diff options
author | gatecat <gatecat@ds0.me> | 2022-09-14 09:28:47 +0200 |
---|---|---|
committer | gatecat <gatecat@ds0.me> | 2022-09-14 09:28:47 +0200 |
commit | a72f898ff4c4237424c468044a6db9d6953b541e (patch) | |
tree | 1c4a543f661dd1b281aecf4660388491702fa8d8 /3rdparty/pybind11/include/pybind11/eigen.h | |
parent | f1349e114f3a16ccd002e8513339e18f5be4d31b (diff) | |
download | nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.tar.gz nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.tar.bz2 nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.zip |
3rdparty: Bump vendored pybind11 version for py3.11 support
Signed-off-by: gatecat <gatecat@ds0.me>
Diffstat (limited to '3rdparty/pybind11/include/pybind11/eigen.h')
-rw-r--r-- | 3rdparty/pybind11/include/pybind11/eigen.h | 546 |
1 files changed, 326 insertions, 220 deletions
diff --git a/3rdparty/pybind11/include/pybind11/eigen.h b/3rdparty/pybind11/include/pybind11/eigen.h index e8c6f633..83162522 100644 --- a/3rdparty/pybind11/include/pybind11/eigen.h +++ b/3rdparty/pybind11/include/pybind11/eigen.h @@ -9,218 +9,266 @@ #pragma once -#include "numpy.h" +/* HINT: To suppress warnings originating from the Eigen headers, use -isystem. + See also: + https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir + https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler +*/ -#if defined(__INTEL_COMPILER) -# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) -#elif defined(__GNUG__) || defined(__clang__) -# pragma GCC diagnostic push -# pragma GCC diagnostic ignored "-Wconversion" -# pragma GCC diagnostic ignored "-Wdeprecated-declarations" -# ifdef __clang__ -// Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated -// under Clang, so disable that warning here: -# pragma GCC diagnostic ignored "-Wdeprecated" -# endif -# if __GNUC__ >= 7 -# pragma GCC diagnostic ignored "-Wint-in-bool-context" -# endif -#endif +#include "numpy.h" +// The C4127 suppression was introduced for Eigen 3.4.0. In theory we could +// make it version specific, or even remove it later, but considering that +// 1. C4127 is generally far more distracting than useful for modern template code, and +// 2. we definitely want to ignore any MSVC warnings originating from Eigen code, +// it is probably best to keep this around indefinitely. #if defined(_MSC_VER) -# pragma warning(push) -# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant -# pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17 +# pragma warning(push) +# pragma warning(disable : 4127) // C4127: conditional expression is constant +# pragma warning(disable : 5054) // https://github.com/pybind/pybind11/pull/3741 +// C5054: operator '&': deprecated between enumerations of different types +#elif defined(__MINGW32__) +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif #include <Eigen/Core> #include <Eigen/SparseCore> +#if defined(_MSC_VER) +# pragma warning(pop) +#elif defined(__MINGW32__) +# pragma GCC diagnostic pop +#endif + // Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit // move constructors that break things. We could detect this an explicitly copy, but an extra copy // of matrices seems highly undesirable. -static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7"); +static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7), + "Eigen support in pybind11 requires Eigen >= 3.2.7"); PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) // Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides: using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>; -template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>; -template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>; +template <typename MatrixType> +using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>; +template <typename MatrixType> +using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>; PYBIND11_NAMESPACE_BEGIN(detail) -#if EIGEN_VERSION_AT_LEAST(3,3,0) +#if EIGEN_VERSION_AT_LEAST(3, 3, 0) using EigenIndex = Eigen::Index; +template <typename Scalar, int Flags, typename StorageIndex> +using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>; #else using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE; +template <typename Scalar, int Flags, typename StorageIndex> +using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>; #endif // Matches Eigen::Map, Eigen::Ref, blocks, etc: -template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>; -template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>; -template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>; -template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>; +template <typename T> +using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, + std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>; +template <typename T> +using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>; +template <typename T> +using is_eigen_dense_plain + = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>; +template <typename T> +using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>; // Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This // basically covers anything that can be assigned to a dense matrix but that don't have a typical // matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and // SelfAdjointView fall into this category. -template <typename T> using is_eigen_other = all_of< - is_template_base_of<Eigen::EigenBase, T>, - negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>> ->; +template <typename T> +using is_eigen_other + = all_of<is_template_base_of<Eigen::EigenBase, T>, + negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>; // Captures numpy/eigen conformability status (returned by