aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/QtPropertyBrowser/src/QtAbstractEditorFactoryBase
diff options
context:
space:
mode:
authorClifford Wolf <clifford@clifford.at>2018-07-21 21:40:06 +0200
committerClifford Wolf <clifford@clifford.at>2018-07-21 21:40:06 +0200
commit30e2f0e1e8cfdb24abe6c3a8013691497c706975 (patch)
treeb6f1ed038065063dbfbca1cbd88d2f7cf4f7e8a1 /3rdparty/QtPropertyBrowser/src/QtAbstractEditorFactoryBase
parentf438fc615b829170679971110b5d1bb57fba6a86 (diff)
downloadnextpnr-30e2f0e1e8cfdb24abe6c3a8013691497c706975.tar.gz
nextpnr-30e2f0e1e8cfdb24abe6c3a8013691497c706975.tar.bz2
nextpnr-30e2f0e1e8cfdb24abe6c3a8013691497c706975.zip
Add Loc constructors
Signed-off-by: Clifford Wolf <clifford@clifford.at>
Diffstat (limited to '3rdparty/QtPropertyBrowser/src/QtAbstractEditorFactoryBase')
0 files changed, 0 insertions, 0 deletions
' href='#n141'>141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  gatecat <gatecat@ds0.me>
 *  Copyright (C) 2018  Eddie Hung <eddieh@ece.ubc.ca>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "timing.h"
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <deque>
#include <map>
#include <utility>
#include "log.h"
#include "util.h"

NEXTPNR_NAMESPACE_BEGIN

namespace {
const char *edge_name(ClockEdge edge) { return (edge == FALLING_EDGE) ? "negedge" : "posedge"; }
} // namespace

void TimingAnalyser::setup()
{
    init_ports();
    get_cell_delays();
    topo_sort();
    setup_port_domains();
    identify_related_domains();
    run();
}

void TimingAnalyser::run(bool update_route_delays)
{
    reset_times();
    if (update_route_delays)
        get_route_delays();
    walk_forward();
    walk_backward();
    compute_slack();
    compute_criticality();
}

void TimingAnalyser::init_ports()
{
    // Per cell port structures
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        for (auto &port : ci->ports) {
            auto &data = ports[CellPortKey(ci->name, port.first)];
            data.type = port.second.type;
            data.cell_port = CellPortKey(ci->name, port.first);
        }
    }
}

void TimingAnalyser::get_cell_delays()
{
    for (auto &port : ports) {
        CellInfo *ci = cell_info(port.first);
        auto &pi = port_info(port.first);
        auto &pd = port.second;

        IdString name = port.first.port;
        // Ignore dangling ports altogether for timing purposes
        if (!pi.net)
            continue;
        pd.cell_arcs.clear();
        int clkInfoCount = 0;
        TimingPortClass cls = ctx->getPortTimingClass(ci, name, clkInfoCount);
        if (cls == TMG_STARTPOINT || cls == TMG_ENDPOINT || cls == TMG_CLOCK_INPUT || cls == TMG_GEN_CLOCK ||
            cls == TMG_IGNORE)
            continue;
        if (pi.type == PORT_IN) {
            // Input ports might have setup/hold relationships
            if (cls == TMG_REGISTER_INPUT) {
                for (int i = 0; i < clkInfoCount; i++) {
                    auto info = ctx->getPortClockingInfo(ci, name, i);
                    if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
                        continue;
                    pd.cell_arcs.emplace_back(CellArc::SETUP, info.clock_port, DelayQuad(info.setup, info.setup),
                                              info.edge);
                    pd.cell_arcs.emplace_back(CellArc::HOLD, info.clock_port, DelayQuad(info.hold, info.hold),
                                              info.edge);
                }
            }
            // Combinational delays through cell
            for (auto &other_port : ci->ports) {
                auto &op = other_port.second;
                // ignore dangling ports and non-outputs
                if (op.net == nullptr || op.type != PORT_OUT)
                    continue;
                DelayQuad delay;
                bool is_path = ctx->getCellDelay(ci, name, other_port.first, delay);
                if (is_path)
                    pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
            }
        } else if (pi.type == PORT_OUT) {
            // Output ports might have clk-to-q relationships
            if (cls == TMG_REGISTER_OUTPUT) {
                for (int i = 0; i < clkInfoCount; i++) {
                    auto info = ctx->getPortClockingInfo(ci, name, i);
                    if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
                        continue;
                    pd.cell_arcs.emplace_back(CellArc::CLK_TO_Q, info.clock_port, info.clockToQ, info.edge);
                }
            }
            // Combinational delays through cell
            for (auto &other_port : ci->ports) {
                auto &op = other_port.second;
                // ignore dangling ports and non-inputs
                if (op.net == nullptr || op.type != PORT_IN)
                    continue;
                DelayQuad delay;
                bool is_path = ctx->getCellDelay(ci, other_port.first, name, delay);
                if (is_path)
                    pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
            }
        }
    }
}

