aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/include/pybind11/eigen.h
diff options
context:
space:
mode:
authorgatecat <gatecat@ds0.me>2022-09-14 09:28:47 +0200
committergatecat <gatecat@ds0.me>2022-09-14 09:28:47 +0200
commita72f898ff4c4237424c468044a6db9d6953b541e (patch)
tree1c4a543f661dd1b281aecf4660388491702fa8d8 /3rdparty/pybind11/include/pybind11/eigen.h
parentf1349e114f3a16ccd002e8513339e18f5be4d31b (diff)
downloadnextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.tar.gz
nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.tar.bz2
nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.zip
3rdparty: Bump vendored pybind11 version for py3.11 support
Signed-off-by: gatecat <gatecat@ds0.me>
Diffstat (limited to '3rdparty/pybind11/include/pybind11/eigen.h')
-rw-r--r--3rdparty/pybind11/include/pybind11/eigen.h546
1 files changed, 326 insertions, 220 deletions
diff --git a/3rdparty/pybind11/include/pybind11/eigen.h b/3rdparty/pybind11/include/pybind11/eigen.h
index e8c6f633..83162522 100644
--- a/3rdparty/pybind11/include/pybind11/eigen.h
+++ b/3rdparty/pybind11/include/pybind11/eigen.h
@@ -9,218 +9,266 @@
#pragma once
-#include "numpy.h"
+/* HINT: To suppress warnings originating from the Eigen headers, use -isystem.
+ See also:
+ https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir
+ https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler
+*/
-#if defined(__INTEL_COMPILER)
-# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
-#elif defined(__GNUG__) || defined(__clang__)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Wconversion"
-# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
-# ifdef __clang__
-// Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated
-// under Clang, so disable that warning here:
-# pragma GCC diagnostic ignored "-Wdeprecated"
-# endif
-# if __GNUC__ >= 7
-# pragma GCC diagnostic ignored "-Wint-in-bool-context"
-# endif
-#endif
+#include "numpy.h"
+// The C4127 suppression was introduced for Eigen 3.4.0. In theory we could
+// make it version specific, or even remove it later, but considering that
+// 1. C4127 is generally far more distracting than useful for modern template code, and
+// 2. we definitely want to ignore any MSVC warnings originating from Eigen code,
+// it is probably best to keep this around indefinitely.
#if defined(_MSC_VER)
-# pragma warning(push)
-# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
-# pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17
+# pragma warning(push)
+# pragma warning(disable : 4127) // C4127: conditional expression is constant
+# pragma warning(disable : 5054) // https://github.com/pybind/pybind11/pull/3741
+// C5054: operator '&': deprecated between enumerations of different types
+#elif defined(__MINGW32__)
+# pragma GCC diagnostic push
+# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
#include <Eigen/Core>
#include <Eigen/SparseCore>
+#if defined(_MSC_VER)
+# pragma warning(pop)
+#elif defined(__MINGW32__)
+# pragma GCC diagnostic pop
+#endif
+
// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
// move constructors that break things. We could detect this an explicitly copy, but an extra copy
// of matrices seems highly undesirable.
-static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
+static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7),
+ "Eigen support in pybind11 requires Eigen >= 3.2.7");
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
-template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
-template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
+template <typename MatrixType>
+using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
+template <typename MatrixType>
+using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
PYBIND11_NAMESPACE_BEGIN(detail)
-#if EIGEN_VERSION_AT_LEAST(3,3,0)
+#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
using EigenIndex = Eigen::Index;
+template <typename Scalar, int Flags, typename StorageIndex>
+using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>;
#else
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
+template <typename Scalar, int Flags, typename StorageIndex>
+using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>;
#endif
// Matches Eigen::Map, Eigen::Ref, blocks, etc:
-template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
-template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
-template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
-template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
+template <typename T>
+using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>,
+ std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
+template <typename T>
+using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
+template <typename T>
+using is_eigen_dense_plain
+ = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
+template <typename T>
+using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
-template <typename T> using is_eigen_other = all_of<
- is_template_base_of<Eigen::EigenBase, T>,
- negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>
->;
+template <typename T>
+using is_eigen_other
+ = all_of<is_template_base_of<Eigen::EigenBase, T>,
+ negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>;
// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
-template <bool EigenRowMajor> struct EigenConformable {
+template <bool EigenRowMajor>
+struct EigenConformable {
bool conformable = false;
EigenIndex rows = 0, cols = 0;
- EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
- bool negativestrides = false; // If true, do not use stride!
+ EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
+ bool negativestrides = false; // If true, do not use stride!
+ // NOLINTNEXTLINE(google-explicit-constructor)
EigenConformable(bool fits = false) : conformable{fits} {}
// Matrix type:
- EigenConformable(EigenIndex r, EigenIndex c,
- EigenIndex rstride, EigenIndex cstride) :
- conformable{true}, rows{r}, cols{c} {
- // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
- if (rstride < 0 || cstride < 0) {
- negativestrides = true;
- } else {
- stride = {EigenRowMajor ? rstride : cstride /* outer stride */,
- EigenRowMajor ? cstride : rstride /* inner stride */ };
- }
- }
+ EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
+ : conformable{true}, rows{r}, cols{c},
+ // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity.
+ // http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
+ stride{EigenRowMajor ? (rstride > 0 ? rstride : 0)
+ : (cstride > 0 ? cstride : 0) /* outer stride */,
+ EigenRowMajor ? (cstride > 0 ? cstride : 0)
+ : (rstride > 0 ? rstride : 0) /* inner stride */},
+ negativestrides{rstride < 0 || cstride < 0} {}
// Vector type:
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
- : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
+ : EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {}
- template <typename props> bool stride_compatible() const {
+ template <typename props>
+ bool stride_compatible() const {
// To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
- // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
- return
- !negativestrides &&
- (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
- (EigenRowMajor ? cols : rows) == 1) &&
- (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
- (EigenRowMajor ? rows : cols) == 1);
+ // matching strides, or a dimension size of 1 (in which case the stride value is
+ // irrelevant). Alternatively, if any dimension size is 0, the strides are not relevant
+ // (and numpy ≥ 1.23 sets the strides to 0 in that case, so we need to check explicitly).
+ if (negativestrides) {
+ return false;
+ }
+ if (rows == 0 || cols == 0) {
+ return true;
+ }
+ return (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner()
+ || (EigenRowMajor ? cols : rows) == 1)
+ && (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer()
+ || (EigenRowMajor ? rows : cols) == 1);
}
+ // NOLINTNEXTLINE(google-explicit-constructor)
operator bool() const { return conformable; }
};
-template <typename Type> struct eigen_extract_stride { using type = Type; };
+template <typename Type>
+struct eigen_extract_stride {
+ using type = Type;
+};
template <typename PlainObjectType, int MapOptions, typename StrideType>
-struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
+struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> {
+ using type = StrideType;
+};
template <typename PlainObjectType, int Options, typename StrideType>
-struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
+struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> {
+ using type = StrideType;
+};
// Helper struct for extracting information from an Eigen type
-template <typename Type_> struct EigenProps {
+template <typename Type_>
+struct EigenProps {
using Type = Type_;
using Scalar = typename Type::Scalar;
using StrideType = typename eigen_extract_stride<Type>::type;
- static constexpr EigenIndex
- rows = Type::RowsAtCompileTime,
- cols = Type::ColsAtCompileTime,
- size = Type::SizeAtCompileTime;
- static constexpr bool
- row_major = Type::IsRowMajor,
- vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
- fixed_rows = rows != Eigen::Dynamic,
- fixed_cols = cols != Eigen::Dynamic,
- fixed = size != Eigen::Dynamic, // Fully-fixed size
- dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
-
- template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
- static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
- outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
- vector ? size : row_major ? cols : rows>::value;
- static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
- static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
- static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
+ static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime,
+ size = Type::SizeAtCompileTime;
+ static constexpr bool row_major = Type::IsRowMajor,
+ vector
+ = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
+ fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic,
+ fixed = size != Eigen::Dynamic, // Fully-fixed size
+ dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
+
+ template <EigenIndex i, EigenIndex ifzero>
+ using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
+ static constexpr EigenIndex inner_stride
+ = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
+ outer_stride = if_zero < StrideType::OuterStrideAtCompileTime,
+ vector ? size
+ : row_major ? cols
+ : rows > ::value;
+ static constexpr bool dynamic_stride
+ = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
+ static constexpr bool requires_row_major
+ = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
+ static constexpr bool requires_col_major
+ = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
// Takes an input array and determines whether we can make it fit into the Eigen type. If
// the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
// (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
static EigenConformable<row_major> conformable(const array &a) {
const auto dims = a.ndim();
- if (dims < 1 || dims > 2)
+ if (dims < 1 || dims > 2) {
return false;
+ }
if (dims == 2) { // Matrix type: require exact match (or dynamic)
- EigenIndex
- np_rows = a.shape(0),
- np_cols = a.shape(1),
- np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
- np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
- if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
+ EigenIndex np_rows = a.shape(0), np_cols = a.shape(1),
+ np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
+ np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
+ if ((PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && np_rows != rows)
+ || (PYBIND11_SILENCE_MSVC_C4127(fixed_cols) && np_cols != cols)) {
return false;
+ }
return {np_rows, np_cols, np_rstride, np_cstride};
}
- // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
- // is used, we want the (single) numpy stride value.
