diff options
author | David Shah <dave@ds0.me> | 2020-07-27 13:50:42 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-07-27 13:50:42 +0100 |
commit | b39a2a502065ec1407417ffacdac2154385bf80f (patch) | |
tree | 3349c93ac87f5758009c53b3e2eb5b9a130cd0d6 /3rdparty/pybind11/include/pybind11/eigen.h | |
parent | e6991ad5dc79f6118838f091cc05f10d3377eb4a (diff) | |
parent | fe398ab983aee9283f61c288dc98d94542c30332 (diff) | |
download | nextpnr-b39a2a502065ec1407417ffacdac2154385bf80f.tar.gz nextpnr-b39a2a502065ec1407417ffacdac2154385bf80f.tar.bz2 nextpnr-b39a2a502065ec1407417ffacdac2154385bf80f.zip |
Merge pull request #477 from YosysHQ/pybind11
Move to pybind11
Diffstat (limited to '3rdparty/pybind11/include/pybind11/eigen.h')
-rw-r--r-- | 3rdparty/pybind11/include/pybind11/eigen.h | 607 |
1 files changed, 607 insertions, 0 deletions
diff --git a/3rdparty/pybind11/include/pybind11/eigen.h b/3rdparty/pybind11/include/pybind11/eigen.h new file mode 100644 index 00000000..d963d965 --- /dev/null +++ b/3rdparty/pybind11/include/pybind11/eigen.h @@ -0,0 +1,607 @@ +/* + pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices + + Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> + + All rights reserved. Use of this source code is governed by a + BSD-style license that can be found in the LICENSE file. +*/ + +#pragma once + +#include "numpy.h" + +#if defined(__INTEL_COMPILER) +# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) +#elif defined(__GNUG__) || defined(__clang__) +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wconversion" +# pragma GCC diagnostic ignored "-Wdeprecated-declarations" +# ifdef __clang__ +// Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated +// under Clang, so disable that warning here: +# pragma GCC diagnostic ignored "-Wdeprecated" +# endif +# if __GNUC__ >= 7 +# pragma GCC diagnostic ignored "-Wint-in-bool-context" +# endif +#endif + +#if defined(_MSC_VER) +# pragma warning(push) +# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant +# pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17 +#endif + +#include <Eigen/Core> +#include <Eigen/SparseCore> + +// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit +// move constructors that break things. We could detect this an explicitly copy, but an extra copy +// of matrices seems highly undesirable. +static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7"); + +NAMESPACE_BEGIN(PYBIND11_NAMESPACE) + +// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides: +using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>; +template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>; +template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>; + +NAMESPACE_BEGIN(detail) + +#if EIGEN_VERSION_AT_LEAST(3,3,0) +using EigenIndex = Eigen::Index; +#else +using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE; +#endif + +// Matches Eigen::Map, Eigen::Ref, blocks, etc: +template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>; +template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>; +template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>; +template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>; +// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This +// basically covers anything that can be assigned to a dense matrix but that don't have a typical +// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and +// SelfAdjointView fall into this category. +template <typename T> using is_eigen_other = all_of< + is_template_base_of<Eigen::EigenBase, T>, + negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>> +>; + +// Captures numpy/eigen conformability status (returned by EigenProps::conformable()): +template <bool EigenRowMajor> struct EigenConformable { + bool conformable = false; + EigenIndex rows = 0, cols = 0; + EigenDStride stride{0, 0}; // Only valid if negativestrides is false! + bool negativestrides = false; // If true, do not use stride! + + EigenConformable(bool fits = false) : conformable{fits} {} + // Matrix type: + EigenConformable(EigenIndex r, EigenIndex c, + EigenIndex rstride, EigenIndex cstride) : + conformable{true}, rows{r}, cols{c} { + // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747 + if (rstride < 0 || cstride < 0) { + negativestrides = true; + } else { + stride = {EigenRowMajor ? rstride : cstride /* outer stride */, + EigenRowMajor ? cstride : rstride /* inner stride */ }; + } + } + // Vector type: + EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride) + : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {} + + template <typename props> bool stride_compatible() const { + // To have compatible strides, we need (on both dimensions) one of fully dynamic strides, + // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant) + return + !negativestrides && + (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() || + (EigenRowMajor ? cols : rows) == 1) && + (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() || + (EigenRowMajor ? rows : cols) == 1); + } + operator bool() const { return conformable; } +}; + +template <typename Type> struct eigen_extract_stride { using type = Type; }; +template <typename PlainObjectType, int MapOptions, typename StrideType> +struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; }; +template <typename PlainObjectType, int Options, typename StrideType> +struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; }; + +// Helper struct for extracting information from an Eigen type +template <typename Type_> struct EigenProps { + using Type = Type_; + using Scalar = typename Type::Scalar; + using StrideType = typename eigen_extract_stride<Type>::type; + static constexpr EigenIndex + rows = Type::RowsAtCompileTime, + cols = Type::ColsAtCompileTime, + size = Type::SizeAtCompileTime; + static constexpr bool + row_major = Type::IsRowMajor, + vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1 + fixed_rows = rows != Eigen::Dynamic, + fixed_cols = cols != Eigen::Dynamic, + fixed = size != Eigen::Dynamic, // Fully-fixed size + dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size + + template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>; + static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value, + outer_stride = if_zero<StrideType::OuterStrideAtCompileTime, + vector ? size : row_major ? cols : rows>::value; + static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic; + static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1; + static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1; + + // Takes an input array and determines whether we can make it fit into the Eigen type. If + // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector + // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type). + static EigenConformable<row_major> conformable(const array &a) { + const auto dims = a.ndim(); + if (dims < 1 || dims > 2) + return false; + + if (dims == 2) { // Matrix type: require exact match (or dynamic) + + EigenIndex + np_rows = a.shape(0), + np_cols = a.shape(1), + np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)), + np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar)); + if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols)) + return false; + + return {np_rows, np_cols, np_rstride, np_cstride}; + } + + // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever + // is used, we want the (single) numpy stride value. + const EigenIndex n = a.shape(0), + stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)); + + if (vector) { // Eigen type is a compile-time vector + if (fixed && size != n) + return false; // Vector size mismatch + return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride}; + } + else if (fixed) { + // The type has a fixed size, but is not a vector: abort + return false; + } + else if (fixed_cols) { + // Since this isn't a vector, cols must be != 1. We allow this only if it exactly + // equals the number of elements (rows is Dynamic, and so 1 row is allowed). + if (cols != n) return false; + return {1, n, stride}; + } + else { + // Otherwise it's either fully dynamic, or column dynamic; both become a column vector + if (fixed_rows && rows != n) return false; + return {n, 1, stride}; + } + } + + static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value; + static constexpr bool show_order = is_eigen_dense_map<Type>::value; + static constexpr bool show_c_contiguous = show_order && requires_row_major; + static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major; + + static constexpr auto descriptor = + _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + + _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) + + _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) + + _("]") + + // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be + // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride + // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output + // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to + // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you + // *gave* a numpy.ndarray of the right type and dimensions. + _<show_writeable>(", flags.writeable", "") + + _<show_c_contiguous>(", flags.c_contiguous", "") + + _<show_f_contiguous>(", flags.f_contiguous", "") + + _("]"); +}; + +// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data, +// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array. +template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) { + constexpr ssize_t elem_size = sizeof(typename props::Scalar); + array a; + if (props::vector) + a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base); + else + a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() }, + src.data(), base); + + if (!writeable) + array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_; + + return a.release(); +} + +// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that +// reference the Eigen object's data with `base` as the python-registered base class (if omitted, +// the base will be set to None, and lifetime management is up to the caller). The numpy array is +// non-writeable if the given type is const. +template <typename props, typename Type> +handle eigen_ref_array(Type &src, handle parent = none()) { + // none here is to get past array's should-we-copy detection, which currently always + // copies when there is no base. Setting the base to None should be harmless. + return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value); +} + +// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy +// array that references the encapsulated data with a python-side reference to the capsule to tie +// its destruction to that of any dependent python objects. Const-ness is determined by whether or +// not the Type of the pointer given is const. +template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>> +handle eigen_encapsulate(Type *src) { + capsule base(src, [](void *o) { delete static_cast<Type *>(o); }); + return eigen_ref_array<props>(*src, base); +} + +// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense +// types. +template<typename Type> +struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> { + using Scalar = typename Type::Scalar; + using props = EigenProps<Type>; + + bool load(handle src, bool convert) { + // If we're in no-convert mode, only load if given an array of the correct type + if (!convert && !isinstance<array_t<Scalar>>(src)) + return false; + + // Coerce into an array, but don't do type conversion yet; the copy below handles it. + auto buf = array::ensure(src); + + if (!buf) + return false; + + auto dims = buf.ndim(); + if (dims < 1 || dims > 2) + return false; + + auto fits = props::conformable(buf); + if (!fits) + return false; + + // Allocate the new type, then build a numpy reference into it + value = Type(fits.rows, fits.cols); + auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value)); + if (dims == 1) ref = ref.squeeze(); + else if (ref.ndim() == 1) buf = buf.squeeze(); + + int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr()); + + if (result < 0) { // Copy failed! + PyErr_Clear(); + return false; + } + + return true; + } + +private: + + // Cast implementation + template <typename CType> + static handle cast_impl(CType *src, return_value_policy