EigenProps::conformable()): -template <bool EigenRowMajor> struct EigenConformable { +template <bool EigenRowMajor> +struct EigenConformable { bool conformable = false; EigenIndex rows = 0, cols = 0; - EigenDStride stride{0, 0}; // Only valid if negativestrides is false! - bool negativestrides = false; // If true, do not use stride! + EigenDStride stride{0, 0}; // Only valid if negativestrides is false! + bool negativestrides = false; // If true, do not use stride! + // NOLINTNEXTLINE(google-explicit-constructor) EigenConformable(bool fits = false) : conformable{fits} {} // Matrix type: - EigenConformable(EigenIndex r, EigenIndex c, - EigenIndex rstride, EigenIndex cstride) : - conformable{true}, rows{r}, cols{c} { - // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747 - if (rstride < 0 || cstride < 0) { - negativestrides = true; - } else { - stride = {EigenRowMajor ? rstride : cstride /* outer stride */, - EigenRowMajor ? cstride : rstride /* inner stride */ }; - } - } + EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride) + : conformable{true}, rows{r}, cols{c}, + // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. + // http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747 + stride{EigenRowMajor ? (rstride > 0 ? rstride : 0) + : (cstride > 0 ? cstride : 0) /* outer stride */, + EigenRowMajor ? (cstride > 0 ? cstride : 0) + : (rstride > 0 ? rstride : 0) /* inner stride */}, + negativestrides{rstride < 0 || cstride < 0} {} // Vector type: EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride) - : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {} + : EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {} - template <typename props> bool stride_compatible() const { + template <typename props> + bool stride_compatible() const { // To have compatible strides, we need (on both dimensions) one of fully dynamic strides, - // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant) - return - !negativestrides && - (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() || - (EigenRowMajor ? cols : rows) == 1) && - (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() || - (EigenRowMajor ? rows : cols) == 1); + // matching strides, or a dimension size of 1 (in which case the stride value is + // irrelevant). Alternatively, if any dimension size is 0, the strides are not relevant + // (and numpy ≥ 1.23 sets the strides to 0 in that case, so we need to check explicitly). + if (negativestrides) { + return false; + } + if (rows == 0 || cols == 0) { + return true; + } + return (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() + || (EigenRowMajor ? cols : rows) == 1) + && (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() + || (EigenRowMajor ? rows : cols) == 1); } + // NOLINTNEXTLINE(google-explicit-constructor) operator bool() const { return conformable; } }; -template <typename Type> struct eigen_extract_stride { using type = Type; }; +template <typename Type> +struct eigen_extract_stride { + using type = Type; +}; template <typename PlainObjectType, int MapOptions, typename StrideType> -struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; }; +struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { + using type = StrideType; +}; template <typename PlainObjectType, int Options, typename StrideType> -struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; }; +struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { + using type = StrideType; +}; // Helper struct for extracting information from an Eigen type -template <typename Type_> struct EigenProps { +template <typename Type_> +struct EigenProps { using Type = Type_; using Scalar = typename Type::Scalar; using StrideType = typename eigen_extract_stride<Type>::type; - static constexpr EigenIndex - rows = Type::RowsAtCompileTime, - cols = Type::ColsAtCompileTime, - size = Type::SizeAtCompileTime; - static constexpr bool - row_major = Type::IsRowMajor, - vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1 - fixed_rows = rows != Eigen::Dynamic, - fixed_cols = cols != Eigen::Dynamic, - fixed = size != Eigen::Dynamic, // Fully-fixed size - dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size - - template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>; - static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value, - outer_stride = if_zero<StrideType::OuterStrideAtCompileTime, - vector ? size : row_major ? cols : rows>::value; - static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic; - static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1; - static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1; + static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime, + size = Type::SizeAtCompileTime; + static constexpr bool row_major = Type::IsRowMajor, + vector + = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1 + fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic, + fixed = size != Eigen::Dynamic, // Fully-fixed size + dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size + + template <EigenIndex i, EigenIndex ifzero> + using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>; + static constexpr EigenIndex inner_stride + = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value, + outer_stride = if_zero < StrideType::OuterStrideAtCompileTime, + vector ? size + : row_major ? cols + : rows > ::value; + static constexpr bool dynamic_stride + = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic; + static constexpr bool requires_row_major + = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1; + static constexpr bool requires_col_major + = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1; // Takes an input array and determines whether we can make it fit