diff options
author | Miodrag Milanović <mmicko@gmail.com> | 2021-01-02 11:16:49 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-01-02 11:16:49 +0100 |
commit | 9b9628047c01a970cfe20f83f2b7129ed109440d (patch) | |
tree | 1db418e9a889dc6fbe6199c5259aac9bd8cbb32f /3rdparty/pybind11/docs/advanced/pycpp/numpy.rst | |
parent | c6cdf30501dcb2da01361229dd66a05dad73a132 (diff) | |
parent | 61b07bc9a664d6a88b85aae99f9756d7569688a9 (diff) | |
download | nextpnr-9b9628047c01a970cfe20f83f2b7129ed109440d.tar.gz nextpnr-9b9628047c01a970cfe20f83f2b7129ed109440d.tar.bz2 nextpnr-9b9628047c01a970cfe20f83f2b7129ed109440d.zip |
Merge pull request #549 from YosysHQ/update
Update pybind11 version and fix for future python versions
Diffstat (limited to '3rdparty/pybind11/docs/advanced/pycpp/numpy.rst')
-rw-r--r-- | 3rdparty/pybind11/docs/advanced/pycpp/numpy.rst | 84 |
1 files changed, 67 insertions, 17 deletions
diff --git a/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst b/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst index 458f99e9..19ed10b3 100644 --- a/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst +++ b/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst @@ -57,17 +57,17 @@ specification. struct buffer_info { void *ptr; - ssize_t itemsize; + py::ssize_t itemsize; std::string format; - ssize_t ndim; - std::vector<ssize_t> shape; - std::vector<ssize_t> strides; + py::ssize_t ndim; + std::vector<py::ssize_t> shape; + std::vector<py::ssize_t> strides; }; To create a C++ function that can take a Python buffer object as an argument, simply use the type ``py::buffer`` as one of its arguments. Buffers can exist in a great variety of configurations, hence some safety checks are usually -necessary in the function body. Below, you can see an basic example on how to +necessary in the function body. Below, you can see a basic example on how to define a custom constructor for the Eigen double precision matrix (``Eigen::MatrixXd``) type, which supports initialization from compatible buffer objects (e.g. a NumPy matrix). @@ -81,7 +81,7 @@ buffer objects (e.g. a NumPy matrix). constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) - .def("__init__", [](Matrix &m, py::buffer b) { + .def(py::init([](py::buffer b) { typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; /* Request a buffer descriptor from Python */ @@ -101,8 +101,8 @@ buffer objects (e.g. a NumPy matrix). auto map = Eigen::Map<Matrix, 0, Strides>( static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); - new (&m) Matrix(map); - }); + return Matrix(map); + })); For reference, the ``def_buffer()`` call for this Eigen data type should look as follows: @@ -274,9 +274,9 @@ simply using ``vectorize``). py::buffer_info buf3 = result.request(); - double *ptr1 = (double *) buf1.ptr, - *ptr2 = (double *) buf2.ptr, - *ptr3 = (double *) buf3.ptr; + double *ptr1 = static_cast<double *>(buf1.ptr); + double *ptr2 = static_cast<double *>(buf2.ptr); + double *ptr3 = static_cast<double *>(buf3.ptr); for (size_t idx = 0; idx < buf1.shape[0]; idx++) ptr3[idx] = ptr1[idx] + ptr2[idx]; @@ -309,17 +309,17 @@ where ``N`` gives the required dimensionality of the array: m.def("sum_3d", [](py::array_t<double> x) { auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable double sum = 0; - for (ssize_t i = 0; i < r.shape(0); i++) - for (ssize_t j = 0; j < r.shape(1); j++) - for (ssize_t k = 0; k < r.shape(2); k++) + for (py::ssize_t i = 0; i < r.shape(0); i++) + for (py::ssize_t j = 0; j < r.shape(1); j++) + for (py::ssize_t k = 0; k < r.shape(2); k++) sum += r(i, j, k); return sum; }); m.def("increment_3d", [](py::array_t<double> x) { auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false - for (ssize_t i = 0; i < r.shape(0); i++) - for (ssize_t j = 0; j < r.shape(1); j++) - for (ssize_t k = 0; k < r.shape(2); k++) + for (py::ssize_t i = 0; i < r.shape(0); i++) + for (py::ssize_t j = 0; j < r.shape(1); j++) + for (py::ssize_t k = 0; k < r.shape(2); k++) r(i, j, k) += 1.0; }, py::arg().noconvert()); @@ -371,6 +371,8 @@ Ellipsis Python 3 provides a convenient ``...`` ellipsis notation that is often used to slice multidimensional arrays. For instance, the following snippet extracts the middle dimensions of a tensor with the first and last index set to zero. +In Python 2, the syntactic sugar ``...`` is not available, but the singleton +``Ellipsis`` (of type ``ellipsis``) can still be used directly. .. code-block:: python @@ -384,3 +386,51 @@ operation on the C++ side: py::array a = /* A NumPy array */; py::array b = a[py::make_tuple(0, py::ellipsis(), 0)]; + +.. versionchanged:: 2.6 + ``py::ellipsis()`` is now also avaliable in Python 2. + +Memory view +=========== + +For a case when we simply want to provide a direct accessor to C/C++ buffer +without a concrete class object, we can return a ``memoryview`` object. Suppose +we wish to expose a ``memoryview`` for 2x4 uint8_t array, we can do the +following: + +.. code-block:: cpp + + const uint8_t buffer[] = { + 0, 1, 2, 3, + 4, 5, 6, 7 + }; + m.def("get_memoryview2d", []() { + return py::memoryview::from_buffer( + buffer, // buffer pointer + { 2, 4 }, // shape (rows, cols) + { sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes + ); + }) + +This approach is meant for providing a ``memoryview`` for a C/C++ buffer not +managed by Python. The user is responsible for managing the lifetime of the +buffer. Using a ``memoryview`` created in this way after deleting the buffer in +C++ side results in undefined behavior. + +We can also use ``memoryview::from_memory`` for a simple 1D contiguous buffer: + +.. code-block:: cpp + + m.def("get_memoryview1d", []() { + return py::memoryview::from_memory( + buffer, // buffer pointer + sizeof(uint8_t) * 8 // buffer size + ); + }) + +.. note:: + + ``memoryview::from_memory`` is not available in Python 2. + +.. versionchanged:: 2.6 + ``memoryview::from_memory`` added. |