void TimingAnalyser::get_route_delays()
{
    for (auto &net : ctx->nets) {
        NetInfo *ni = net.second.get();
        if (ni->driver.cell == nullptr || ni->driver.cell->bel == BelId())
            continue;
        for (auto &usr : ni->users) {
            if (usr.cell->bel == BelId())
                continue;
            ports.at(CellPortKey(usr)).route_delay = DelayPair(ctx->getNetinfoRouteDelay(ni, usr));
        }
    }
}

void TimingAnalyser::set_route_delay(CellPortKey port, DelayPair value) { ports.at(port).route_delay = value; }

void TimingAnalyser::topo_sort()
{
    TopoSort<CellPortKey> topo;
    for (auto &port : ports) {
        auto &pd = port.second;
        // All ports are nodes
        topo.node(port.first);
        if (pd.type == PORT_IN) {
            // inputs: combinational arcs through the cell are edges
            for (auto &arc : pd.cell_arcs) {
                if (arc.type != CellArc::COMBINATIONAL)
                    continue;
                topo.edge(port.first, CellPortKey(port.first.cell, arc.other_port));
            }
        } else if (pd.type == PORT_OUT) {
            // output: routing arcs are edges
            const NetInfo *pn = port_info(port.first).net;
            if (pn != nullptr) {
                for (auto &usr : pn->users)
                    topo.edge(port.first, CellPortKey(usr));
            }
        }
    }
    bool no_loops = topo.sort();
    if (!no_loops && verbose_mode) {
        log_info("Found %d combinational loops:\n", int(topo.loops.size()));
        int i = 0;
        for (auto &loop : topo.loops) {
            log_info("    loop %d:\n", ++i);
            for (auto &port : loop) {
                log_info("        %s.%s (%s)\n", ctx->nameOf(port.cell), ctx->nameOf(port.port),
                         ctx->nameOf(port_info(port).net));
            }
        }
    }
    have_loops = !no_loops;
    std::swap(topological_order, topo.sorted);
}

void TimingAnalyser::setup_port_domains()
{
    for (auto &d : domains) {
        d.startpoints.clear();
        d.endpoints.clear();
    }
    // Go forward through the topological order (domains from the PoV of arrival time)
    bool first_iter = true;
    do {
        updated_domains = false;
        for (auto port : topological_order) {
            auto &pd = ports.at(port);
            auto &pi = port_info(port);
            if (pi.type == PORT_OUT) {
                if (first_iter) {
                    for (auto &fanin : pd.cell_arcs) {
                        if (fanin.type != CellArc::CLK_TO_Q)
                            continue;
                        // registered outputs are startpoints
                        auto dom = domain_id(port.cell, fanin.other_port, fanin.edge);
                        // create per-domain data
                        pd.arrival[dom];
                        domains.at(dom).startpoints.emplace_back(port, fanin.other_port);
                    }
                }
                // copy domains across routing
                if (pi.net != nullptr)
                    for (auto &usr : pi.net->users)
                        copy_domains(port, CellPortKey(usr), false);
            } else {
                // copy domains from input to output
                for (auto &fanout : pd.cell_arcs) {
                    if (fanout.type != CellArc::COMBINATIONAL)
                        continue;
                    copy_domains(port, CellPortKey(port.cell, fanout.other_port), false);
                }
            }
        }
        // Go backward through the topological order (domains from the PoV of required time)
        for (auto port : reversed_range(topological_order)) {
            auto &pd = ports.at(port);
            auto &pi = port_info(port);
            if (pi.type == PORT_OUT) {
                // copy domains from output to input
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type != CellArc::COMBINATIONAL)
                        continue;
                    copy_domains(port, CellPortKey(port.cell, fanin.other_port), true);
                }
            } else {
                if (first_iter) {
                    for (auto &fanout : pd.cell_arcs) {
                        if (fanout.type != CellArc::SETUP)
                            continue;
                        // registered inputs are endpoints
                        auto dom = domain_id(port.cell, fanout.other_port, fanout.edge);
                        // create per-domain data
                        pd.required[dom];
                        domains.at(dom).endpoints.emplace_back(port, fanout.other_port);
                    }
                }
                // copy port to driver
                if (pi.net != nullptr && pi.net->driver.cell != nullptr)
                    copy_domains(port, CellPortKey(pi.net->driver), true);
            }
        }
        // Iterate over ports and find domain paris
        for (auto port : topological_order) {
            auto &pd = ports.at(port);
            for (auto &arr : pd.arrival)
                for (auto &req : pd.required) {
                    pd.domain_pairs[domain_pair_id(arr.first, req.first)];
                }
        }
        first_iter = false;
        // If there are loops, repeat the process until a fixed point is reached, as there might be unusual ways to
        // visit points, which would result in a missing domain key and therefore crash later on
    } while (have_loops && updated_domains);
    for (auto &dp : domain_pairs) {
        auto &launch_data = domains.at(dp.key.launch);
        auto &capture_data = domains.at(dp.key.capture);
        if (launch_data.key.clock != capture_data.key.clock)
            continue;
        IdString clk = launch_data.key.clock;
        delay_t period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
        if (ctx->nets.count(clk)) {
            NetInfo *clk_net = ctx->nets.at(clk).get();
            if (clk_net->clkconstr) {
                period = clk_net->clkconstr->period.minDelay();
            }
        }
        if (launch_data.key.edge != capture_data.key.edge)
            period /= 2;
        dp.period = DelayPair(period);
    }
}