+ // Otherwise we're storing an n-vector. Only one of the strides will be used, but
+ // whichever is used, we want the (single) numpy stride value.
const EigenIndex n = a.shape(0),
- stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
+ stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
if (vector) { // Eigen type is a compile-time vector
- if (fixed && size != n)
+ if (PYBIND11_SILENCE_MSVC_C4127(fixed) && size != n) {
return false; // Vector size mismatch
+ }
return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
}
- else if (fixed) {
+ if (fixed) {
// The type has a fixed size, but is not a vector: abort
return false;
}
- else if (fixed_cols) {
+ if (fixed_cols) {
// Since this isn't a vector, cols must be != 1. We allow this only if it exactly
// equals the number of elements (rows is Dynamic, and so 1 row is allowed).
- if (cols != n) return false;
+ if (cols != n) {
+ return false;
+ }
return {1, n, stride};
+ } // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
+ if (PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && rows != n) {
+ return false;
}
- else {
- // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
- if (fixed_rows && rows != n) return false;
- return {n, 1, stride};
- }
+ return {n, 1, stride};
}
- static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
+ static constexpr bool show_writeable
+ = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
static constexpr bool show_order = is_eigen_dense_map<Type>::value;
static constexpr bool show_c_contiguous = show_order && requires_row_major;
- static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
-
- static constexpr auto descriptor =
- _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name +
- _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
- _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
- _("]") +
- // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
- // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
- // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
- // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
- // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
- // *gave* a numpy.ndarray of the right type and dimensions.
- _<show_writeable>(", flags.writeable", "") +
- _<show_c_contiguous>(", flags.c_contiguous", "") +
- _<show_f_contiguous>(", flags.f_contiguous", "") +
- _("]");
+ static constexpr bool show_f_contiguous
+ = !show_c_contiguous && show_order && requires_col_major;
+
+ static constexpr auto descriptor
+ = const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
+ + const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
+ + const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
+ +
+ // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
+ // be satisfied: writeable=True (for a mutable reference), and, depending on the map's
+ // stride options, possibly f_contiguous or c_contiguous. We include them in the
+ // descriptor output to provide some hint as to why a TypeError is occurring (otherwise
+ // it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
+ // an error message that you *gave* a numpy.ndarray of the right type and dimensions.
+ const_name<show_writeable>(", flags.writeable", "")
+ + const_name<show_c_contiguous>(", flags.c_contiguous", "")
+ + const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
};
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
-template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
+template <typename props>
+handle
+eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
constexpr ssize_t elem_size = sizeof(typename props::Scalar);
array a;
- if (props::vector)
- a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base);
- else
- a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() },
- src.data(), base);
+ if (props::vector) {
+ a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base);
+ } else {
+ a = array({src.rows(), src.cols()},
+ {elem_size * src.rowStride(), elem_size * src.colStride()},
+ src.data(),
+ base);
+ }
- if (!writeable)
+ if (!writeable) {
array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
+ }
return a.release();
}
@@ -236,10 +284,10 @@ handle eigen_ref_array(Type &src, handle parent = none()) {
return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
}
-// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
-// array that references the encapsulated data with a python-side reference to the capsule to tie
-// its destruction to that of any dependent python objects. Const-ness is determined by whether or
-// not the Type of the pointer given is const.
+// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a
+// numpy array that references the encapsulated data with a python-side reference to the capsule to
+// tie its destruction to that of any dependent python objects. Const-ness is determined by
+// whether or not the Type of the pointer given is const.
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
handle eigen_encapsulate(Type *src) {
capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
@@ -248,35 +296,42 @@ handle eigen_encapsulate(Type *src) {
// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
// types.