into the Eigen type. If // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type). static EigenConformable<row_major> conformable(const array &a) { const auto dims = a.ndim(); - if (dims < 1 || dims > 2) + if (dims < 1 || dims > 2) { return false; + } if (dims == 2) { // Matrix type: require exact match (or dynamic) - EigenIndex - np_rows = a.shape(0), - np_cols = a.shape(1), - np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)), - np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar)); - if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols)) + EigenIndex np_rows = a.shape(0), np_cols = a.shape(1), + np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)), + np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar)); + if ((PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && np_rows != rows) + || (PYBIND11_SILENCE_MSVC_C4127(fixed_cols) && np_cols != cols)) { return false; + } return {np_rows, np_cols, np_rstride, np_cstride}; } - // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever - // is used, we want the (single) numpy stride value. + // Otherwise we're storing an n-vector. Only one of the strides will be used, but + // whichever is used, we want the (single) numpy stride value. const EigenIndex n = a.shape(0), - stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)); + stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)); if (vector) { // Eigen type is a compile-time vector - if (fixed && size != n) + if (PYBIND11_SILENCE_MSVC_C4127(fixed) && size != n) { return false; // Vector size mismatch + } return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride}; } - else if (fixed) { + if (fixed) { // The type has a fixed size, but is not a vector: abort return false; } - else if (fixed_cols) { + if (fixed_cols) { // Since this isn't a vector, cols must be != 1. We allow this only if it exactly // equals the number of elements (rows is Dynamic, and so 1 row is allowed). - if (cols != n) return false; + if (cols != n) { + return false; + } return {1, n, stride}; + } // Otherwise it's either fully dynamic, or column dynamic; both become a column vector + if (PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && rows != n) { + return false; } - else { - // Otherwise it's either fully dynamic, or column dynamic; both become a column vector - if (fixed_rows && rows != n) return false; - return {n, 1, stride}; - } + return {n, 1, stride}; } - static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value; + static constexpr bool show_writeable + = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value; static constexpr bool show_order = is_eigen_dense_map<Type>::value; static constexpr bool show_c_contiguous = show_order && requires_row_major; - static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major; - - static constexpr auto descriptor = - _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + - _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) + - _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) + - _("]") + - // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be - // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride - // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output - // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to - // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you - // *gave* a numpy.ndarray of the right type and dimensions. - _<show_writeable>(", flags.writeable", "") + - _<show_c_contiguous>(", flags.c_contiguous", "") + - _<show_f_contiguous>(", flags.f_contiguous", "") + - _("]"); + static constexpr bool show_f_contiguous + = !show_c_contiguous && show_order && requires_col_major; + + static constexpr auto descriptor + = const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[") + + const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ") + + const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]") + + + // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to + // be satisfied: writeable=True (for a mutable reference), and, depending on the map's + // stride options, possibly f_contiguous or c_contiguous. We include them in the + // descriptor output to provide some hint as to why a TypeError is occurring (otherwise + // it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and + // an error message that you *gave* a numpy.ndarray of the right type and dimensions. + const_name<show_writeable>(", flags.writeable", "") + + const_name<show_c_contiguous>(", flags.c_contiguous", "") + + const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]"); }; // Casts an Eigen type to numpy array. If given a base, the numpy array references the src data, // otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array. -template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) { +template <typename props> +handle +eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) { constexpr ssize_t elem_size = sizeof(typename props::Scalar); array a; - if (props::vector) - a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base); - else - a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() }, - src.data(), base); + if (props::vector) { + a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base); + } else { + a = array({src.rows(), src.cols()}, + {elem_size * src.rowStride(), elem_size * src.colStride()}, + src.data(), + base); + } - if (!writeable) + if (!writeable) { array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_; + } return a.release(); } @@ -236,10 +284,10 @@ handle eigen_ref_array(Type &src, handle parent = none()) { return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value); } -// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy -// array that