+ elif abs(dx) <= 1 and abs(dy) <= 1:
+ neighbour_tile_delays.append(delay)
+
+ else:
+ delay_data.append((delay, estdelay, dx, dy, 0, 0, 0))
+
+ relx = 20 + dst_xy[0] - src_xy[0]
+ rely = 20 + dst_xy[1] - src_xy[1]
+
+ if (0 <= relx <= 40) and (0 <= rely <= 40):
+ delay_map_sum[relx, rely] += delay
+ delay_map_sum2[relx, rely] += delay*delay
+ delay_map_count[relx, rely] += 1
+
+ if dst_type == sel_dst_type:
+ if src_type not in type_delta_data:
+ type_delta_data[src_type] = list()
- if (0 <= relx <= 40) and (0 <= rely <= 40):
- delay_map_sum[relx, rely] += delay
- delay_map_sum2[relx, rely] += delay*delay
- delay_map_count[relx, rely] += 1
+ type_delta_data[src_type].append((dx, dy, delay))
delay_data = np.array(delay_data)
+all_delay_data = np.array(all_delay_data)
+max_delay = np.max(delay_data[:, 0:2])
+
+mean_same_tile_delays = np.mean(neighbour_tile_delays)
+mean_neighbour_tile_delays = np.mean(neighbour_tile_delays)
+
+print("Avg same tile delay: %.2f (%.2f std, N=%d)" % \
+ (mean_same_tile_delays, np.std(same_tile_delays), len(same_tile_delays)))
+print("Avg neighbour tile delay: %.2f (%.2f std, N=%d)" % \
+ (mean_neighbour_tile_delays, np.std(neighbour_tile_delays), len(neighbour_tile_delays)))
#%% Apply simple low-weight bluring to fill gaps
-for i in range(1):
+for i in range(0):
neigh_sum = np.zeros((41, 41))
neigh_sum2 = np.zeros((41, 41))
neigh_count = np.zeros((41, 41))
@@ -84,8 +125,14 @@ print()
#%% Plot estimate vs actual delay
-plt.figure()
-plt.plot(delay_data[:,0], delay_data[:,1], ".")
+plt.figure(figsize=(8, 3))
+plt.title("Estimate vs Actual Delay")
+plt.plot(all_delay_data[:, 0], all_delay_data[:, 1], ".")
+plt.plot(delay_data[:, 0], delay_data[:, 1], ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Estimated Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
plt.show()
#%% Plot delay heatmap and std dev heatmap
@@ -101,7 +148,65 @@ plt.imshow(delay_map_std)
plt.colorbar()
plt.show()
-#%% Linear least-squares fits of delayEstimate models
+#%% Generate Model #0
+
+def nonlinearPreprocessor0(dx, dy):
+ dx, dy = abs(dx), abs(dy)
+ values = [1.0]
+ values.append(dx + dy)
+ return np.array(values)
+
+A = np.zeros((41*41, len(nonlinearPreprocessor0(0, 0))))
+b = np.zeros(41*41)
+
+index = 0
+for x in range(41):
+ for y in range(41):
+ if delay_map_count[x, y] > 0:
+ A[index, :] = nonlinearPreprocessor0(x-20, y-20)
+ b[index] = delay_map[x, y]
+ index += 1
+
+model0_params, _, _, _ = np.linalg.lstsq(A, b)
+print("Model #0 parameters:", model0_params)
+
+model0_map = np.zeros((41, 41))
+for x in range(41):
+ for y in range(41):
+ v = np.dot(model0_params, nonlinearPreprocessor0(x-20, y-20))
+ model0_map[x, y] = v
+
+plt.figure(figsize=(9, 3))
+plt.subplot(121)
+plt.title("Model #0 Delay Map")
+plt.imshow(model0_map)
+plt.colorbar()
+plt.subplot(122)
+plt.title("Model #0 Error Map")
+plt.imshow(model0_map - delay_map)
+plt.colorbar()
+plt.show()
+
+for i in range(delay_data.shape[0]):
+ dx = delay_data[i, 2]
+ dy = delay_data[i, 3]
+ delay_data[i, 4] = np.dot(model0_params, nonlinearPreprocessor0(dx, dy))
+
+plt.figure(figsize=(8, 3))
+plt.title("Model #0 vs Actual Delay")
+plt.plot(delay_data[:, 0], delay_data[:, 4], ".")
+plt.plot(delay_map.flat, model0_map.flat, ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Model #0 Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
+plt.show()
+
+print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model0_map)**2)))
+print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 4])**2)))
+print()
+
+#%% Generate Model #1
def nonlinearPreprocessor1(dx, dy):
dx, dy = abs(dx), abs(dy)
@@ -117,8 +222,9 @@ b = np.zeros(41*41)
index = 0
for x in range(41):
for y in range(41):
- A[index, :] = nonlinearPreprocessor1(x-20, y-20)
- b[index] = delay_map[x, y]
+ if delay_map_count[x, y] > 0:
+ A[index, :] = nonlinearPreprocessor1(x-20, y-20)
+ b[index] = delay_map[x, y]
index += 1
model1_params, _, _, _ = np.linalg.lstsq(A, b)
@@ -141,61 +247,111 @@ plt.imshow(model1_map - delay_map)
plt.colorbar()
plt.show()
+for i in range(delay_data.shape[0]):
+ dx = delay_data[i, 2]
+ dy = delay_data[i, 3]
+ delay_data[i, 5] = np.dot(model1_params, nonlinearPreprocessor1(dx, dy))
+
plt.figure(figsize=(8, 3))
-plt.title("Model #1 vs Actual Delay")
+plt.title("Model #1 vs Actual Delay")
+plt.plot(delay_data[:, 0], delay_data[:, 5], ".")
plt.plot(delay_map.flat, model1_map.flat, ".")