-template<typename Type>
+template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
using Scalar = typename Type::Scalar;
using props = EigenProps<Type>;
bool load(handle src, bool convert) {
// If we're in no-convert mode, only load if given an array of the correct type
- if (!convert && !isinstance<array_t<Scalar>>(src))
+ if (!convert && !isinstance<array_t<Scalar>>(src)) {
return false;
+ }
// Coerce into an array, but don't do type conversion yet; the copy below handles it.
auto buf = array::ensure(src);
- if (!buf)
+ if (!buf) {
return false;
+ }
auto dims = buf.ndim();
- if (dims < 1 || dims > 2)
+ if (dims < 1 || dims > 2) {
return false;
+ }
auto fits = props::conformable(buf);
- if (!fits)
+ if (!fits) {
return false;
+ }
// Allocate the new type, then build a numpy reference into it
value = Type(fits.rows, fits.cols);
auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
- if (dims == 1) ref = ref.squeeze();
- else if (ref.ndim() == 1) buf = buf.squeeze();
+ if (dims == 1) {
+ ref = ref.squeeze();
+ } else if (ref.ndim() == 1) {
+ buf = buf.squeeze();
+ }
int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
@@ -289,7 +344,6 @@ struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
}
private:
-
// Cast implementation
template <typename CType>
static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
@@ -312,7 +366,6 @@ private:
}
public:
-
// Normal returned non-reference, non-const value:
static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
@@ -323,14 +376,18 @@ public:
}
// lvalue reference return; default (automatic) becomes copy
static handle cast(Type &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
+ if (policy == return_value_policy::automatic
+ || policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
+ }
return cast_impl(&src, policy, parent);
}
// const lvalue reference return; default (automatic) becomes copy
static handle cast(const Type &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
+ if (policy == return_value_policy::automatic
+ || policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
+ }
return cast(&src, policy, parent);
}
// non-const pointer return
@@ -344,28 +401,32 @@ public:
static constexpr auto name = props::descriptor;
- operator Type*() { return &value; }
- operator Type&() { return value; }
- operator Type&&() && { return std::move(value); }
- template <typename T> using cast_op_type = movable_cast_op_type<T>;
+ // NOLINTNEXTLINE(google-explicit-constructor)
+ operator Type *() { return &value; }
+ // NOLINTNEXTLINE(google-explicit-constructor)
+ operator Type &() { return value; }
+ // NOLINTNEXTLINE(google-explicit-constructor)
+ operator Type &&() && { return std::move(value); }
+ template <typename T>
+ using cast_op_type = movable_cast_op_type<T>;
private:
Type value;
};
// Base class for casting reference/map/block/etc. objects back to python.
-template <typename MapType> struct eigen_map_caster {
+template <typename MapType>
+struct eigen_map_caster {
private:
using props = EigenProps<MapType>;
public:
-
// Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
- // to stay around), but we'll allow it under the assumption that you know what you're doing (and
- // have an appropriate keep_alive in place). We return a numpy array pointing directly at the
- // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
- // that this means you need to ensure you don't destroy the object in some other way (e.g. with
- // an appropriate keep_alive, or with a reference to a statically allocated matrix).
+ // to stay around), but we'll allow it under the assumption that you know what you're doing
+ // (and have an appropriate keep_alive in place). We return a numpy array pointing directly at
+ // the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.)
+ // Note that this means you need to ensure you don't destroy the object in some other way (e.g.
+ // with an appropriate keep_alive, or with a reference to a statically allocated matrix).
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::copy:
@@ -389,43 +450,50 @@ public:
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator MapType() = delete;
- template <typename> using cast_op_type = MapType;
+ template <typename>
+ using cast_op_type = MapType;
};
// We can return any map-like object (but can only load Refs, specialized next):
-template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
- : eigen_map_caster<Type> {};
+template <typename Type>
+struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {};
// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
// copying (it requires some extra effort in many cases).
