aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/include/pybind11/cast.h
diff options
context:
space:
mode:
authorgatecat <gatecat@ds0.me>2022-09-14 09:28:47 +0200
committergatecat <gatecat@ds0.me>2022-09-14 09:28:47 +0200
commita72f898ff4c4237424c468044a6db9d6953b541e (patch)
tree1c4a543f661dd1b281aecf4660388491702fa8d8 /3rdparty/pybind11/include/pybind11/cast.h
parentf1349e114f3a16ccd002e8513339e18f5be4d31b (diff)
downloadnextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.tar.gz
nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.tar.bz2
nextpnr-a72f898ff4c4237424c468044a6db9d6953b541e.zip
3rdparty: Bump vendored pybind11 version for py3.11 support
Signed-off-by: gatecat <gatecat@ds0.me>
Diffstat (limited to '3rdparty/pybind11/include/pybind11/cast.h')
-rw-r--r--3rdparty/pybind11/include/pybind11/cast.h2202
1 files changed, 824 insertions, 1378 deletions
diff --git a/3rdparty/pybind11/include/pybind11/cast.h b/3rdparty/pybind11/include/pybind11/cast.h
index 11c61a44..a0e32281 100644
--- a/3rdparty/pybind11/include/pybind11/cast.h
+++ b/3rdparty/pybind11/include/pybind11/cast.h
@@ -10,1029 +10,168 @@
#pragma once
-#include "pytypes.h"
-#include "detail/typeid.h"
+#include "detail/common.h"
#include "detail/descr.h"
-#include "detail/internals.h"
+#include "detail/type_caster_base.h"
+#include "detail/typeid.h"
+#include "pytypes.h"
+
#include <array>
-#include <limits>
+#include <cstring>
+#include <functional>
+#include <iosfwd>
+#include <iterator>
+#include <memory>
+#include <string>
#include <tuple>
#include <type_traits>
-
-#if defined(PYBIND11_CPP17)
-# if defined(__has_include)
-# if __has_include(<string_view>)
-# define PYBIND11_HAS_STRING_VIEW
-# endif
-# elif defined(_MSC_VER)
-# define PYBIND11_HAS_STRING_VIEW
-# endif
-#endif
-#ifdef PYBIND11_HAS_STRING_VIEW
-#include <string_view>
-#endif
-
-#if defined(__cpp_lib_char8_t) && __cpp_lib_char8_t >= 201811L
-# define PYBIND11_HAS_U8STRING
-#endif
+#include <utility>
+#include <vector>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
-/// A life support system for temporary objects created by `type_caster::load()`.
-/// Adding a patient will keep it alive up until the enclosing function returns.
-class loader_life_support {
-public:
- /// A new patient frame is created when a function is entered
- loader_life_support() {
- get_internals().loader_patient_stack.push_back(nullptr);
- }
-
- /// ... and destroyed after it returns
- ~loader_life_support() {
- auto &stack = get_internals().loader_patient_stack;
- if (stack.empty())
- pybind11_fail("loader_life_support: internal error");
-
- auto ptr = stack.back();
- stack.pop_back();
- Py_CLEAR(ptr);
-
- // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
- if (stack.capacity() > 16 && !stack.empty() && stack.capacity() / stack.size() > 2)
- stack.shrink_to_fit();
- }
-
- /// This can only be used inside a pybind11-bound function, either by `argument_loader`
- /// at argument preparation time or by `py::cast()` at execution time.
- PYBIND11_NOINLINE static void add_patient(handle h) {
- auto &stack = get_internals().loader_patient_stack;
- if (stack.empty())
- throw cast_error("When called outside a bound function, py::cast() cannot "
- "do Python -> C++ conversions which require the creation "
- "of temporary values");
-
- auto &list_ptr = stack.back();
- if (list_ptr == nullptr) {
- list_ptr = PyList_New(1);
- if (!list_ptr)
- pybind11_fail("loader_life_support: error allocating list");
- PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
- } else {
- auto result = PyList_Append(list_ptr, h.ptr());
- if (result == -1)
- pybind11_fail("loader_life_support: error adding patient");
- }
- }
-};
-
-// Gets the cache entry for the given type, creating it if necessary. The return value is the pair
-// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
-// just created.
-inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
-
-// Populates a just-created cache entry.
-PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
- std::vector<PyTypeObject *> check;
- for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
- check.push_back((PyTypeObject *) parent.ptr());
-
- auto const &type_dict = get_internals().registered_types_py;
- for (size_t i = 0; i < check.size(); i++) {
- auto type = check[i];
- // Ignore Python2 old-style class super type:
- if (!PyType_Check((PyObject *) type)) continue;
-
- // Check `type` in the current set of registered python types:
- auto it = type_dict.find(type);
- if (it != type_dict.end()) {
- // We found a cache entry for it, so it's either pybind-registered or has pre-computed
- // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
- // want to follow Python/virtual C++ rules that there should only be one instance of a
- // common base.
- for (auto *tinfo : it->second) {
- // NB: Could use a second set here, rather than doing a linear search, but since
- // having a large number of immediate pybind11-registered types seems fairly
- // unlikely, that probably isn't worthwhile.
- bool found = false;
- for (auto *known : bases) {
- if (known == tinfo) { found = true; break; }
- }
- if (!found) bases.push_back(tinfo);
- }
- }
- else if (type->tp_bases) {
- // It's some python type, so keep follow its bases classes to look for one or more
- // registered types
- if (i + 1 == check.size()) {
- // When we're at the end, we can pop off the current element to avoid growing
- // `check` when adding just one base (which is typical--i.e. when there is no
- // multiple inheritance)
- check.pop_back();
- i--;
- }
- for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
- check.push_back((PyTypeObject *) parent.ptr());
- }
- }
-}
-
-/**
- * Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will
- * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
- * derived class that uses single inheritance. Will contain as many types as required for a Python
- * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
- * pybind-registered classes. Will be empty if neither the type nor any base classes are
- * pybind-registered.
- *
- * The value is cached for the lifetime of the Python type.
- */
-inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
- auto ins = all_type_info_get_cache(type);
- if (ins.second)
- // New cache entry: populate it
- all_type_info_populate(type, ins.first->second);
-
- return ins.first->second;
-}
-
-/**
- * Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any
- * ancestors are pybind11-registered. Throws an exception if there are multiple bases--use
- * `all_type_info` instead if you want to support multiple bases.
- */
-PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
- auto &bases = all_type_info(type);
- if (bases.empty())
- return nullptr;
- if (bases.size() > 1)
- pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
- return bases.front();
-}
-
-inline detail::type_info *get_local_type_info(const std::type_index &tp) {
- auto &locals = registered_local_types_cpp();
- auto it = locals.find(tp);
- if (it != locals.end())
- return it->second;
- return nullptr;
-}
-
-inline detail::type_info *get_global_type_info(const std::type_index &tp) {
- auto &types = get_internals().registered_types_cpp;
- auto it = types.find(tp);
- if (it != types.end())
- return it->second;
- return nullptr;
-}
-
-/// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
-PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
- bool throw_if_missing = false) {
- if (auto ltype = get_local_type_info(tp))
- return ltype;
- if (auto gtype = get_global_type_info(tp))
- return gtype;
-
- if (throw_if_missing) {
- std::string tname = tp.name();
- detail::clean_type_id(tname);
- pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
- }
- return nullptr;
-}
-
-PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
- detail::type_info *type_info = get_type_info(tp, throw_if_missing);
- return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
-}
-
-struct value_and_holder {
- instance *inst = nullptr;
- size_t index = 0u;
- const detail::type_info *type = nullptr;
- void **vh = nullptr;
-
- // Main constructor for a found value/holder:
- value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
- inst{i}, index{index}, type{type},
- vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
- {}
-
- // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
- value_and_holder() = default;
-
- // Used for past-the-end iterator
- value_and_holder(size_t index) : index{index} {}
-
- template <typename V = void> V *&value_ptr() const {
- return reinterpret_cast<V *&>(vh[0]);
- }
- // True if this `value_and_holder` has a non-null value pointer
- explicit operator bool() const { return value_ptr(); }
-
- template <typename H> H &holder() const {
- return reinterpret_cast<H &>(vh[1]);
- }
- bool holder_constructed() const {
- return inst->simple_layout
- ? inst->simple_holder_constructed
- : inst->nonsimple.status[index] & instance::status_holder_constructed;
- }
- void set_holder_constructed(bool v = true) {
- if (inst->simple_layout)
- inst->simple_holder_constructed = v;
- else if (v)
- inst->nonsimple.status[index] |= instance::status_holder_constructed;
- else
- inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
- }
- bool instance_registered() const {
- return inst->simple_layout
- ? inst->simple_instance_registered
- : inst->nonsimple.status[index] & instance::status_instance_registered;
- }
- void set_instance_registered(bool v = true) {
- if (inst->simple_layout)
- inst->simple_instance_registered = v;
- else if (v)
- inst->nonsimple.status[index] |= instance::status_instance_registered;
- else
- inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
- }
-};
-
-// Container for accessing and iterating over an instance's values/holders
-struct values_and_holders {
-private:
- instance *inst;
- using type_vec = std::vector<detail::type_info *>;
- const type_vec &tinfo;
-
-public:
- values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
-
- struct iterator {
- private:
- instance *inst = nullptr;
- const type_vec *types = nullptr;
- value_and_holder curr;
- friend struct values_and_holders;
- iterator(instance *inst, const type_vec *tinfo)
- : inst{inst}, types{tinfo},
- curr(inst /* instance */,
- types->empty() ? nullptr : (*types)[0] /* type info */,
- 0, /* vpos: (non-simple types only): the first vptr comes first */
- 0 /* index */)
- {}
- // Past-the-end iterator:
- iterator(size_t end) : curr(end) {}
- public:
- bool operator==(const iterator &other) const { return curr.index == other.curr.index; }
- bool operator!=(const iterator &other) const { return curr.index != other.curr.index; }
- iterator &operator++() {
- if (!inst->simple_layout)
- curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
- ++curr.index;
- curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
- return *this;
- }
- value_and_holder &operator*() { return curr; }
- value_and_holder *operator->() { return &curr; }
- };
-
- iterator begin() { return iterator(inst, &tinfo); }
- iterator end() { return iterator(tinfo.size()); }
-
- iterator find(const type_info *find_type) {
- auto it = begin(), endit = end();
- while (it != endit && it->type != find_type) ++it;
- return it;
- }
-
- size_t size() { return tinfo.size(); }
-};
-
-/**
- * Extracts C++ value and holder pointer references from an instance (which may contain multiple
- * values/holders for python-side multiple inheritance) that match the given type. Throws an error
- * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If
- * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
- * regardless of type (and the resulting .type will be nullptr).
- *
- * The returned object should be short-lived: in particular, it must not outlive the called-upon
- * instance.