references the encapsulated data with a python-side reference to the capsule to tie -// its destruction to that of any dependent python objects. Const-ness is determined by whether or -// not the Type of the pointer given is const. +// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a +// numpy array that references the encapsulated data with a python-side reference to the capsule to +// tie its destruction to that of any dependent python objects. Const-ness is determined by +// whether or not the Type of the pointer given is const. template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>> handle eigen_encapsulate(Type *src) { capsule base(src, [](void *o) { delete static_cast<Type *>(o); }); @@ -248,35 +296,42 @@ handle eigen_encapsulate(Type *src) { // Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense // types. -template<typename Type> +template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> { using Scalar = typename Type::Scalar; using props = EigenProps<Type>; bool load(handle src, bool convert) { // If we're in no-convert mode, only load if given an array of the correct type - if (!convert && !isinstance<array_t<Scalar>>(src)) + if (!convert && !isinstance<array_t<Scalar>>(src)) { return false; + } // Coerce into an array, but don't do type conversion yet; the copy below handles it. auto buf = array::ensure(src); - if (!buf) + if (!buf) { return false; + } auto dims = buf.ndim(); - if (dims < 1 || dims > 2) + if (dims < 1 || dims > 2) { return false; + } auto fits = props::conformable(buf); - if (!fits) + if (!fits) { return false; + } // Allocate the new type, then build a numpy reference into it value = Type(fits.rows, fits.cols); auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value)); - if (dims == 1) ref = ref.squeeze(); - else if (ref.ndim() == 1) buf = buf.squeeze(); + if (dims == 1) { + ref = ref.squeeze(); + } else if (ref.ndim() == 1) { + buf = buf.squeeze(); + } int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr()); @@ -289,7 +344,6 @@ struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> { } private: - // Cast implementation template <typename CType> static handle cast_impl(CType *src, return_value_policy policy, handle parent) { @@ -312,7 +366,6 @@ private: } public: - // Normal returned non-reference, non-const value: static handle cast(Type &&src, return_value_policy /* policy */, handle parent) { return cast_impl(&src, return_value_policy::move, parent); @@ -323,14 +376,18 @@ public: } // lvalue reference return; default (automatic) becomes copy static handle cast(Type &src, return_value_policy policy, handle parent) { - if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) + if (policy == return_value_policy::automatic + || policy == return_value_policy::automatic_reference) { policy = return_value_policy::copy; + } return cast_impl(&src, policy, parent); } // const lvalue reference return; default (automatic) becomes copy static handle cast(const Type &src, return_value_policy policy, handle parent) { - if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) + if (policy == return_value_policy::automatic + || policy == return_value_policy::automatic_reference) { policy = return_value_policy::copy; + } return cast(&src, policy, parent); } // non-const pointer return @@ -344,28 +401,32 @@ public: static constexpr auto name = props::descriptor; - operator Type*() { return &value; } - operator Type&() { return value; } - operator Type&&() && { return std::move(value); } - template <typename T> using cast_op_type = movable_cast_op_type<T>; + // NOLINTNEXTLINE(google-explicit-constructor) + operator Type *() { return &value; } + // NOLINTNEXTLINE(google-explicit-constructor) + operator Type &() { return value; } + // NOLINTNEXTLINE(google-explicit-constructor) + operator Type &&() && { return std::move(value); } + template <typename T> + using cast_op_type = movable_cast_op_type<T>; private: Type value; }; // Base class for casting reference/map/block/etc. objects back to python. -template <typename MapType> struct eigen_map_caster { +template <typename MapType> +struct eigen_map_caster { private: using props = EigenProps<MapType>; public: - // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has - // to stay around), but we'll allow it under the assumption that you know what you're doing (and - // have an appropriate keep_alive in place). We return a numpy array pointing directly at the - // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note - // that this means you need to ensure you don't destroy the object in some other way (e.g. with - // an appropriate keep_alive, or with a reference to a statically allocated matrix). + // to stay around), but we'll allow it under the assumption that you know what you're doing + // (and have an appropriate keep_alive in place). We return a numpy array pointing directly at + // the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) + // Note that this means you need to ensure you don't destroy the object in some other way (e.g. + // with an appropriate keep_alive, or with a reference to a statically allocated matrix). static handle cast(const MapType &src, return_value_policy policy, handle parent) { switch (policy) { case return_value_policy::copy: @@ -389,43 +450,50 @@ public: // you end up here if you try anyway. bool load(handle, bool) = delete; operator MapType() = delete; - template <typename> using cast_op_type = MapType; + template <typename> + using cast_op_type = MapType; }; // We can return any map-like object (but can only load Refs, specialized next): -template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> - : eigen_map_caster<Type> {}; +template <typename Type> +struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {}; // Loader for Ref<...