template <typename PlainObjectType, typename StrideType>
struct type_caster<
Eigen::Ref<PlainObjectType, 0, StrideType>,
- enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
-> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
+ enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>>
+ : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
private:
using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
using props = EigenProps<Type>;
using Scalar = typename props::Scalar;
using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
- using Array = array_t<Scalar, array::forcecast |
- ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
- (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
+ using Array
+ = array_t<Scalar,
+ array::forcecast
+ | ((props::row_major ? props::inner_stride : props::outer_stride) == 1
+ ? array::c_style
+ : (props::row_major ? props::outer_stride : props::inner_stride) == 1
+ ? array::f_style
+ : 0)>;
static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
// Delay construction (these have no default constructor)
std::unique_ptr<MapType> map;
std::unique_ptr<Type> ref;
// Our array. When possible, this is just a numpy array pointing to the source data, but
- // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
- // layout, or is an array of a type that needs to be converted). Using a numpy temporary
- // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
- // storage order conversion. (Note that we refuse to use this temporary copy when loading an
- // argument for a Ref<M> with M non-const, i.e. a read-write reference).
+ // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an
+ // incompatible layout, or is an array of a type that needs to be converted). Using a numpy
+ // temporary (rather than an Eigen temporary) saves an extra copy when we need both type
+ // conversion and storage order conversion. (Note that we refuse to use this temporary copy
+ // when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference).
Array copy_or_ref;
+
public:
bool load(handle src, bool convert) {
- // First check whether what we have is already an array of the right type. If not, we can't
- // avoid a copy (because the copy is also going to do type conversion).
+ // First check whether what we have is already an array of the right type. If not, we
+ // can't avoid a copy (because the copy is also going to do type conversion).
bool need_copy = !isinstance<Array>(src);
EigenConformable<props::row_major> fits;
@@ -436,13 +504,15 @@ public:
if (aref && (!need_writeable || aref.writeable())) {
fits = props::conformable(aref);
- if (!fits) return false; // Incompatible dimensions
- if (!fits.template stride_compatible<props>())
+ if (!fits) {
+ return false; // Incompatible dimensions
+ }
+ if (!fits.template stride_compatible<props>()) {
need_copy = true;
- else
+ } else {
copy_or_ref = std::move(aref);
- }
- else {
+ }
+ } else {
need_copy = true;
}
}
@@ -451,64 +521,93 @@ public:
// We need to copy: If we need a mutable reference, or we're not supposed to convert
// (either because we're in the no-convert overload pass, or because we're explicitly
// instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
- if (!convert || need_writeable) return false;
+ if (!convert || need_writeable) {
+ return false;
+ }
Array copy = Array::ensure(src);
- if (!copy) return false;
+ if (!copy) {
+ return false;
+ }
fits = props::conformable(copy);
- if (!fits || !fits.template stride_compatible<props>())
+ if (!fits || !fits.template stride_compatible<props>()) {
return false;
+ }
copy_or_ref = std::move(copy);
loader_life_support::add_patient(copy_or_ref);
}
ref.reset();
- map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
+ map.reset(new MapType(data(copy_or_ref),
+ fits.rows,
+ fits.cols,
+ make_stride(fits.stride.outer(), fits.stride.inner())));
ref.reset(new Type(*map));
return true;
}
- operator Type*() { return ref.get(); }
- operator Type&() { return *ref; }
- template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
+ // NOLINTNEXTLINE(google-explicit-constructor)
+ operator Type *() { return ref.get(); }
+ // NOLINTNEXTLINE(google-explicit-constructor)
+ operator Type &() { return *ref; }
+ template <typename _T>
+ using cast_op_type = pybind11::detail::cast_op_type<_T>;
private:
template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
- Scalar *data(Array &a) { return a.mutable_data(); }
+ Scalar *data(Array &a) {
+ return a.mutable_data();
+ }
template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
- const Scalar *data(Array &a) { return a.data(); }
+ const Scalar *data(Array &a) {
+ return a.data();
+ }
// Attempt to figure out a constructor of `Stride` that will work.
// If both strides are fixed, use a default constructor:
- template <typename S> using stride_ctor_default = bool_constant<
- S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
- std::is_default_constructible<S>::value>;
+ template <typename S>
+ using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic
+ && S::OuterStrideAtCompileTime != Eigen::Dynamic
+ && std::is_default_constructible<S>::value>;
// Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
// Eigen::Stride, and use it:
- template <typename S> using stride_ctor_dual = bool_constant<
- !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
+ template <typename S>
+ using stride_ctor_dual
+ = bool_constant<!stride_ctor_default<S>::value
+ && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
// Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
// it (passing whichever stride is dynamic).