- */
-PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
- // Optimize common case:
- if (!find_type || Py_TYPE(this) == find_type->type)
- return value_and_holder(this, find_type, 0, 0);
-
- detail::values_and_holders vhs(this);
- auto it = vhs.find(find_type);
- if (it != vhs.end())
- return *it;
-
- if (!throw_if_missing)
- return value_and_holder();
-
-#if defined(NDEBUG)
- pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
- "type is not a pybind11 base of the given instance "
- "(compile in debug mode for type details)");
-#else
- pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
- get_fully_qualified_tp_name(find_type->type) + "' is not a pybind11 base of the given `" +
- get_fully_qualified_tp_name(Py_TYPE(this)) + "' instance");
-#endif
-}
-
-PYBIND11_NOINLINE inline void instance::allocate_layout() {
- auto &tinfo = all_type_info(Py_TYPE(this));
-
- const size_t n_types = tinfo.size();
-
- if (n_types == 0)
- pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
-
- simple_layout =
- n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
-
- // Simple path: no python-side multiple inheritance, and a small-enough holder
- if (simple_layout) {
- simple_value_holder[0] = nullptr;
- simple_holder_constructed = false;
- simple_instance_registered = false;
- }
- else { // multiple base types or a too-large holder
- // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
- // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
- // values that tracks whether each associated holder has been initialized. Each [block] is
- // padded, if necessary, to an integer multiple of sizeof(void *).
- size_t space = 0;
- for (auto t : tinfo) {
- space += 1; // value pointer
- space += t->holder_size_in_ptrs; // holder instance
- }
- size_t flags_at = space;
- space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
-
- // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
- // in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6
- // they default to using pymalloc, which is designed to be efficient for small allocations
- // like the one we're doing here; in earlier versions (and for larger allocations) they are
- // just wrappers around malloc.
-#if PY_VERSION_HEX >= 0x03050000
- nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
- if (!nonsimple.values_and_holders) throw std::bad_alloc();
-#else
- nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
- if (!nonsimple.values_and_holders) throw std::bad_alloc();
- std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
-#endif
- nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
- }
- owned = true;
-}
-
-PYBIND11_NOINLINE inline void instance::deallocate_layout() {
- if (!simple_layout)
- PyMem_Free(nonsimple.values_and_holders);
-}
-
-PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
- handle type = detail::get_type_handle(tp, false);
- if (!type)
- return false;
- return isinstance(obj, type);
-}
-
-PYBIND11_NOINLINE inline std::string error_string() {
- if (!PyErr_Occurred()) {
- PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
- return "Unknown internal error occurred";
- }
-
- error_scope scope; // Preserve error state
-
- std::string errorString;
- if (scope.type) {
- errorString += handle(scope.type).attr("__name__").cast<std::string>();
- errorString += ": ";
- }
- if (scope.value)
- errorString += (std::string) str(scope.value);
-
- PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
-
-#if PY_MAJOR_VERSION >= 3
- if (scope.trace != nullptr)
- PyException_SetTraceback(scope.value, scope.trace);
-#endif
-
-#if !defined(PYPY_VERSION)
- if (scope.trace) {
- auto *trace = (PyTracebackObject *) scope.trace;
-
- /* Get the deepest trace possible */
- while (trace->tb_next)
- trace = trace->tb_next;
-
- PyFrameObject *frame = trace->tb_frame;
- errorString += "\n\nAt:\n";
- while (frame) {
- int lineno = PyFrame_GetLineNumber(frame);
- errorString +=
- " " + handle(frame->f_code->co_filename).cast<std::string>() +
- "(" + std::to_string(lineno) + "): " +
- handle(frame->f_code->co_name).cast<std::string>() + "\n";
- frame = frame->f_back;
- }
- }
-#endif
-
- return errorString;
-}
-
-PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
- auto &instances = get_internals().registered_instances;
- auto range = instances.equal_range(ptr);
- for (auto it = range.first; it != range.second; ++it) {
- for (const auto &vh : values_and_holders(it->second)) {
- if (vh.type == type)
- return handle((PyObject *) it->second);
- }
- }
- return handle();
-}
-
-inline PyThreadState *get_thread_state_unchecked() {
-#if defined(PYPY_VERSION)
- return PyThreadState_GET();
-#elif PY_VERSION_HEX < 0x03000000
- return _PyThreadState_Current;
-#elif PY_VERSION_HEX < 0x03050000
- return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
-#elif PY_VERSION_HEX < 0x03050200
- return (PyThreadState*) _PyThreadState_Current.value;
-#else
- return _PyThreadState_UncheckedGet();
-#endif
-}
-
-// Forward declarations
-inline void keep_alive_impl(handle nurse, handle patient);
-inline PyObject *make_new_instance(PyTypeObject *type);
-
-class type_caster_generic {
-public:
- PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
- : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
-
- type_caster_generic(const type_info *typeinfo)
- : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
-
- bool load(handle src, bool convert) {
- return load_impl<type_caster_generic>(src, convert);
- }
-
- PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
- const detail::type_info *tinfo,
- void *(*copy_constructor)(const void *),
- void *(*move_constructor)(const void *),
- const void *existing_holder = nullptr) {
- if (!tinfo) // no type info: error will be set already
- return handle();
-
- void *src = const_cast<void *>(_src);
- if (src == nullptr)
- return none().release();
-
- auto it_instances = get_internals().registered_instances.equal_range(src);
- for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
- for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
- if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
- return handle((PyObject *) it_i->second).inc_ref();
- }
- }
-
- auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
- auto wrapper = reinterpret_cast<instance *>(inst.ptr());
- wrapper->owned = false;
- void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
-
- switch (policy) {
- case return_value_policy::automatic:
- case return_value_policy::take_ownership:
- valueptr = src;
- wrapper->owned = true;
- break;
-
- case return_value_policy::automatic_reference:
- case return_value_policy::reference:
- valueptr = src;
- wrapper->owned = false;
- break;
-
- case return_value_policy::copy:
- if (copy_constructor)
- valueptr = copy_constructor(src);
- else {
-#if defined(NDEBUG)
- throw cast_error("return_value_policy = copy, but type is "
- "non-copyable! (compile in debug mode for details)");
-#else
- std::string type_name(tinfo->cpptype->name());
- detail::clean_type_id(type_name);
- throw cast_error("return_value_policy = copy, but type " +
- type_name + " is non-copyable!");
-#endif
- }
- wrapper->owned = true;
- break;
-
- case return_value_policy::move:
- if (move_constructor)
- valueptr = move_constructor(src);
- else if (copy_constructor)
- valueptr = copy_constructor(src);
- else {
-#if defined(NDEBUG)
- throw cast_error("return_value_policy = move, but type is neither "
- "movable nor copyable! "
- "(compile in debug mode for details)");
-#else
- std::string type_name(tinfo->cpptype->name());
- detail::clean_type_id(type_name);
- throw cast_error("return_value_policy = move, but type " +
- type_name + " is neither movable nor copyable!");
-#endif
- }
- wrapper->owned = true;
- break;
-
- case return_value_policy::reference_internal:
- valueptr = src;
- wrapper->owned = false;
- keep_alive_impl(inst, parent);
- break;
-
- default:
- throw cast_error("unhandled return_value_policy: should not happen!");
- }
-
- tinfo->init_instance(wrapper, existing_holder);
-
- return inst.release();
- }
-
- // Base methods for generic caster; there are overridden in copyable_holder_caster
- void load_value(value_and_holder &&v_h) {
- auto *&vptr = v_h.value_ptr();
- // Lazy allocation for unallocated values:
- if (vptr == nullptr) {
- auto *type = v_h.type ? v_h.type : typeinfo;
- if (type->operator_new) {
- vptr = type->operator_new(type->type_size);
- } else {
- #if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
- if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
- vptr = ::operator new(type->type_size,
- std::align_val_t(type->type_align));
- else
- #endif
- vptr = ::operator new(type->type_size);
- }
- }
- value = vptr;
- }
- bool try_implicit_casts(handle src, bool convert) {
- for (auto &cast : typeinfo->implicit_casts) {
- type_caster_generic sub_caster(*cast.first);
- if (sub_caster.load(src, convert)) {
- value = cast.second(sub_caster.value);
- return true;
- }
- }
- return false;
- }
- bool try_direct_conversions(handle src) {
- for (auto &converter : *typeinfo->direct_conversions) {
- if (converter(src.ptr(), value))
- return true;
- }
- return false;
- }
- void check_holder_compat() {}
-
- PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
- auto caster = type_caster_generic(ti);
- if (caster.load(src, false))
- return caster.value;
- return nullptr;
- }
-
- /// Try to load with foreign typeinfo, if available. Used when there is no
- /// native typeinfo, or when the native one wasn't able to produce a value.
- PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
- constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
- const auto pytype = type::handle_of(src);
- if (!hasattr(pytype, local_key))
- return false;
-
- type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
- // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
- if (foreign_typeinfo->module_local_load == &local_load
- || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
- return false;
-
- if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
- value = result;
- return true;
- }
- return false;
- }
-
- // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
- // bits of code between here and copyable_holder_caster where the two classes need different
- // logic (without having to resort to virtual inheritance).
- template <typename ThisT>
- PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
- if (!src) return false;
- if (!typeinfo) return try_load_foreign_module_local(src);
- if (src.is_none()) {
- // Defer accepting None to other overloads (if we aren't in convert mode):
- if (!convert) return false;
- value = nullptr;
- return true;
- }
-
- auto &this_ = static_cast<ThisT &>(*this);
- this_.check_holder_compat();
-
- PyTypeObject *srctype = Py_TYPE(src.ptr());
-
- // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
- // the instance's value pointer to the target type:
- if (srctype == typeinfo->type) {
- this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
- return true;
- }
- // Case 2: We have a derived class
- else if (PyType_IsSubtype(srctype, typeinfo->type)) {
- auto &bases = all_type_info(srctype);
- bool no_cpp_mi = typeinfo->simple_type;
-
- // Case 2a: the python type is a Python-inherited derived class that inherits from just
- // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
- // the right type and we can use reinterpret_cast.
- // (This is essentially the same as case 2b, but because not using multiple inheritance
- // is extremely common, we handle it specially to avoid the loop iterator and type
- // pointer lookup overhead)
- if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
- this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
- return true;
- }
- // Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if
- // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
- // can safely reinterpret_cast to the relevant pointer.
- else if (bases.size() > 1) {
- for (auto base : bases) {
- if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
- this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
- return true;
- }
- }
- }
-
- // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
- // in the registered bases, above, so try implicit casting (needed for proper C++ casting
- // when MI is involved).