> arguments. See the documentation for info on how to make this work without // copying (it requires some extra effort in many cases). template <typename PlainObjectType, typename StrideType> struct type_caster< Eigen::Ref<PlainObjectType, 0, StrideType>, - enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value> -> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> { + enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>> + : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> { private: using Type = Eigen::Ref<PlainObjectType, 0, StrideType>; using props = EigenProps<Type>; using Scalar = typename props::Scalar; using MapType = Eigen::Map<PlainObjectType, 0, StrideType>; - using Array = array_t<Scalar, array::forcecast | - ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style : - (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>; + using Array + = array_t<Scalar, + array::forcecast + | ((props::row_major ? props::inner_stride : props::outer_stride) == 1 + ? array::c_style + : (props::row_major ? props::outer_stride : props::inner_stride) == 1 + ? array::f_style + : 0)>; static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value; // Delay construction (these have no default constructor) std::unique_ptr<MapType> map; std::unique_ptr<Type> ref; // Our array. When possible, this is just a numpy array pointing to the source data, but - // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible - // layout, or is an array of a type that needs to be converted). Using a numpy temporary - // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and - // storage order conversion. (Note that we refuse to use this temporary copy when loading an - // argument for a Ref<M> with M non-const, i.e. a read-write reference). + // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an + // incompatible layout, or is an array of a type that needs to be converted). Using a numpy + // temporary (rather than an Eigen temporary) saves an extra copy when we need both type + // conversion and storage order conversion. (Note that we refuse to use this temporary copy + // when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference). Array copy_or_ref; + public: bool load(handle src, bool convert) { - // First check whether what we have is already an array of the right type. If not, we can't - // avoid a copy (because the copy is also going to do type conversion). + // First check whether what we have is already an array of the right type. If not, we + // can't avoid a copy (because the copy is also going to do type conversion). bool need_copy = !isinstance<Array>(src); EigenConformable<props::row_major> fits; @@ -436,13 +504,15 @@ public: if (aref && (!need_writeable || aref.writeable())) { fits = props::conformable(aref); - if (!fits) return false; // Incompatible dimensions - if (!fits.template stride_compatible<props>()) + if (!fits) { + return false; // Incompatible dimensions + } + if (!fits.template stride_compatible<props>()) { need_copy = true; - else + } else { copy_or_ref = std::move(aref); - } - else { + } + } else { need_copy = true; } } @@ -451,64 +521,93 @@ public: // We need to copy: If we need a mutable reference, or we're not supposed to convert // (either because we're in the no-convert overload pass, or because we're explicitly // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading. - if (!convert || need_writeable) return false; + if (!convert || need_writeable) { + return false; + } Array copy = Array::ensure(src); - if (!copy) return false; + if (!copy) { + return false; + } fits = props::conformable(copy); - if (!fits || !fits.template stride_compatible<props>()) + if (!fits || !fits.template stride_compatible<props>()) { return false; + } copy_or_ref = std::move(copy); loader_life_support::add_patient(copy_or_ref); } ref.reset(); - map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner()))); + map.reset(new MapType(data(copy_or_ref), + fits.rows, + fits.cols, + make_stride(fits.stride.outer(), fits.stride.inner()))); ref.reset(new Type(*map)); return true; } - operator Type*() { return ref.get(); } - operator Type&() { return *ref; } - template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>; + // NOLINTNEXTLINE(google-explicit-constructor) + operator Type *() { return ref.get(); } + // NOLINTNEXTLINE(google-explicit-constructor) + operator Type &() { return *ref; } + template <typename _T> + using cast_op_type = pybind11::detail::cast_op_type<_T>; private: template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0> - Scalar *data(Array &a) { return a.mutable_data(); } + Scalar *data(Array &a) { + return a.mutable_data(); + } template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0> - const Scalar *data(Array &a) { return a.data(); } + const Scalar *data(Array &a) { + return a.data(); + } // Attempt to figure out a constructor of `Stride` that will work. // If both strides are fixed, use a default constructor: - template <typename S> using stride_ctor_default = bool_constant< - S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && - std::is_default_constructible<S>::value>; + template <typename S> + using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic + && S::OuterStrideAtCompileTime != Eigen::Dynamic + && std::is_default_constructible<S>::value>; // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like // Eigen::Stride, and use it: - template <typename S> using stride_ctor_dual = bool_constant< - !