- template <typename S> using stride_ctor_outer = bool_constant<
- !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
- S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
- std::is_constructible<S, EigenIndex>::value>;
- template <typename S> using stride_ctor_inner = bool_constant<
- !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
- S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
- std::is_constructible<S, EigenIndex>::value>;
+ template <typename S>
+ using stride_ctor_outer
+ = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
+ && S::OuterStrideAtCompileTime == Eigen::Dynamic
+ && S::InnerStrideAtCompileTime != Eigen::Dynamic
+ && std::is_constructible<S, EigenIndex>::value>;
+ template <typename S>
+ using stride_ctor_inner
+ = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
+ && S::InnerStrideAtCompileTime == Eigen::Dynamic
+ && S::OuterStrideAtCompileTime != Eigen::Dynamic
+ && std::is_constructible<S, EigenIndex>::value>;
template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
- static S make_stride(EigenIndex, EigenIndex) { return S(); }
+ static S make_stride(EigenIndex, EigenIndex) {
+ return S();
+ }
template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
- static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
+ static S make_stride(EigenIndex outer, EigenIndex inner) {
+ return S(outer, inner);
+ }
template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
- static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
+ static S make_stride(EigenIndex outer, EigenIndex) {
+ return S(outer);
+ }
template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
- static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
-
+ static S make_stride(EigenIndex, EigenIndex inner) {
+ return S(inner);
+ }
};
// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
@@ -518,14 +617,18 @@ private:
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
protected:
- using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
+ using Matrix
+ = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
using props = EigenProps<Matrix>;
+
public:
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
handle h = eigen_encapsulate<props>(new Matrix(src));
return h;
}
- static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
+ static handle cast(const Type *src, return_value_policy policy, handle parent) {
+ return cast(*src, policy, parent);
+ }
static constexpr auto name = props::descriptor;
@@ -534,10 +637,11 @@ public:
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator Type() = delete;
- template <typename> using cast_op_type = Type;
+ template <typename>
+ using cast_op_type = Type;
};
-template<typename Type>
+template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
using Scalar = typename Type::Scalar;
using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
@@ -545,13 +649,13 @@ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
static constexpr bool rowMajor = Type::IsRowMajor;
bool load(handle src, bool) {
- if (!src)
+ if (!src) {
return false;
+ }
auto obj = reinterpret_borrow<object>(src);
object sparse_module = module_::import("scipy.sparse");
- object matrix_type = sparse_module.attr(
- rowMajor ? "csr_matrix" : "csc_matrix");
+ object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix");
if (!type::handle_of(obj).is(matrix_type)) {
try {
@@ -567,41 +671,43 @@ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
auto nnz = obj.attr("nnz").cast<Index>();
- if (!values || !innerIndices || !outerIndices)
+ if (!values || !innerIndices || !outerIndices) {
return false;
+ }
- value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>(
- shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
- outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());
+ value = EigenMapSparseMatrix<Scalar,
+ Type::Flags &(Eigen::RowMajor | Eigen::ColMajor),
+ StorageIndex>(shape[0].cast<Index>(),
+ shape[1].cast<Index>(),
+ std::move(nnz),
+ outerIndices.mutable_data(),
+ innerIndices.mutable_data(),
+ values.mutable_data());
return true;
}
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
- const_cast<Type&>(src).makeCompressed();
+ const_cast<Type &>(src).makeCompressed();
- object matrix_type = module_::import("scipy.sparse").attr(
- rowMajor ? "csr_matrix" : "csc_matrix");
+ object matrix_type
+ = module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix");
array data(src.nonZeros(), src.valuePtr());
array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
array innerIndices(src.nonZeros(), src.innerIndexPtr());
- return matrix_type(
- std::make_tuple(data, innerIndices, outerIndices),
- std::make_pair(src.rows(), src.cols())
- ).release();
+ return matrix_type(pybind11::make_tuple(
+ std::move(data), std::move(innerIndices), std::move(outerIndices)),
+ pybind11::make_tuple(src.rows(), src.cols()))
+ .release();
}
- PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
- + npy_format_descriptor<Scalar>::name + _("]"));
+ PYBIND11_TYPE_CASTER(Type,
+ const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[",
+ "scipy.sparse.csc_matrix[")
+ + npy_format_descriptor<Scalar>::name + const_name("]"));
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
-
-#if defined(__GNUG__) || defined(__clang__)
-# pragma GCC diagnostic pop
-#elif defined(_MSC_VER)
-# pragma warning(pop)
-#endif