- if (this_.try_implicit_casts(src, convert))
- return true;
- }
-
- // Perform an implicit conversion
- if (convert) {
- for (auto &converter : typeinfo->implicit_conversions) {
- auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
- if (load_impl<ThisT>(temp, false)) {
- loader_life_support::add_patient(temp);
- return true;
- }
- }
- if (this_.try_direct_conversions(src))
- return true;
- }
-
- // Failed to match local typeinfo. Try again with global.
- if (typeinfo->module_local) {
- if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
- typeinfo = gtype;
- return load(src, false);
- }
- }
-
- // Global typeinfo has precedence over foreign module_local
- return try_load_foreign_module_local(src);
- }
-
-
- // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
- // isn't needed or can't be used. If the type is unknown, sets the error and returns a pair
- // with .second = nullptr. (p.first = nullptr is not an error: it becomes None).
- PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
- const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
- if (auto *tpi = get_type_info(cast_type))
- return {src, const_cast<const type_info *>(tpi)};
-
- // Not found, set error:
- std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
- detail::clean_type_id(tname);
- std::string msg = "Unregistered type : " + tname;
- PyErr_SetString(PyExc_TypeError, msg.c_str());
- return {nullptr, nullptr};
- }
-
- const type_info *typeinfo = nullptr;
- const std::type_info *cpptype = nullptr;
- void *value = nullptr;
-};
-
-/**
- * Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster
- * needs to provide `operator T*()` and `operator T&()` operators.
- *
- * If the type supports moving the value away via an `operator T&&() &&` method, it should use
- * `movable_cast_op_type` instead.
- */
-template <typename T>
-using cast_op_type =
- conditional_t<std::is_pointer<remove_reference_t<T>>::value,
- typename std::add_pointer<intrinsic_t<T>>::type,
- typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
-
-/**
- * Determine suitable casting operator for a type caster with a movable value. Such a type caster
- * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be
- * called in appropriate contexts where the value can be moved rather than copied.
- *
- * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
- */
-template <typename T>
-using movable_cast_op_type =
- conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
- typename std::add_pointer<intrinsic_t<T>>::type,
- conditional_t<std::is_rvalue_reference<T>::value,
- typename std::add_rvalue_reference<intrinsic_t<T>>::type,
- typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
-
-// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
-// T is non-copyable, but code containing such a copy constructor fails to actually compile.
-template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
-
-// Specialization for types that appear to be copy constructible but also look like stl containers
-// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
-// so, copy constructability depends on whether the value_type is copy constructible.
-template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
- std::is_copy_constructible<Container>,
- std::is_same<typename Container::value_type &, typename Container::reference>,
- // Avoid infinite recursion
- negation<std::is_same<Container, typename Container::value_type>>
- >::value>> : is_copy_constructible<typename Container::value_type> {};
-
-// Likewise for std::pair
-// (after C++17 it is mandatory that the copy constructor not exist when the two types aren't themselves
-// copy constructible, but this can not be relied upon when T1 or T2 are themselves containers).
-template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
- : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
-
-// The same problems arise with std::is_copy_assignable, so we use the same workaround.
-template <typename T, typename SFINAE = void> struct is_copy_assignable : std::is_copy_assignable<T> {};
-template <typename Container> struct is_copy_assignable<Container, enable_if_t<all_of<
- std::is_copy_assignable<Container>,
- std::is_same<typename Container::value_type &, typename Container::reference>
- >::value>> : is_copy_assignable<typename Container::value_type> {};
-template <typename T1, typename T2> struct is_copy_assignable<std::pair<T1, T2>>
- : all_of<is_copy_assignable<T1>, is_copy_assignable<T2>> {};
-
-PYBIND11_NAMESPACE_END(detail)
-
-// polymorphic_type_hook<itype>::get(src, tinfo) determines whether the object pointed
-// to by `src` actually is an instance of some class derived from `itype`.
-// If so, it sets `tinfo` to point to the std::type_info representing that derived
-// type, and returns a pointer to the start of the most-derived object of that type
-// (in which `src` is a subobject; this will be the same address as `src` in most
-// single inheritance cases). If not, or if `src` is nullptr, it simply returns `src`
-// and leaves `tinfo` at its default value of nullptr.
-//
-// The default polymorphic_type_hook just returns src. A specialization for polymorphic
-// types determines the runtime type of the passed object and adjusts the this-pointer
-// appropriately via dynamic_cast<void*>. This is what enables a C++ Animal* to appear
-// to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is
-// registered with pybind11, and this Animal is in fact a Dog).
-//
-// You may specialize polymorphic_type_hook yourself for types that want to appear
-// polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern
-// in performance-sensitive applications, used most notably in LLVM.)
-//
-// polymorphic_type_hook_base allows users to specialize polymorphic_type_hook with
-// std::enable_if. User provided specializations will always have higher priority than
-// the default implementation and specialization provided in polymorphic_type_hook_base.
-template <typename itype, typename SFINAE = void>
-struct polymorphic_type_hook_base
-{
- static const void *get(const itype *src, const std::type_info*&) { return src; }
-};
-template <typename itype>
-struct polymorphic_type_hook_base<itype, detail::enable_if_t<std::is_polymorphic<itype>::value>>
-{
- static const void *get(const itype *src, const std::type_info*& type) {
- type = src ? &typeid(*src) : nullptr;
- return dynamic_cast<const void*>(src);
- }
-};
-template <typename itype, typename SFINAE = void>
-struct polymorphic_type_hook : public polymorphic_type_hook_base<itype> {};
-
-PYBIND11_NAMESPACE_BEGIN(detail)
-
-/// Generic type caster for objects stored on the heap
-template <typename type> class type_caster_base : public type_caster_generic {
- using itype = intrinsic_t<type>;
-
-public:
- static constexpr auto name = _<type>();
-
- type_caster_base() : type_caster_base(typeid(type)) { }
- explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
-
- static handle cast(const itype &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
- policy = return_value_policy::copy;
- return cast(&src, policy, parent);
- }
-
- static handle cast(itype &&src, return_value_policy, handle parent) {
- return cast(&src, return_value_policy::move, parent);
- }
-
- // Returns a (pointer, type_info) pair taking care of necessary type lookup for a
- // polymorphic type (using RTTI by default, but can be overridden by specializing
- // polymorphic_type_hook). If the instance isn't derived, returns the base version.
- static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
- auto &cast_type = typeid(itype);
- const std::type_info *instance_type = nullptr;
- const void *vsrc = polymorphic_type_hook<itype>::get(src, instance_type);
- if (instance_type && !same_type(cast_type, *instance_type)) {
- // This is a base pointer to a derived type. If the derived type is registered
- // with pybind11, we want to make the full derived object available.
- // In the typical case where itype is polymorphic, we get the correct
- // derived pointer (which may be != base pointer) by a dynamic_cast to
- // most derived type. If itype is not polymorphic, we won't get here
- // except via a user-provided specialization of polymorphic_type_hook,
- // and the user has promised that no this-pointer adjustment is
- // required in that case, so it's OK to use static_cast.
- if (const auto *tpi = get_type_info(*instance_type))
- return {vsrc, tpi};
- }
- // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
- // don't do a cast
- return type_caster_generic::src_and_type(src, cast_type, instance_type);
- }
-
- static handle cast(const itype *src, return_value_policy policy, handle parent) {
- auto st = src_and_type(src);
- return type_caster_generic::cast(
- st.first, policy, parent, st.second,
- make_copy_constructor(src), make_move_constructor(src));
- }
-
- static handle cast_holder(const itype *src, const void *holder) {
- auto st = src_and_type(src);
- return type_caster_generic::cast(
- st.first, return_value_policy::take_ownership, {}, st.second,
- nullptr, nullptr, holder);
- }
-
- template <typename T> using cast_op_type = detail::cast_op_type<T>;
-
- operator itype*() { return (type *) value; }
- operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
-
-protected:
- using Constructor = void *(*)(const void *);
-
- /* Only enabled when the types are {copy,move}-constructible *and* when the type
- does not have a private operator new implementation. */
- template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
- static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
- return [](const void *arg) -> void * {
- return new T(*reinterpret_cast<const T *>(arg));
- };
- }
-
- template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
- static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
- return [](const void *arg) -> void * {
- return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
- };
- }
-
- static Constructor make_copy_constructor(...) { return nullptr; }
- static Constructor make_move_constructor(...) { return nullptr; }
-};
-
-template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
-template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
+template <typename type, typename SFINAE = void>
+class type_caster : public type_caster_base<type> {};
+template <typename type>
+using make_caster = type_caster<intrinsic_t<type>>;
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
-template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
+template <typename T>
+typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
return caster.operator typename make_caster<T>::template cast_op_type<T>();
}
-template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
+template <typename T>
+typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
cast_op(make_caster<T> &&caster) {
- return std::move(caster).operator
- typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
+ return std::move(caster).operator typename make_caster<T>::
+ template cast_op_type<typename std::add_rvalue_reference<T>::type>();
}
-template <typename type> class type_caster<std::reference_wrapper<type>> {
+template <typename type>
+class type_caster<std::reference_wrapper<type>> {
private:
using caster_t = make_caster<type>;
caster_t subcaster;
- using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
- static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
- "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
+ using reference_t = type &;
+ using subcaster_cast_op_type = typename caster_t::template cast_op_type<reference_t>;
+
+ static_assert(
+ std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value
+ || std::is_same<reference_t, subcaster_cast_op_type>::value,
+ "std::reference_wrapper<T> caster requires T to have a caster with an "
+ "`operator T &()` or `operator const T &()`");
+
public:
bool load(handle src, bool convert) { return subcaster.load(src, convert); }
static constexpr auto name = caster_t::name;
- static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
+ static handle
+ cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
// It is definitely wrong to take ownership of this pointer, so mask that rvp
- if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
+ if (policy == return_value_policy::take_ownership
+ || policy == return_value_policy::automatic) {
policy = return_value_policy::automatic_reference;
+ }
return caster_t::cast(&src.get(), policy, parent);
}
- template <typename T> using cast_op_type = std::reference_wrapper<type>;
- operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
+ template <typename T>
+ using cast_op_type = std::reference_wrapper<type>;
+ explicit operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); }
};
-#define PYBIND11_TYPE_CASTER(type, py_name) \
- protected: \
- type value; \
- public: \
- static constexpr auto name = py_name; \
- template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
- static handle cast(T_ *src, return_value_policy policy, handle parent) { \
- if (!src) return none().release(); \
- if (policy == return_value_policy::take_ownership) { \
- auto h = cast(std::move(*src), policy, parent); delete src; return h; \
- } else { \
- return cast(*src, policy, parent); \
- } \
- } \
- operator type*() { return &value; } \
- operator type&() { return value; } \
- operator type&&() && { return std::move(value); } \
- template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
-
-
-template <typename CharT> using is_std_char_type = any_of<
- std::is_same<CharT, char>, /* std::string */
+#define PYBIND11_TYPE_CASTER(type, py_name) \
+protected: \
+ type value; \
+ \
+public: \
+ static constexpr auto name = py_name; \
+ template <typename T_, \
+ ::pybind11::detail::enable_if_t< \
+ std::is_same<type, ::pybind11::detail::remove_cv_t<T_>>::value, \
+ int> = 0> \
+ static ::pybind11::handle cast( \
+ T_ *src, ::pybind11::return_value_policy policy, ::pybind11::handle parent) { \
+ if (!src) \
+ return ::pybind11::none().release(); \
+ if (policy == ::pybind11::return_value_policy::take_ownership) { \
+ auto h = cast(std::move(*src), policy, parent); \
+ delete src; \
+ return h; \
+ } \
+ return cast(*src, policy, parent); \
+ } \
+ operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \
+ operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \
+ operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \
+ template <typename T_> \
+ using cast_op_type = ::pybind11::detail::movable_cast_op_type<T_>
+
+template <typename CharT>
+using is_std_char_type = any_of<std::is_same<CharT, char>, /* std::string */
#if defined(PYBIND11_HAS_U8STRING)
- std::is_same<CharT, char8_t>, /* std::u8string */
+ std::is_same<CharT, char8_t>, /* std::u8string */
#endif
- std::is_same<CharT, char16_t>, /* std::u16string */
- std::is_same<CharT, char32_t>, /* std::u32string */
- std::is_same<CharT, wchar_t> /* std::wstring */
->;
-
+ std::is_same<CharT, char16_t>, /* std::u16string */
+ std::is_same<CharT, char32_t>, /* std::u32string */
+ std::is_same<CharT, wchar_t> /* std::wstring */
+ >;
template <typename T>
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
- using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
+ using _py_type_1 = conditional_t<std::is_signed<T>::value,
+ _py_type_0,
+ typename std::make_unsigned<_py_type_0>::type>;
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
-public:
+public:
bool load(handle src, bool convert) {
py_type py_value;
- if (!src)
+ if (!src) {
return false;
+ }
+
+#if !defined(PYPY_VERSION)
+ auto index_check = [](PyObject *o) { return PyIndex_Check(o); };
+#else
+ // In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`,
+ // while CPython only considers the existence of `nb_index`/`__index__`.
+ auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); };
+#endif
if (std::is_floating_point<T>::value) {
- if (convert || PyFloat_Check(src.ptr()))
+ if (convert || PyFloat_Check(src.ptr())) {
py_value = (py_type) PyFloat_AsDouble(src.ptr());
- else
+ } else {
return false;
- } else if (PyFloat_Check(src.ptr())) {
+ }
+ } else if (PyFloat_Check(src.ptr())
+ || (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) {
return false;
- } else if (std::is_unsigned<py_type>::value) {
- py_value = as_unsigned<py_type>(src.ptr());
- } else { // signed integer:
- py_value = sizeof(T) <= sizeof(long)
- ? (py_type) PyLong_AsLong(src.ptr())
- : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
+ } else {
+ handle src_or_index = src;
+ // PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls.
+#if PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION)
+ object index;
+ if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr())
+ index = reinterpret_steal<object>(PyNumber_Index(src.ptr()));
+ if (!index) {
+ PyErr_Clear();
+ if (!convert)
+ return false;
+ } else {
+ src_or_index = index;
+ }
+ }
+#endif
+ if (std::is_unsigned<py_type>::value) {
+ py_value = as_unsigned<py_type>(src_or_index.ptr());
+ } else { // signed integer:
+ py_value = sizeof(T) <= sizeof(long)
+ ? (py_type) PyLong_AsLong(src_or_index.ptr())
+ : (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr());
+ }
}
// Python API reported an error
@@ -1040,19 +179,14 @@ public:
// Check to see if the conversion is valid (integers should match exactly)
// Signed/unsigned checks happen elsewhere
- if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && py_value != (py_type) (T) py_value)) {
- bool type_error = py_err && PyErr_ExceptionMatches(
-#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
- PyExc_SystemError
-#else
- PyExc_TypeError
-#endif
- );
+ if (py_err
+ || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T)
+ && py_value != (py_type) (T) py_value)) {
PyErr_Clear();
- if (type_error && convert && PyNumber_Check(src.ptr())) {
+ if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) {
auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
- ? PyNumber_Float(src.ptr())
- : PyNumber_Long(src.ptr()));
+ ? PyNumber_Float(src.ptr())
+ : PyNumber_Long(src.ptr()));
PyErr_Clear();
return load(tmp, false);
}
@@ -1063,62 +197,75 @@ public:
return true;
}
- template<typename U = T>
+ template <typename U = T>
static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyFloat_FromDouble((double) src);
}
- template<typename U = T>
- static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type
+ template <typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
+ && (sizeof(U) <= sizeof(long)),
+ handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_SIGNED((long) src);
}
- template<typename U = T>
- static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type
+ template <typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
+ && (sizeof(U) <= sizeof(unsigned long)),
+ handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
}
- template<typename U = T>
- static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type
+ template <typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
+ && (sizeof(U) > sizeof(long)),
+ handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromLongLong((long long) src);
}
- template<typename U = T>
- static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type
+ template <typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
+ && (sizeof(U) > sizeof(unsigned long)),
+ handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromUnsignedLongLong((unsigned long long) src);
}
- PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
+ PYBIND11_TYPE_CASTER(T, const_name<std::is_integral<T>::value>("int", "float"));
};
-template<typename T> struct void_caster {
+template <typename T>
+struct void_caster {
public:
bool load(handle src, bool) {
- if (src && src.is_none())
+ if (src && src.is_none()) {
return true;
+ }
return false;
}
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
return none().inc_ref();
}
- PYBIND11_TYPE_CASTER(T, _("None"));
+ PYBIND11_TYPE_CASTER(T, const_name("None"));
};
-template <> class type_caster<void_type> : public void_caster<void_type> {};
+template <>
+class type_caster<void_type> : public void_caster<void_type> {};
-template <> class type_caster<void> : public type_caster<void_type> {
+template <>
+class type_caster<void> : public type_caster<void_type> {
public:
using type_caster<void_type>::cast;
bool load(handle h, bool) {
if (!h) {
return false;
- } else if (h.is_none()) {
+ }
+ if (h.is_none()) {
value = nullptr;
return true;
}
@@ -1130,7 +277,7 @@ public:
}
/* Check if this is a C++ type */
- auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr());
+ const auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr());
if (bases.size() == 1) { // Only allowing loading from a single-value type
value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
return true;
@@ -1141,191 +288,247 @@ public:
}
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
- if (ptr)
+ if (ptr) {
return capsule(ptr).release();
- else
- return none().inc_ref();
+ }
+ return none().inc_ref();
}
- template <typename T> using cast_op_type = void*&;
- operator void *&() { return value; }
- static constexpr auto name = _("capsule");
+ template <typename T>
+ using cast_op_type = void *&;
+ explicit operator void *&() { return value; }
+ static constexpr auto name = const_name("capsule");
+
private:
void *value = nullptr;
};
-template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
+template <>
+class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> {};
-template <> class type_caster<bool> {
+template <>
+class type_caster<bool> {
public:
bool load(handle src, bool convert) {
- if (!src) return false;
- else if (src.ptr() == Py_True) { value = true; return true; }
- else if (src.ptr() == Py_False) { value = false; return true; }
- else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
+ if (!src) {
+ return false;
+ }
+ if (src.ptr() == Py_True) {
+ value = true;
+ return true;
+ }
+ if (src.ptr() == Py_False) {
+ value = false;
+ return true;
+ }
+ if (convert || (std::strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name) == 0)) {
// (allow non-implicit conversion for numpy booleans)
Py_ssize_t res = -1;
if (src.is_none()) {
- res = 0; // None is implicitly converted to False
+ res = 0; // None is implicitly converted to False
}
- #if defined(PYPY_VERSION)
- // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
+#if defined(PYPY_VERSION)
+ // On PyPy, check that "__bool__" attr exists
else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
res = PyObject_IsTrue(src.ptr());
}
- #else
+#else
// Alternate approach for CPython: this does the same as the above, but optimized
// using the CPython API so as to avoid an unneeded attribute lookup.
- else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
+ else if (auto *tp_as_number = src.ptr()->ob_type->tp_as_number) {
if (PYBIND11_NB_BOOL(tp_as_number)) {
res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
}
}
- #endif
+#endif
if (res == 0 || res == 1) {
- value = (bool) res;
+ value = (res != 0);
return true;
- } else {
- PyErr_Clear();
}
+ PyErr_Clear();
}
return false;
}
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
return handle(src ? Py_True : Py_False).inc_ref();
}
- PYBIND11_TYPE_CASTER(bool, _("bool"));
+ PYBIND11_TYPE_CASTER(bool, const_name("bool"));
};
// Helper class for UTF-{8,16,32} C++ stl strings:
-template <typename StringType, bool IsView = false> struct string_caster {
+template <typename StringType, bool IsView = false>
+struct string_caster {
using CharT = typename StringType::value_type;
// Simplify life by being able to assume standard char sizes (the standard only guarantees
// minimums, but Python requires exact sizes)
- static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
+ static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1,
+ "Unsupported char size != 1");
#if defined(PYBIND11_HAS_U8STRING)
- static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1, "Unsupported char8_t size != 1");
+ static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1,
+ "Unsupported char8_t size != 1");
#endif
- static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
- static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
+ static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2,
+ "Unsupported char16_t size != 2");
+ static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4,
+ "Unsupported char32_t size != 4");
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
- "Unsupported wchar_t size != 2/4");
+ "Unsupported wchar_t size != 2/4");
static constexpr size_t UTF_N = 8 * sizeof(CharT);
bool load(handle src, bool) {
-#if PY_MAJOR_VERSION < 3
- object temp;
-#endif
handle load_src = src;
if (!src) {
return false;
- } else if (!PyUnicode_Check(load_src.ptr())) {
-#if PY_MAJOR_VERSION >= 3
- return load_bytes(load_src);
-#else
- if (std::is_same<CharT, char>::value) {
- return load_bytes(load_src);
- }
+ }
+ if (!PyUnicode_Check(load_src.ptr())) {
+ return load_raw(load_src);
+ }
- // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
- if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
+ // For UTF-8 we avoid the need for a temporary `bytes` object by using
+ // `PyUnicode_AsUTF8AndSize`.