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>; + template <typename S> + using stride_ctor_dual + = bool_constant<!stride_ctor_default<S>::value + && std::is_constructible<S, EigenIndex, EigenIndex>::value>; // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use // it (passing whichever stride is dynamic). - template <typename S> using stride_ctor_outer = bool_constant< - !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && - S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic && - std::is_constructible<S, EigenIndex>::value>; - template <typename S> using stride_ctor_inner = bool_constant< - !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && - S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && - std::is_constructible<S, EigenIndex>::value>; + template <typename S> + using stride_ctor_outer + = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value + && S::OuterStrideAtCompileTime == Eigen::Dynamic + && S::InnerStrideAtCompileTime != Eigen::Dynamic + && std::is_constructible<S, EigenIndex>::value>; + template <typename S> + using stride_ctor_inner + = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value + && S::InnerStrideAtCompileTime == Eigen::Dynamic + && S::OuterStrideAtCompileTime != Eigen::Dynamic + && std::is_constructible<S, EigenIndex>::value>; template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0> - static S make_stride(EigenIndex, EigenIndex) { return S(); } + static S make_stride(EigenIndex, EigenIndex) { + return S(); + } template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0> - static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); } + static S make_stride(EigenIndex outer, EigenIndex inner) { + return S(outer, inner); + } template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0> - static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); } + static S make_stride(EigenIndex outer, EigenIndex) { + return S(outer); + } template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0> - static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); } - + static S make_stride(EigenIndex, EigenIndex inner) { + return S(inner); + } }; // type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not @@ -518,14 +617,18 @@ private: template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> { protected: - using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>; + using Matrix + = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>; using props = EigenProps<Matrix>; + public: static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { handle h = eigen_encapsulate<props>(new Matrix(src)); return h; } - static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); } + static handle cast(const Type *src, return_value_policy policy, handle parent) { + return cast(*src, policy, parent); + } static constexpr auto name = props::descriptor; @@ -534,10 +637,11 @@ public: // you end up here if you try anyway. bool load(handle, bool) = delete; operator Type() = delete; - template <typename> using cast_op_type = Type; + template <typename> + using cast_op_type = Type; }; -template<typename Type> +template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { using Scalar = typename Type::Scalar; using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>; @@ -545,13 +649,13 @@ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { static constexpr bool rowMajor = Type::IsRowMajor; bool load(handle src, bool) { - if (!src) + if (!src) { return false; + } auto obj = reinterpret_borrow<object>(src); object sparse_module = module_::import("scipy.sparse"); - object matrix_type = sparse_module.attr( - rowMajor ? "csr_matrix" : "csc_matrix"); + object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix"); if (!type::handle_of(obj).is(matrix_type)) { try { @@ -567,41 +671,43 @@ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { auto shape = pybind11::tuple((pybind11::object) obj.attr("shape")); auto nnz = obj.attr("nnz").cast<Index>(); - if (!values || !innerIndices || !outerIndices) + if (!values || !innerIndices || !outerIndices) { return false; + } - value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>( - shape[0].cast<Index>(), shape[1].cast<Index>(), nnz, - outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data()); + value = EigenMapSparseMatrix<Scalar, + Type::Flags &(Eigen::RowMajor | Eigen::ColMajor), + StorageIndex>(shape[0].cast<Index>(), + shape[1].cast<Index>(), + std::move(nnz), + outerIndices.mutable_data(), + innerIndices.mutable_data(), + values.mutable_data()); return true; } static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { - const_cast<Type&>(src).makeCompressed(); + const_cast<Type &>(src).makeCompressed(); - object matrix_type = module_::import("scipy.sparse").attr( - rowMajor ? "csr_matrix" : "csc_matrix"); + object matrix_type + = module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix"); array data(src.nonZeros(), src.valuePtr()); array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr()); array innerIndices(src.nonZeros(), src.innerIndexPtr()); - return matrix_type( - std::make_tuple(data, innerIndices, outerIndices), - std::make_pair(src.rows(), src.cols()) - ).release(); + return matrix_type(pybind11::make_tuple( + std::move(data), std::move(innerIndices), std::move(outerIndices)), + pybind11::make_tuple(src.rows(), src.cols())) + .release(); } - PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[") - + npy_format_descriptor<Scalar>::name + _("]")); + PYBIND11_TYPE_CASTER(Type, + const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", + "scipy.sparse.csc_matrix[") + + npy_format_descriptor<Scalar>::name + const_name("]")); }; PYBIND11_NAMESPACE_END(detail) PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE) - -#if defined(__GNUG__) || defined(__clang__) -# pragma GCC diagnostic pop -#elif defined(_MSC_VER) -# pragma warning(pop) -#endif |