-plt.plot([0, 4000], [0, 4000], "k")
+plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #1 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
-print("Total RMS error: %f" % np.sqrt(np.mean((delay_map - model1_map)**2)))
+print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model1_map)**2)))
+print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 5])**2)))
print()
-if True:
- def nonlinearPreprocessor2(v):
- return np.array([1, v, np.sqrt(v)])
+#%% Generate Model #2
- A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
- b = np.zeros(41*41)
+def nonlinearPreprocessor2(v):
+ return np.array([1, v, np.sqrt(v)])
- index = 0
- for x in range(41):
- for y in range(41):
+A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
+b = np.zeros(41*41)
+
+index = 0
+for x in range(41):
+ for y in range(41):
+ if delay_map_count[x, y] > 0:
A[index, :] = nonlinearPreprocessor2(model1_map[x, y])
b[index] = delay_map[x, y]
- index += 1
+ index += 1
- model2_params, _, _, _ = np.linalg.lstsq(A, b)
- print("Model #2 parameters:", model2_params)
+model2_params, _, _, _ = np.linalg.lstsq(A, b)
+print("Model #2 parameters:", model2_params)
- model2_map = np.zeros((41, 41))
- for x in range(41):
- for y in range(41):
- v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
- v = np.dot(model2_params, nonlinearPreprocessor2(v))
- model2_map[x, y] = v
-
- plt.figure(figsize=(9, 3))
- plt.subplot(121)
- plt.title("Model #2 Delay Map")
- plt.imshow(model2_map)
- plt.colorbar()
- plt.subplot(122)
- plt.title("Model #2 Error Map")
- plt.imshow(model2_map - delay_map)
- plt.colorbar()
- plt.show()
-
- plt.figure(figsize=(8, 3))
- plt.title("Model #2 vs Actual Delay")
- plt.plot(delay_map.flat, model2_map.flat, ".")
- plt.plot([0, 4000], [0, 4000], "k")
- plt.ylabel("Model #2 Delay")
- plt.xlabel("Actual Delay")
- plt.grid()
- plt.show()
-
- print("Total RMS error: %f" % np.sqrt(np.mean((delay_map - model2_map)**2)))
- print()
+model2_map = np.zeros((41, 41))
+for x in range(41):
+ for y in range(41):
+ v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
+ v = np.dot(model2_params, nonlinearPreprocessor2(v))
+ model2_map[x, y] = v
+
+plt.figure(figsize=(9, 3))
+plt.subplot(121)
+plt.title("Model #2 Delay Map")
+plt.imshow(model2_map)
+plt.colorbar()
+plt.subplot(122)
+plt.title("Model #2 Error Map")
+plt.imshow(model2_map - delay_map)
+plt.colorbar()
+plt.show()
+
+for i in range(delay_data.shape[0]):
+ dx = delay_data[i, 2]
+ dy = delay_data[i, 3]
+ delay_data[i, 6] = np.dot(model2_params, nonlinearPreprocessor2(delay_data[i, 5]))
+
+plt.figure(figsize=(8, 3))
+plt.title("Model #2 vs Actual Delay")
+plt.plot(delay_data[:, 0], delay_data[:, 6], ".")
+plt.plot(delay_map.flat, model2_map.flat, ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Model #2 Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
+plt.show()
+
+print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model2_map)**2)))
+print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 6])**2)))
+print()
+
+#%% Generate deltas for different source net types
+
+type_deltas = dict()
+
+print("Delay deltas for different src types:")
+for src_type in sorted(type_delta_data.keys()):
+ deltas = list()
+
+ for dx, dy, delay in type_delta_data[src_type]:
+ dx = abs(dx)
+ dy = abs(dy)
+
+ if dx > 1 or dy > 1:
+ est = model0_params[0] + model0_params[1] * (dx + dy)
+ else:
+ est = mean_neighbour_tile_delays
+ deltas.append(delay - est)
+
+ print("%15s: %8.2f (std %6.2f)" % (\
+ src_type, np.mean(deltas), np.std(deltas)))
+
+ type_deltas[src_type] = np.mean(deltas)
+
+#%% Print C defs of model parameters
+
+print("--snip--")
+print("%d, %d, %d," % (mean_neighbour_tile_delays, 128 * model0_params[0], 128 * model0_params[1]))
+print("%d, %d, %d, %d," % (128 * model1_params[0], 128 * model1_params[1], 128 * model1_params[2], 128 * model1_params[3]))
+print("%d, %d, %d," % (128 * model2_params[0], 128 * model2_params[1], 128 * model2_params[2]))
+print("%d, %d, %d, %d" % (type_deltas["LOCAL"], type_deltas["LUTFF_IN"], \
+ (type_deltas["SP4_H"] + type_deltas["SP4_V"]) / 2,
+ (type_deltas["SP12_H"] + type_deltas["SP12_V"]) / 2))
+print("--snap--")