+ if (PYBIND11_SILENCE_MSVC_C4127(UTF_N == 8)) {
+ Py_ssize_t size = -1;
+ const auto *buffer
+ = reinterpret_cast<const CharT *>(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size));
+ if (!buffer) {
+ PyErr_Clear();
return false;
-
- temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
- if (!temp) { PyErr_Clear(); return false; }
- load_src = temp;
-#endif
+ }
+ value = StringType(buffer, static_cast<size_t>(size));
+ return true;
}
- auto utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
- load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
- if (!utfNbytes) { PyErr_Clear(); return false; }
+ auto utfNbytes
+ = reinterpret_steal<object>(PyUnicode_AsEncodedString(load_src.ptr(),
+ UTF_N == 8 ? "utf-8"
+ : UTF_N == 16 ? "utf-16"
+ : "utf-32",
+ nullptr));
+ if (!utfNbytes) {
+ PyErr_Clear();
+ return false;
+ }
- const auto *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
+ const auto *buffer
+ = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
- if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
+ // Skip BOM for UTF-16/32
+ if (PYBIND11_SILENCE_MSVC_C4127(UTF_N > 8)) {
+ buffer++;
+ length--;
+ }
value = StringType(buffer, length);
// If we're loading a string_view we need to keep the encoded Python object alive:
- if (IsView)
+ if (IsView) {
loader_life_support::add_patient(utfNbytes);
+ }
return true;
}
- static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
+ static handle
+ cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
const char *buffer = reinterpret_cast<const char *>(src.data());
auto nbytes = ssize_t(src.size() * sizeof(CharT));
handle s = decode_utfN(buffer, nbytes);
- if (!s) throw error_already_set();
+ if (!s) {
+ throw error_already_set();
+ }
return s;
}
- PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
+ PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME));
private:
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
#if !defined(PYPY_VERSION)
- return
- UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
- UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
- PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
+ return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr)
+ : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr)
+ : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
#else
- // PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as well),
- // so bypass the whole thing by just passing the encoding as a string value, which works properly:
- return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
+ // PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as
+ // well), so bypass the whole thing by just passing the encoding as a string value, which
+ // works properly:
+ return PyUnicode_Decode(buffer,
+ nbytes,
+ UTF_N == 8 ? "utf-8"
+ : UTF_N == 16 ? "utf-16"
+ : "utf-32",
+ nullptr);
#endif
}
- // When loading into a std::string or char*, accept a bytes object as-is (i.e.
+ // When loading into a std::string or char*, accept a bytes/bytearray object as-is (i.e.
// without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
// which supports loading a unicode from a str, doesn't take this path.
template <typename C = CharT>
- bool load_bytes(enable_if_t<std::is_same<C, char>::value, handle> src) {
+ bool load_raw(enable_if_t<std::is_same<C, char>::value, handle> src) {
if (PYBIND11_BYTES_CHECK(src.ptr())) {
- // We were passed a Python 3 raw bytes; accept it into a std::string or char*
+ // We were passed raw bytes; accept it into a std::string or char*
// without any encoding attempt.
const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
- if (bytes) {
- value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
- return true;
+ if (!bytes) {
+ pybind11_fail("Unexpected PYBIND11_BYTES_AS_STRING() failure.");
}
+ value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
+ return true;
+ }
+ if (PyByteArray_Check(src.ptr())) {
+ // We were passed a bytearray; accept it into a std::string or char*
+ // without any encoding attempt.
+ const char *bytearray = PyByteArray_AsString(src.ptr());
+ if (!bytearray) {
+ pybind11_fail("Unexpected PyByteArray_AsString() failure.");
+ }
+ value = StringType(bytearray, (size_t) PyByteArray_Size(src.ptr()));
+ return true;
}
return false;
}
template <typename C = CharT>
- bool load_bytes(enable_if_t<!std::is_same<C, char>::value, handle>) { return false; }
+ bool load_raw(enable_if_t<!std::is_same<C, char>::value, handle>) {
+ return false;
+ }
};
template <typename CharT, class Traits, class Allocator>
-struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
+struct type_caster<std::basic_string<CharT, Traits, Allocator>,
+ enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string<CharT, Traits, Allocator>> {};
#ifdef PYBIND11_HAS_STRING_VIEW
template <typename CharT, class Traits>
-struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
+struct type_caster<std::basic_string_view<CharT, Traits>,
+ enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string_view<CharT, Traits>, true> {};
#endif
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
-template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
+template <typename CharT>
+struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
using StringType = std::basic_string<CharT>;
- using StringCaster = type_caster<StringType>;
+ using StringCaster = make_caster<StringType>;
StringCaster str_caster;
bool none = false;
CharT one_char = 0;
+
public:
bool load(handle src, bool convert) {
- if (!src) return false;
+ if (!src) {
+ return false;
+ }
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
- if (!convert) return false;
+ if (!convert) {
+ return false;
+ }
none = true;
return true;
}
@@ -1333,45 +536,58 @@ public:
}
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
- if (src == nullptr) return pybind11::none().inc_ref();
+ if (src == nullptr) {
+ return pybind11::none().inc_ref();
+ }
return StringCaster::cast(StringType(src), policy, parent);
}
static handle cast(CharT src, return_value_policy policy, handle parent) {
if (std::is_same<char, CharT>::value) {
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
- if (!s) throw error_already_set();
+ if (!s) {
+ throw error_already_set();
+ }
return s;
}
return StringCaster::cast(StringType(1, src), policy, parent);
}
- operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
- operator CharT&() {
- if (none)
+ explicit operator CharT *() {
+ return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str());
+ }
+ explicit operator CharT &() {
+ if (none) {
throw value_error("Cannot convert None to a character");
+ }
auto &value = static_cast<StringType &>(str_caster);
size_t str_len = value.size();
- if (str_len == 0)
+ if (str_len == 0) {
throw value_error("Cannot convert empty string to a character");
+ }
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
- // is too high, and one for multiple unicode characters (caught later), so we need to figure
- // out how long the first encoded character is in bytes to distinguish between these two
- // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
- // can fit into a single char value.
- if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
+ // is too high, and one for multiple unicode characters (caught later), so we need to
+ // figure out how long the first encoded character is in bytes to distinguish between these
+ // two errors. We also allow want to allow unicode characters U+0080 through U+00FF, as
+ // those can fit into a single char value.
+ if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 8) && str_len > 1 && str_len <= 4) {
auto v0 = static_cast<unsigned char>(value[0]);
- size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
- (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
- (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
- 4; // 0b11110xxx - start of 4-byte sequence
+ // low bits only: 0-127
+ // 0b110xxxxx - start of 2-byte sequence
+ // 0b1110xxxx - start of 3-byte sequence
+ // 0b11110xxx - start of 4-byte sequence
+ size_t char0_bytes = (v0 & 0x80) == 0 ? 1
+ : (v0 & 0xE0) == 0xC0 ? 2
+ : (v0 & 0xF0) == 0xE0 ? 3
+ : 4;
if (char0_bytes == str_len) {
// If we have a 128-255 value, we can decode it into a single char:
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
- one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
+ one_char = static_cast<CharT>(((v0 & 3) << 6)
+ + (static_cast<unsigned char>(value[1]) & 0x3F));
return one_char;
}
// Otherwise we have a single character, but it's > U+00FF
@@ -1382,36 +598,42 @@ public:
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
// string was too long" error).
- else if (StringCaster::UTF_N == 16 && str_len == 2) {
+ else if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 16) && str_len == 2) {
one_char = static_cast<CharT>(value[0]);
- if (one_char >= 0xD800 && one_char < 0xE000)
+ if (one_char >= 0xD800 && one_char < 0xE000) {
throw value_error("Character code point not in range(0x10000)");
+ }
}
- if (str_len != 1)
+ if (str_len != 1) {
throw value_error("Expected a character, but multi-character string found");
+ }
one_char = value[0];
return one_char;
}
- static constexpr auto name = _(PYBIND11_STRING_NAME);
- template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
+ static constexpr auto name = const_name(PYBIND11_STRING_NAME);
+ template <typename _T>
+ using cast_op_type = pybind11::detail::cast_op_type<_T>;
};
// Base implementation for std::tuple and std::pair
-template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
+template <template <typename...> class Tuple, typename... Ts>
+class tuple_caster {
using type = Tuple<Ts...>;
static constexpr auto size = sizeof...(Ts);
using indices = make_index_sequence<size>;
-public:
+public:
bool load(handle src, bool convert) {
- if (!isinstance<sequence>(src))
+ if (!isinstance<sequence>(src)) {
return false;
+ }
const auto seq = reinterpret_borrow<sequence>(src);
- if (seq.size() != size)
+ if (seq.size() != size) {
return false;
+ }
return load_impl(seq, convert, indices{});
}
@@ -1423,66 +645,83 @@ public:
// copied from the PYBIND11_TYPE_CASTER macro
template <typename T>
static handle cast(T *src, return_value_policy policy, handle parent) {
- if (!src) return none().release();
+ if (!src) {
+ return none().release();
+ }
if (policy == return_value_policy::take_ownership) {
- auto h = cast(std::move(*src), policy, parent); delete src; return h;
- } else {
- return cast(*src, policy, parent);
+ auto h = cast(std::move(*src), policy, parent);
+ delete src;
+ return h;
}
+ return cast(*src, policy, parent);
}
- static constexpr auto name = _("Tuple[") + concat(make_caster<Ts>::name...) + _("]");
+ static constexpr auto name
+ = const_name("Tuple[") + concat(make_caster<Ts>::name...) + const_name("]");
- template <typename T> using cast_op_type = type;
+ template <typename T>
+ using cast_op_type = type;
- operator type() & { return implicit_cast(indices{}); }
- operator type() && { return std::move(*this).implicit_cast(indices{}); }
+ explicit operator type() & { return implicit_cast(indices{}); }
+ explicit operator type() && { return std::move(*this).implicit_cast(indices{}); }
protected:
template <size_t... Is>
- type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
+ type implicit_cast(index_sequence<Is...>) & {
+ return type(cast_op<Ts>(std::get<Is>(subcasters))...);
+ }
template <size_t... Is>
- type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
+ type implicit_cast(index_sequence<Is...>) && {
+ return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...);
+ }
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
template <size_t... Is>
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
- if ((... || !std::get<Is>(subcasters).load(seq[Is], convert)))
+ if ((... || !std::get<Is>(subcasters).load(seq[Is], convert))) {
return false;
+ }
#else
- for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
- if (!r)
+ for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...}) {
+ if (!r) {
return false;
+ }
+ }
#endif
return true;
}
/* Implementation: Convert a C++ tuple into a Python tuple */
template <typename T, size_t... Is>
- static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
- std::array<object, size> entries{{
- reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
- }};
- for (const auto &entry: entries)
- if (!entry)
+ static handle
+ cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent);
+ PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent);
+ std::array<object, size> entries{{reinterpret_steal<object>(
+ make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...}};
+ for (const auto &entry : entries) {
+ if (!entry) {
return handle();
+ }
+ }
tuple result(size);
int counter = 0;
- for (auto & entry: entries)
+ for (auto &entry : entries) {
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
+ }
return result.release();
}
Tuple<make_caster<Ts>...> subcasters;
};
-template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
- : public tuple_caster<std::pair, T1, T2> {};
+template <typename T1, typename T2>
+class type_caster<std::pair<T1, T2>> : public tuple_caster<std::pair, T1, T2> {};
-template <typename... Ts> class type_caster<std::tuple<Ts...>>
- : public tuple_caster<std::tuple, Ts...> {};
+template <typename... Ts>
+class type_caster<std::tuple<Ts...>> : public tuple_caster<std::tuple, Ts...> {};
/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
@@ -1492,12 +731,16 @@ struct holder_helper {
};
/// Type caster for holder types like std::shared_ptr, etc.