policy, handle parent) { + switch (policy) { + case return_value_policy::take_ownership: + case return_value_policy::automatic: + return eigen_encapsulate<props>(src); + case return_value_policy::move: + return eigen_encapsulate<props>(new CType(std::move(*src))); + case return_value_policy::copy: + return eigen_array_cast<props>(*src); + case return_value_policy::reference: + case return_value_policy::automatic_reference: + return eigen_ref_array<props>(*src); + case return_value_policy::reference_internal: + return eigen_ref_array<props>(*src, parent); + default: + throw cast_error("unhandled return_value_policy: should not happen!"); + }; + } + +public: + + // Normal returned non-reference, non-const value: + static handle cast(Type &&src, return_value_policy /* policy */, handle parent) { + return cast_impl(&src, return_value_policy::move, parent); + } + // If you return a non-reference const, we mark the numpy array readonly: + static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) { + return cast_impl(&src, return_value_policy::move, parent); + } + // lvalue reference return; default (automatic) becomes copy + static handle cast(Type &src, return_value_policy policy, handle parent) { + if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) + policy = return_value_policy::copy; + return cast_impl(&src, policy, parent); + } + // const lvalue reference return; default (automatic) becomes copy + static handle cast(const Type &src, return_value_policy policy, handle parent) { + if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) + policy = return_value_policy::copy; + return cast(&src, policy, parent); + } + // non-const pointer return + static handle cast(Type *src, return_value_policy policy, handle parent) { + return cast_impl(src, policy, parent); + } + // const pointer return + static handle cast(const Type *src, return_value_policy policy, handle parent) { + return cast_impl(src, policy, parent); + } + + static constexpr auto name = props::descriptor; + + operator Type*() { return &value; } + operator Type&() { return value; } + operator Type&&() && { return std::move(value); } + template <typename T> using cast_op_type = movable_cast_op_type<T>; + +private: + Type value; +}; + +// Base class for casting reference/map/block/etc. objects back to python. +template <typename MapType> struct eigen_map_caster { +private: + using props = EigenProps<MapType>; + +public: + + // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has + // to stay around), but we'll allow it under the assumption that you know what you're doing (and + // have an appropriate keep_alive in place). We return a numpy array pointing directly at the + // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note + // that this means you need to ensure you don't destroy the object in some other way (e.g. with + // an appropriate keep_alive, or with a reference to a statically allocated matrix). + static handle cast(const MapType &src, return_value_policy policy, handle parent) { + switch (policy) { + case return_value_policy::copy: + return eigen_array_cast<props>(src); + case return_value_policy::reference_internal: + return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value); + case return_value_policy::reference: + case return_value_policy::automatic: + case return_value_policy::automatic_reference: + return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value); + default: + // move, take_ownership don't make any sense for a ref/map: + pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type"); + } + } + + static constexpr auto name = props::descriptor; + + // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return + // types but not bound arguments). We still provide them (with an explicitly delete) so that + // you end up here if you try anyway. + bool load(handle, bool) = delete; + operator MapType() = delete; + template <typename> using cast_op_type = MapType; +}; + +// We can return any map-like object (but can only load Refs, specialized next): +template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> + : eigen_map_caster<Type> {}; + +// Loader for Ref<...> arguments. See the documentation for info on how to make this work without +// copying (it requires some extra effort in many cases). +template <typename PlainObjectType, typename StrideType> +struct type_caster< + Eigen::Ref<PlainObjectType, 0, StrideType>, + enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value> +> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> { +private: + using Type = Eigen::Ref<PlainObjectType, 0, StrideType>; + using props = EigenProps<Type>; + using Scalar = typename props::Scalar; + using MapType = Eigen::Map<PlainObjectType, 0, StrideType>; + using Array = array_t<Scalar, array::forcecast | + ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style : + (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>; + static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value; + // Delay construction (these have no default constructor) + std::unique_ptr<MapType> map; + std::unique_ptr<Type> ref; + // Our array. When possible, this is just a numpy array pointing to the source data, but + // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible + // layout, or is an array of a type that needs to be converted). Using a numpy temporary + // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and + // storage order conversion. (Note that we refuse to use this temporary copy when loading an + // argument for a Ref<M> with M non-const, i.e. a read-write reference). + Array copy_or_ref; +public: + bool load(handle src, bool convert) { + // First check whether what we have is already an array of the right type. If not, we can't + // avoid a copy (because the copy is also going to do type conversion). + bool need_copy = !isinstance<Array>(src); + + EigenConformable<props::row_major> fits; + if (!need_copy) { + // We don't need a converting copy, but we also need to check whether the strides are + // compatible with the Ref's stride requirements + Array aref = reinterpret_borrow<Array>(src); + + if (aref && (!need_writeable || aref.writeable())) { + fits = props::conformable(aref); + if (!fits) return false; // Incompatible dimensions + if (!fits.template stride_compatible<props>()) + need_copy = true; + else + copy_or_ref = std::move(aref); + } + else { + need_copy = true; + } + } + + if (need_copy) { + // We need to copy: If we need a mutable reference, or we're not supposed to convert + // (either because we're in the no-convert overload pass, or because we're explicitly + // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading. + if (!convert || need_writeable) return false; + + Array copy = Array::ensure(src); + if (!copy) return false; + fits = props::conformable(copy); + if (!fits || !fits.template stride_compatible<props>()) + return false; + copy_or_ref = std::move(copy); + loader_life_support::add_patient(copy_or_ref); + } + + ref.reset(); + map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner()))); + ref.reset(new Type(*map)); + + return true; + } + + operator Type*() { return ref.get(); } + operator Type&() { return *ref; } + template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>; + +private: + template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0> + Scalar *data(Array &a) { return a.mutable_data(); } + + template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0> + const Scalar *data(Array &a) { return a.data(); } + + // Attempt to figure out a constructor of `Stride` that will work. + // If both strides are fixed, use a default constructor: + template <typename S> using stride_ctor_default = bool_constant< + S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && + std::is_default_constructible<S>::value>; + // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like + // Eigen::Stride, and use it: + template <typename S> using stride_ctor_dual = bool_constant< + !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>; + // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use + // it (passing whichever stride is dynamic). + template <typename S> using stride_ctor_outer = bool_constant< + !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && + S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic && + std::is_constructible<S, EigenIndex>::value>; + template <typename S> using stride_ctor_inner = bool_constant< + !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && + S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && + std::is_constructible<S, EigenIndex>::value>; + + template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0> + static S make_stride(EigenIndex, EigenIndex) { return S(); } + template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0> + static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); } + template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0> + static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); } + template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0> + static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); } + +}; + +// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not +// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout). +// load() is not supported, but we can cast them into the python domain by first copying to a +// regular Eigen::Matrix, then casting that. +template <typename Type> +struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> { +protected: + using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>; + using props = EigenProps<Matrix>; +public: + static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { + handle h = eigen_encapsulate<props>(new Matrix(src)); + return h; + } + static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); } + + static constexpr auto name = props::descriptor; + + // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return + // types but not bound arguments). We still provide them (with an explicitly delete) so that + // you end up here if you try anyway. + bool load(handle, bool) = delete; + operator Type() = delete; + template <typename> using cast_op_type = Type; +}; + +template<typename Type> +struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { + typedef typename Type::Scalar Scalar; + typedef remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())> StorageIndex; + typedef typename Type::Index Index; + static constexpr bool rowMajor = Type::IsRowMajor; + + bool load(handle src, bool) { + if (!src) + return false; + + auto obj = reinterpret_borrow<object>(src); + object sparse_module = module::import("scipy.sparse"); + object matrix_type = sparse_module.attr( + rowMajor ? "csr_matrix" : "csc_matrix"); + + if (!obj.get_type().is(matrix_type)) { + try { + obj = matrix_type(obj); + } catch (const error_already_set &) { + return false; + } + } + + auto values = array_t<Scalar>((object) obj.attr("data")); + auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices")); + auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr")); + auto shape = pybind11::tuple((pybind11::object) obj.attr("shape")); + auto nnz = obj.attr("nnz").cast<Index>(); + + if (!values || !innerIndices || !outerIndices) + return false; + + value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>( + shape[0].cast<Index>(), shape[1].cast<Index>(), nnz, + outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data()); + + return true; + } + + static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { + const_cast<Type&>(src).makeCompressed(); + + object matrix_type = module::import("scipy.sparse").attr( + rowMajor ? "csr_matrix" : "csc_matrix"); + + array data(src.nonZeros(), src.valuePtr()); + array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr()); + array innerIndices(src.nonZeros(), src.innerIndexPtr()); + + return matrix_type( + std::make_tuple(data, innerIndices, outerIndices), + std::make_pair(src.rows(), src.cols()) + ).release(); + } + + PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[") + + npy_format_descriptor<Scalar>::name + _("]")); +}; + +NAMESPACE_END(detail) +NAMESPACE_END(PYBIND11_NAMESPACE) + +#if defined(__GNUG__) || defined(__clang__) +# pragma GCC diagnostic pop +#elif defined(_MSC_VER) +# pragma warning(pop) +#endif |