-template <typename type, typename holder_type>
+/// The SFINAE hook is provided to help work around the current lack of support
+/// for smart-pointer interoperability. Please consider it an implementation
+/// detail that may change in the future, as formal support for smart-pointer
+/// interoperability is added into pybind11.
+template <typename type, typename holder_type, typename SFINAE = void>
struct copyable_holder_caster : public type_caster_base<type> {
public:
using base = type_caster_base<type>;
static_assert(std::is_base_of<base, type_caster<type>>::value,
- "Holder classes are only supported for custom types");
+ "Holder classes are only supported for custom types");
using base::base;
using base::cast;
using base::typeinfo;
@@ -1507,12 +750,12 @@ public:
return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
}
- explicit operator type*() { return this->value; }
+ explicit operator type *() { return this->value; }
// static_cast works around compiler error with MSVC 17 and CUDA 10.2
// see issue #2180
- explicit operator type&() { return *(static_cast<type *>(this->value)); }
- explicit operator holder_type*() { return std::addressof(holder); }
- explicit operator holder_type&() { return holder; }
+ explicit operator type &() { return *(static_cast<type *>(this->value)); }
+ explicit operator holder_type *() { return std::addressof(holder); }
+ explicit operator holder_type &() { return holder; }
static handle cast(const holder_type &src, return_value_policy, handle) {
const auto *ptr = holder_helper<holder_type>::get(src);
@@ -1522,8 +765,9 @@ public:
protected:
friend class type_caster_generic;
void check_holder_compat() {
- if (typeinfo->default_holder)
+ if (typeinfo->default_holder) {
throw cast_error("Unable to load a custom holder type from a default-holder instance");
+ }
}
bool load_value(value_and_holder &&v_h) {
@@ -1531,20 +775,25 @@ protected:
value = v_h.value_ptr();
holder = v_h.template holder<holder_type>();
return true;
- } else {
- throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
-#if defined(NDEBUG)
- "(compile in debug mode for type information)");
+ }
+ throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
+ "type information)");
#else
- "of type '" + type_id<holder_type>() + "''");
+ "of type '"
+ + type_id<holder_type>() + "''");
#endif
- }
}
- template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
- bool try_implicit_casts(handle, bool) { return false; }
+ template <typename T = holder_type,
+ detail::enable_if_t<!std::is_constructible<T, const T &, type *>::value, int> = 0>
+ bool try_implicit_casts(handle, bool) {
+ return false;
+ }
- template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
+ template <typename T = holder_type,
+ detail::enable_if_t<std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle src, bool convert) {
for (auto &cast : typeinfo->implicit_casts) {
copyable_holder_caster sub_caster(*cast.first);
@@ -1559,18 +808,20 @@ protected:
static bool try_direct_conversions(handle) { return false; }
-
holder_type holder;
};
/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
-class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
+class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> {};
-template <typename type, typename holder_type>
+/// Type caster for holder types like std::unique_ptr.
+/// Please consider the SFINAE hook an implementation detail, as explained
+/// in the comment for the copyable_holder_caster.
+template <typename type, typename holder_type, typename SFINAE = void>
struct move_only_holder_caster {
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
- "Holder classes are only supported for custom types");
+ "Holder classes are only supported for custom types");
static handle cast(holder_type &&src, return_value_policy, handle) {
auto *ptr = holder_helper<holder_type>::get(src);
@@ -1581,50 +832,101 @@ struct move_only_holder_caster {
template <typename type, typename deleter>
class type_caster<std::unique_ptr<type, deleter>>
- : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
+ : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> {};
template <typename type, typename holder_type>
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
copyable_holder_caster<type, holder_type>,
move_only_holder_caster<type, holder_type>>;
-template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
+template <typename T, bool Value = false>
+struct always_construct_holder {
+ static constexpr bool value = Value;
+};
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
-#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
- namespace pybind11 { namespace detail { \
- template <typename type> \
- struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
- template <typename type> \
- class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
- : public type_caster_holder<type, holder_type> { }; \
- }}
+#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \
+ namespace detail { \
+ template <typename type> \
+ struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { \
+ }; \
+ template <typename type> \
+ class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
+ : public type_caster_holder<type, holder_type> {}; \
+ } \
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
-template <typename base, typename holder> struct is_holder_type :
- std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
+template <typename base, typename holder>
+struct is_holder_type
+ : std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specialization for always-supported unique_ptr holders:
-template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
- std::true_type {};
-
-template <typename T> struct handle_type_name { static constexpr auto name = _<T>(); };
-template <> struct handle_type_name<bytes> { static constexpr auto name = _(PYBIND11_BYTES_NAME); };
-template <> struct handle_type_name<int_> { static constexpr auto name = _("int"); };
-template <> struct handle_type_name<iterable> { static constexpr auto name = _("Iterable"); };
-template <> struct handle_type_name<iterator> { static constexpr auto name = _("Iterator"); };
-template <> struct handle_type_name<none> { static constexpr auto name = _("None"); };
-template <> struct handle_type_name<args> { static constexpr auto name = _("*args"); };
-template <> struct handle_type_name<kwargs> { static constexpr auto name = _("**kwargs"); };
+template <typename base, typename deleter>
+struct is_holder_type<base, std::unique_ptr<base, deleter>> : std::true_type {};
+
+template <typename T>
+struct handle_type_name {
+ static constexpr auto name = const_name<T>();
+};
+template <>
+struct handle_type_name<bool_> {
+ static constexpr auto name = const_name("bool");
+};
+template <>
+struct handle_type_name<bytes> {
+ static constexpr auto name = const_name(PYBIND11_BYTES_NAME);
+};
+template <>
+struct handle_type_name<int_> {
+ static constexpr auto name = const_name("int");
+};
+template <>
+struct handle_type_name<iterable> {
+ static constexpr auto name = const_name("Iterable");
+};
+template <>
+struct handle_type_name<iterator> {
+ static constexpr auto name = const_name("Iterator");
+};
+template <>
+struct handle_type_name<float_> {
+ static constexpr auto name = const_name("float");
+};
+template <>
+struct handle_type_name<none> {
+ static constexpr auto name = const_name("None");
+};
+template <>
+struct handle_type_name<args> {
+ static constexpr auto name = const_name("*args");
+};
+template <>
+struct handle_type_name<kwargs> {
+ static constexpr auto name = const_name("**kwargs");
+};
template <typename type>
struct pyobject_caster {
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
- bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
+ pyobject_caster() : value() {}
+ // `type` may not be default constructible (e.g. frozenset, anyset). Initializing `value`
+ // to a nil handle is safe since it will only be accessed if `load` succeeds.
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
+ pyobject_caster() : value(reinterpret_steal<type>(handle())) {}
+
+ template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
bool load(handle src, bool /* convert */) {
- if (!isinstance<type>(src))
+ value = src;
+ return static_cast<bool>(value);
+ }
+
+ template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
+ bool load(handle src, bool /* convert */) {
+ if (!isinstance<type>(src)) {
return false;
+ }
value = reinterpret_borrow<type>(src);
return true;
}
@@ -1636,7 +938,7 @@ struct pyobject_caster {
};
template <typename T>
-class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
+class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> {};
// Our conditions for enabling moving are quite restrictive:
// At compile time:
@@ -1647,65 +949,83 @@ class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caste
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
// must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
-template <typename T> using move_is_plain_type = satisfies_none_of<T,
- std::is_void, std::is_pointer, std::is_reference, std::is_const
->;
-template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
-template <typename T> struct move_always<T, enable_if_t<all_of<
- move_is_plain_type<T>,
- negation<is_copy_constructible<T>>,
- std::is_move_constructible<T>,
- std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
->::value>> : std::true_type {};
-template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
-template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
- move_is_plain_type<T>,
- negation<move_always<T>>,
- std::is_move_constructible<T>,
- std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
->::value>> : std::true_type {};
-template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
+template <typename T>
+using move_is_plain_type
+ = satisfies_none_of<T, std::is_void, std::is_pointer, std::is_reference, std::is_const>;
+template <typename T, typename SFINAE = void>
+struct move_always : std::false_type {};
+template <typename T>
+struct move_always<
+ T,
+ enable_if_t<
+ all_of<move_is_plain_type<T>,
+ negation<is_copy_constructible<T>>,
+ std::is_move_constructible<T>,
+ std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
+ : std::true_type {};
+template <typename T, typename SFINAE = void>
+struct move_if_unreferenced : std::false_type {};
+template <typename T>
+struct move_if_unreferenced<
+ T,
+ enable_if_t<
+ all_of<move_is_plain_type<T>,
+ negation<move_always<T>>,
+ std::is_move_constructible<T>,
+ std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
+ : std::true_type {};
+template <typename T>
+using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster. Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
-template <typename type> using cast_is_temporary_value_reference = bool_constant<
- (std::is_reference<type>::value || std::is_pointer<type>::value) &&
- !std::is_base_of<type_caster_generic, make_caster<type>>::value &&
- !std::is_same<intrinsic_t<type>, void>::value
->;
+template <typename type>
+using cast_is_temporary_value_reference
+ = bool_constant<(std::is_reference<type>::value || std::is_pointer<type>::value)
+ && !std::is_base_of<type_caster_generic, make_caster<type>>::value
+ && !std::is_same<intrinsic_t<type>, void>::value>;
// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with.
-template <typename Return, typename SFINAE = void> struct return_value_policy_override {
+template <typename Return, typename SFINAE = void>
+struct return_value_policy_override {
static return_value_policy policy(return_value_policy p) { return p; }
};
-template <typename Return> struct return_value_policy_override<Return,
- detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
+template <typename Return>
+struct return_value_policy_override<
+ Return,
+ detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
static return_value_policy policy(return_value_policy p) {
- return !std::is_lvalue_reference<Return>::value &&
- !std::is_pointer<Return>::value
- ? return_value_policy::move : p;
+ return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
+ ? return_value_policy::move
+ : p;
}
};
// Basic python -> C++ casting; throws if casting fails
-template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
+template <typename T, typename SFINAE>
+type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
+ static_assert(!detail::is_pyobject<T>::value,
+ "Internal error: type_caster should only be used for C++ types");
if (!conv.load(handle, true)) {
-#if defined(NDEBUG)
- throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ throw cast_error("Unable to cast Python instance to C++ type (#define "
+ "PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
#else
- throw cast_error("Unable to cast Python instance of type " +
- (std::string) str(type::handle_of(handle)) + " to C++ type '" + type_id<T>() + "'");
+ throw cast_error("Unable to cast Python instance of type "
+ + (std::string) str(type::handle_of(handle)) + " to C++ type '"
+ + type_id<T>() + "'");
#endif
}
return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
-template <typename T> make_caster<T> load_type(const handle &handle) {
+template <typename T>
+make_caster<T> load_type(const handle &handle) {
make_caster<T> conv;
load_type(conv, handle);
return conv;
@@ -1718,44 +1038,60 @@ template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> =
T cast(const handle &handle) {
using namespace detail;
static_assert(!cast_is_temporary_value_reference<T>::value,
- "Unable to cast type to reference: value is local to type caster");
+ "Unable to cast type to reference: value is local to type caster");
return cast_op<T>(load_type<T>(handle));
}
// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
-T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
+T cast(const handle &handle) {
+ return T(reinterpret_borrow<object>(handle));
+}
// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
-object cast(T &&value, return_value_policy policy = return_value_policy::automatic_reference,
+object cast(T &&value,
+ return_value_policy policy = return_value_policy::automatic_reference,
handle parent = handle()) {
using no_ref_T = typename std::remove_reference<T>::type;
- if (policy == return_value_policy::automatic)
- policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership :
- std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move;
- else if (policy == return_value_policy::automatic_reference)
- policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference :
- std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move;
- return reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
+ if (policy == return_value_policy::automatic) {
+ policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership
+ : std::is_lvalue_reference<T>::value ? return_value_policy::copy
+ : return_value_policy::move;
+ } else if (policy == return_value_policy::automatic_reference) {
+ policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference
+ : std::is_lvalue_reference<T>::value ? return_value_policy::copy
+ : return_value_policy::move;
+ }
+ return reinterpret_steal<object>(
+ detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
}
-template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
-template <> inline void handle::cast() const { return; }
+template <typename T>
+T handle::cast() const {
+ return pybind11::cast<T>(*this);
+}
+template <>
+inline void handle::cast() const {
+ return;
+}
template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
- if (obj.ref_count() > 1)
-#if defined(NDEBUG)
- throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
- " (compile in debug mode for details)");
+ if (obj.ref_count() > 1) {
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ throw cast_error(
+ "Unable to cast Python instance to C++ rvalue: instance has multiple references"
+ " (#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
#else
- throw cast_error("Unable to move from Python " + (std::string) str(type::handle_of(obj)) +
- " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
+ throw cast_error("Unable to move from Python " + (std::string) str(type::handle_of(obj))
+ + " instance to C++ " + type_id<T>()
+ + " instance: instance has multiple references");
#endif
+ }
// Move into a temporary and return that, because the reference may be a local value of `conv`
- T ret = std::move(detail::load_type<T>(obj).operator T&());
+ T ret = std::move(detail::load_type<T>(obj).operator T &());
return ret;
}
@@ -1764,96 +1100,164 @@ detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
// object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
-template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
+template <typename T>
+detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_always<T>::value, T>
+cast(object &&object) {
return move<T>(std::move(object));
}
-template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
- if (object.ref_count() > 1)
+template <typename T>
+detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_if_unreferenced<T>::value, T>
+cast(object &&object) {
+ if (object.ref_count() > 1) {
return cast<T>(object);
- else
- return move<T>(std::move(object));
+ }
+ return move<T>(std::move(object));
}
-template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
+template <typename T>
+detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_never<T>::value, T>
+cast(object &&object) {
return cast<T>(object);
}
-template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
-template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
-template <> inline void object::cast() const & { return; }
-template <> inline void object::cast() && { return; }
+// pytype rvalue -> pytype (calls converting constructor)
+template <typename T>
+detail::enable_if_t<detail::is_pyobject<T>::value, T> cast(object &&object) {
+ return T(std::move(object));
+}
+
+template <typename T>
+T object::cast() const & {
+ return pybind11::cast<T>(*this);
+}
+template <typename T>
+T object::cast() && {
+ return pybind11::cast<T>(std::move(*this));
+}
+template <>
+inline void object::cast() const & {
+ return;
+}
+template <>
+inline void object::cast() && {
+ return;
+}
PYBIND11_NAMESPACE_BEGIN(detail)
// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
-object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
+object object_or_cast(T &&o) {
+ return pybind11::cast(std::forward<T>(o));
+}
-struct override_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the PYBIND11_OVERRIDE_OVERRIDE macro
-template <typename ret_type> using override_caster_t = conditional_t<
- cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, override_unused>;
+// Placeholder type for the unneeded (and dead code) static variable in the
+// PYBIND11_OVERRIDE_OVERRIDE macro
+struct override_unused {};
+template <typename ret_type>
+using override_caster_t = conditional_t<cast_is_temporary_value_reference<ret_type>::value,
+ make_caster<ret_type>,
+ override_unused>;
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable. For other types, this is a no-op.
-template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
+template <typename T>
+enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o,
+ make_caster<T> &caster) {
return cast_op<T>(load_type(caster, o));
}
-template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, override_unused &) {
- pybind11_fail("Internal error: cast_ref fallback invoked"); }
-
-// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
-// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
-// cases where pybind11::cast is valid.
-template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
- return pybind11::cast<T>(std::move(o)); }
-template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
- pybind11_fail("Internal error: cast_safe fallback invoked"); }
-template <> inline void cast_safe<void>(object &&) {}
+template <typename T>
+enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&,
+ override_unused &) {
+ pybind11_fail("Internal error: cast_ref fallback invoked");
+}
+
+// Trampoline use: Having a pybind11::cast with an invalid reference type is going to
+// static_assert, even though if it's in dead code, so we provide a "trampoline" to pybind11::cast
+// that only does anything in cases where pybind11::cast is valid.
+template <typename T>
+enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
+ pybind11_fail("Internal error: cast_safe fallback invoked");
+}
+template <typename T>
+enable_if_t<std::is_same<void, intrinsic_t<T>>::value, void> cast_safe(object &&) {}
+template <typename T>
+enable_if_t<detail::none_of<cast_is_temporary_value_reference<T>,
+ std::is_same<void, intrinsic_t<T>>>::value,
+ T>
+cast_safe(object &&o) {
+ return pybind11::cast<T>(std::move(o));
+}
PYBIND11_NAMESPACE_END(detail)
+// The overloads could coexist, i.e. the #if is not strictly speaking needed,
+// but it is an easy minor optimization.
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+inline cast_error cast_error_unable_to_convert_call_arg() {
+ return cast_error("Unable to convert call argument to Python object (#define "
+ "PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
+}
+#else
+inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name,
+ const std::string &type) {
+ return cast_error("Unable to convert call argument '" + name + "' of type '" + type
+ + "' to Python object");
+}
+#endif
+
template <return_value_policy policy = return_value_policy::automatic_reference>
-tuple make_tuple() { return tuple(0); }
+tuple make_tuple() {
+ return tuple(0);
+}
-template <return_value_policy policy = return_value_policy::automatic_reference,
- typename... Args> tuple make_tuple(Args&&... args_) {
+template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
+tuple make_tuple(Args &&...args_) {
constexpr size_t size = sizeof...(Args);
- std::array<object, size> args {
- { reinterpret_steal<object>(detail::make_caster<Args>::cast(
- std::forward<Args>(args_), policy, nullptr))... }
- };
+ std::array<object, size> args{{reinterpret_steal<object>(
+ detail::make_caster<Args>::cast(std::forward<Args>(args_), policy, nullptr))...}};
for (size_t i = 0; i < args.size(); i++) {
if (!args[i]) {
-#if defined(NDEBUG)
- throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ throw cast_error_unable_to_convert_call_arg();
#else
- std::array<std::string, size> argtypes { {type_id<Args>()...} };
- throw cast_error("make_tuple(): unable to convert argument of type '" +
- argtypes[i] + "' to Python object");
+ std::array<std::string, size> argtypes{{type_id<Args>()...}};
+ throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]);
#endif
}
}
tuple result(size);
int counter = 0;
- for (auto &arg_value : args)
+ for (auto &arg_value : args) {
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
+ }
return result;
}
/// \ingroup annotations
/// Annotation for arguments
struct arg {
- /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
- constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
+ /// Constructs an argument with the name of the argument; if null or omitted, this is a
+ /// positional argument.
+ constexpr explicit arg(const char *name = nullptr)
+ : name(name), flag_noconvert(false), flag_none(true) {}
/// Assign a value to this argument
- template <typename T> arg_v operator=(T &&value) const;
+ template <typename T>
+ arg_v operator=(T &&value) const;
/// Indicate that the type should not be converted in the type caster
- arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
+ arg &noconvert(bool flag = true) {
+ flag_noconvert = flag;
+ return *this;
+ }
/// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
- arg &none(bool flag = true) { flag_none = flag; return *this; }
+ arg &none(bool flag = true) {
+ flag_none = flag;
+ return *this;
+ }
- const char *name; ///< If non-null, this is a named kwargs argument
- bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
- bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
+ const char *name; ///< If non-null, this is a named kwargs argument
+ bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type
+ ///< caster!)
+ bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
};
/// \ingroup annotations
@@ -1862,58 +1266,73 @@ struct arg_v : arg {
private:
template <typename T>
arg_v(arg &&base, T &&x, const char *descr = nullptr)
- : arg(base),
- value(reinterpret_steal<object>(
- detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
- )),
+ : arg(base), value(reinterpret_steal<object>(detail::make_caster<T>::cast(
+ std::forward<T>(x), return_value_policy::automatic, {}))),
descr(descr)
-#if !defined(NDEBUG)
- , type(type_id<T>())
+#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ ,
+ type(type_id<T>())
#endif
- { }
+ {
+ // Workaround! See:
+ // https://github.com/pybind/pybind11/issues/2336
+ // https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700
+ if (PyErr_Occurred()) {
+ PyErr_Clear();
+ }
+ }
public:
/// Direct construction with name, default, and description
template <typename T>
arg_v(const char *name, T &&x, const char *descr = nullptr)
- : arg_v(arg(name), std::forward<T>(x), descr) { }
+ : arg_v(arg(name), std::forward<T>(x), descr) {}
/// Called internally when invoking `py::arg("a") = value`
template <typename T>
arg_v(const arg &base, T &&x, const char *descr = nullptr)
- : arg_v(arg(base), std::forward<T>(x), descr) { }
+ : arg_v(arg(base), std::forward<T>(x), descr) {}
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
- arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
+ arg_v &noconvert(bool flag = true) {
+ arg::noconvert(flag);
+ return *this;
+ }
/// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
- arg_v &none(bool flag = true) { arg::none(flag); return *this; }
+ arg_v &none(bool flag = true) {
+ arg::none(flag);
+ return *this;
+ }
/// The default value
object value;
/// The (optional) description of the default value
const char *descr;
-#if !defined(NDEBUG)
+#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
/// The C++ type name of the default value (only available when compiled in debug mode)
std::string type;
#endif
};
/// \ingroup annotations
-/// Annotation indicating that all following arguments are keyword-only; the is the equivalent of an
-/// unnamed '*' argument (in Python 3)
+/// Annotation indicating that all following arguments are keyword-only; the is the equivalent of
+/// an unnamed '*' argument
struct kw_only {};
/// \ingroup annotations
-/// Annotation indicating that all previous arguments are positional-only; the is the equivalent of an
-/// unnamed '/' argument (in Python 3.8)
+/// Annotation indicating that all previous arguments are positional-only; the is the equivalent of
+/// an unnamed '/' argument (in Python 3.8)
struct pos_only {};
template <typename T>
-arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
+arg_v arg::operator=(T &&value) const {
+ return {*this, std::forward<T>(value)};
+}
/// Alias for backward compatibility -- to be removed in version 2.0
-template <typename /*unused*/> using arg_t = arg_v;
+template <typename /*unused*/>
+using arg_t = arg_v;
inline namespace literals {
/** \rst
@@ -1924,6 +1343,11 @@ constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
PYBIND11_NAMESPACE_BEGIN(detail)
+template <typename T>
+using is_kw_only = std::is_same<intrinsic_t<T>, kw_only>;
+template <typename T>
+using is_pos_only = std::is_same<intrinsic_t<T>, pos_only>;
+
// forward declaration (definition in attr.h)
struct function_record;
@@ -1951,56 +1375,63 @@ struct function_call {
handle init_self;
};
-
/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
using indices = make_index_sequence<sizeof...(Args)>;
- template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
- template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
- // Get args/kwargs argument positions relative to the end of the argument list:
- static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
- kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
-
- static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
+ template <typename Arg>
+ using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
+ template <typename Arg>
+ using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
+ // Get kwargs argument position, or -1 if not present:
+ static constexpr auto kwargs_pos = constexpr_last<argument_is_kwargs, Args...>();
- static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
+ static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1,
+ "py::kwargs is only permitted as the last argument of a function");
public:
- static constexpr bool has_kwargs = kwargs_pos < 0;
- static constexpr bool has_args = args_pos < 0;
+ static constexpr bool has_kwargs = kwargs_pos != -1;
+
+ // py::args argument position; -1 if not present.
+ static constexpr int args_pos = constexpr_last<argument_is_args, Args...>();
+
+ static_assert(args_pos == -1 || args_pos == constexpr_first<argument_is_args, Args...>(),
+ "py::args cannot be specified more than once");
static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
- bool load_args(function_call &call) {
- return load_impl_sequence(call, indices{});
- }
+ bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); }
template <typename Return, typename Guard, typename Func>
+ // NOLINTNEXTLINE(readability-const-return-type)
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
- return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
+ return std::move(*this).template call_impl<remove_cv_t<Return>>(
+ std::forward<Func>(f), indices{}, Guard{});
}
template <typename Return, typename Guard, typename Func>
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
- std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
+ std::move(*this).template call_impl<remove_cv_t<Return>>(
+ std::forward<Func>(f), indices{}, Guard{});
return void_type();
}
private:
-
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
template <size_t... Is>
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
- if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])))
+ if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is]))) {
return false;
+ }
#else
- for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
- if (!r)
+ for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) {
+ if (!r) {
return false;
+ }
+ }
#endif
return true;
}
@@ -2020,7 +1451,7 @@ class simple_collector {
public:
template <typename... Ts>
explicit simple_collector(Ts &&...values)
- : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
+ : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) {}
const tuple &args() const & { return m_args; }
dict kwargs() const { return {}; }
@@ -2030,8 +1461,9 @@ public:
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
- if (!result)
+ if (!result) {
throw error_already_set();
+ }
return reinterpret_steal<object>(result);
}
@@ -2048,8 +1480,8 @@ public:
// Tuples aren't (easily) resizable so a list is needed for collection,
// but the actual function call strictly requires a tuple.
auto args_list = list();
- int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
- ignore_unused(_);
+ using expander = int[];
+ (void) expander{0, (process(args_list, std::forward<Ts>(values)), 0)...};
m_args = std::move(args_list);
}
@@ -2063,61 +1495,66 @@ public:
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
- if (!result)
+ if (!result) {
throw error_already_set();
+ }
return reinterpret_steal<object>(result);
}
private:
template <typename T>
void process(list &args_list, T &&x) {
- auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
+ auto o = reinterpret_steal<object>(
+ detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
if (!o) {
-#if defined(NDEBUG)
- argument_cast_error();
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ throw cast_error_unable_to_convert_call_arg();
#else
- argument_cast_error(std::to_string(args_list.size()), type_id<T>());
+ throw cast_error_unable_to_convert_call_arg(std::to_string(args_list.size()),
+ type_id<T>());
#endif
}
- args_list.append(o);
+ args_list.append(std::move(o));
}
void process(list &args_list, detail::args_proxy ap) {
- for (auto a : ap)
+ for (auto a : ap) {
args_list.append(a);
+ }
}
- void process(list &/*args_list*/, arg_v a) {
- if (!a.name)
-#if defined(NDEBUG)
+ void process(list & /*args_list*/, arg_v a) {
+ if (!a.name) {
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
nameless_argument_error();
#else
nameless_argument_error(a.type);
#endif
-
+ }
if (m_kwargs.contains(a.name)) {
-#if defined(NDEBUG)
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
multiple_values_error();
#else
multiple_values_error(a.name);
#endif
}
if (!a.value) {
-#if defined(NDEBUG)
- argument_cast_error();
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
+ throw cast_error_unable_to_convert_call_arg();
#else
- argument_cast_error(a.name, a.type);
+ throw cast_error_unable_to_convert_call_arg(a.name, a.type);
#endif
}
m_kwargs[a.name] = a.value;
}
- void process(list &/*args_list*/, detail::kwargs_proxy kp) {
- if (!kp)
+ void process(list & /*args_list*/, detail::kwargs_proxy kp) {
+ if (!kp) {
return;
+ }
for (auto k : reinterpret_borrow<dict>(kp)) {
if (m_kwargs.contains(k.first)) {
-#if defined(NDEBUG)
+#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
multiple_values_error();
#else
multiple_values_error(str(k.first));
@@ -2128,62 +1565,71 @@ private:
}
[[noreturn]] static void nameless_argument_error() {
- throw type_error("Got kwargs without a name; only named arguments "
- "may be passed via py::arg() to a python function call. "
- "(compile in debug mode for details)");
+ throw type_error(
+ "Got kwargs without a name; only named arguments "
+ "may be passed via py::arg() to a python function call. "
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
- [[noreturn]] static void nameless_argument_error(std::string type) {
- throw type_error("Got kwargs without a name of type '" + type + "'; only named "
- "arguments may be passed via py::arg() to a python function call. ");
+ [[noreturn]] static void nameless_argument_error(const std::string &type) {
+ throw type_error("Got kwargs without a name of type '" + type
+ + "'; only named "
+ "arguments may be passed via py::arg() to a python function call. ");
}
[[noreturn]] static void multiple_values_error() {
- throw type_error("Got multiple values for keyword argument "
- "(compile in debug mode for details)");
+ throw type_error(
+ "Got multiple values for keyword argument "
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
- [[noreturn]] static void multiple_values_error(std::string name) {
+ [[noreturn]] static void multiple_values_error(const std::string &name) {
throw type_error("Got multiple values for keyword argument '" + name + "'");
}
- [[noreturn]] static void argument_cast_error() {
- throw cast_error("Unable to convert call argument to Python object "
- "(compile in debug mode for details)");
- }
-
- [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
- throw cast_error("Unable to convert call argument '" + name
- + "' of type '" + type + "' to Python object");
- }
-
private:
tuple m_args;
dict m_kwargs;
};
+// [workaround(intel)] Separate function required here
+// We need to put this into a separate function because the Intel compiler
+// fails to compile enable_if_t<!all_of<is_positional<Args>...>::value>
+// (tested with ICC 2021.1 Beta 20200827).
+template <typename... Args>
+constexpr bool args_are_all_positional() {
+ return all_of<is_positional<Args>...>::value;
+}
+
/// Collect only positional arguments for a Python function call
-template <return_value_policy policy, typename... Args,
- typename = enable_if_t<all_of<is_positional<Args>...>::value>>
+template <return_value_policy policy,
+ typename... Args,
+ typename = enable_if_t<args_are_all_positional<Args...>()>>
simple_collector<policy> collect_arguments(Args &&...args) {
return simple_collector<policy>(std::forward<Args>(args)...);
}
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
-template <return_value_policy policy, typename... Args,
- typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
+template <return_value_policy policy,
+ typename... Args,
+ typename = enable_if_t<!args_are_all_positional<Args...>()>>
unpacking_collector<policy> collect_arguments(Args &&...args) {
// Following argument order rules for generalized unpacking according to PEP 448
- static_assert(
- constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
- && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
- "Invalid function call: positional args must precede keywords and ** unpacking; "
- "* unpacking must precede ** unpacking"
- );
+ static_assert(constexpr_last<is_positional, Args...>()
+ < constexpr_first<is_keyword_or_ds, Args...>()
+ && constexpr_last<is_s_unpacking, Args...>()
+ < constexpr_first<is_ds_unpacking, Args...>(),
+ "Invalid function call: positional args must precede keywords and ** unpacking; "
+ "* unpacking must precede ** unpacking");
return unpacking_collector<policy>(std::forward<Args>(args)...);
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
+#ifndef NDEBUG
+ if (!PyGILState_Check()) {
+ pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure.");
+ }
+#endif
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
}
@@ -2195,25 +1641,25 @@ object object_api<Derived>::call(Args &&...args) const {
PYBIND11_NAMESPACE_END(detail)
-
-template<typename T>
+template <typename T>
handle type::handle_of() {
- static_assert(
- std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
- "py::type::of<T> only supports the case where T is a registered C++ types."
- );
+ static_assert(std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
+ "py::type::of<T> only supports the case where T is a registered C++ types.");
return detail::get_type_handle(typeid(T), true);
}
-
-#define PYBIND11_MAKE_OPAQUE(...) \
- namespace pybind11 { namespace detail { \
- template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \
- }}
+#define PYBIND11_MAKE_OPAQUE(...) \
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \
+ namespace detail { \
+ template <> \
+ class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> {}; \
+ } \
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
/// Lets you pass a type containing a `,` through a macro parameter without needing a separate
-/// typedef, e.g.: `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
+/// typedef, e.g.:
+/// `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
#define PYBIND11_TYPE(...) __VA_ARGS__
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)