void TimingAnalyser::identify_related_domains()
{

    // Identify clock nets
    pool<IdString> clock_nets;
    for (const auto &domain : domains) {
        clock_nets.insert(domain.key.clock);
    }

    // For each clock net identify all nets that can possibly drive it. Compute
    // cumulative delays to each of them.
    std::function<void(const NetInfo *, dict<IdString, delay_t> &, delay_t)> find_net_drivers =
            [&](const NetInfo *ni, dict<IdString, delay_t> &drivers, delay_t delay_acc) {
                // Get driving cell and port
                if (ni == nullptr)
                    return;
                const CellInfo *cell = ni->driver.cell;
                if (cell == nullptr)
                    return;

                const IdString port = ni->driver.port;

                bool didGoUpstream = false;

                // The cell has only one port
                if (cell->ports.size() == 1) {
                    drivers[ni->name] = delay_acc;
                    return;
                }

                // Get the driver timing class
                int info_count = 0;
                auto timing_class = ctx->getPortTimingClass(cell, port, info_count);

                // The driver must be a combinational output
                if (timing_class != TMG_COMB_OUTPUT) {
                    drivers[ni->name] = delay_acc;
                    return;
                }

                // Recurse upstream through all input ports that have combinational
                // paths to this driver
                for (const auto &it : cell->ports) {
                    const auto &pi = it.second;

                    // Only connected inputs
                    if (pi.type != PORT_IN) {
                        continue;
                    }
                    if (pi.net == nullptr) {
                        continue;
                    }

                    // The input must be a combinational input
                    timing_class = ctx->getPortTimingClass(cell, pi.name, info_count);
                    if (timing_class != TMG_COMB_INPUT) {
                        continue;
                    }
                    // There must be a combinational arc
                    DelayQuad delay;
                    if (!ctx->getCellDelay(cell, pi.name, port, delay)) {
                        continue;
                    }

                    // Recurse
                    find_net_drivers(pi.net, drivers, delay_acc + delay.maxDelay());
                    didGoUpstream = true;
                }

                // Did not propagate upstream through the cell, mark the net as driver
                if (!didGoUpstream) {
                    drivers[ni->name] = delay_acc;
                }
            };

    // Identify possible drivers for each clock domain
    dict<IdString, dict<IdString, delay_t>> clock_drivers;
    for (const auto &domain : domains) {

        const NetInfo *ni = ctx->nets.at(domain.key.clock).get();
        if (ni == nullptr)
            continue;
        if (ni->driver.cell == nullptr)
            continue;

        dict<IdString, delay_t> drivers;
        find_net_drivers(ni, drivers, 0);

        clock_drivers[domain.key.clock] = drivers;

        if (ctx->debug) {
            log("Clock '%s' can be driven by:\n", domain.key.clock.str(ctx).c_str());
            for (const auto &it : drivers) {
                const NetInfo *net = ctx->nets.at(it.first).get();
                log(" %s.%s delay %.3fns\n", net->driver.cell->name.str(ctx).c_str(), net->driver.port.str(ctx).c_str(),
                    ctx->getDelayNS(it.second));
            }
        }
    }

    // Identify related clocks. For simplicity do it both for A->B and B->A
    // cases.
    for (const auto &c1 : clock_drivers) {
        for (const auto &c2 : clock_drivers) {

            if (c1 == c2) {
                continue;
            }

            // Make an intersection of the two drivers sets
            pool<IdString> common_drivers;
            for (const auto &it : c1.second) {
                common_drivers.insert(it.first);
            }
            for (const auto &it : c2.second) {
                common_drivers.insert(it.first);
            }

            for (auto it = common_drivers.begin(); it != common_drivers.end();) {
                if (!c1.second.count(*it) || !c2.second.count(*it)) {
                    it = common_drivers.erase(it);
                } else {
                    ++it;
                }
            }

            if (ctx->debug) {

                log("Possible common driver(s) for clocks '%s' and '%s'\n", c1.first.str(ctx).c_str(),
                    c2.first.str(ctx).c_str());

                for (const auto &it : common_drivers) {

                    const NetInfo *ni = ctx->nets.at(it).get();
                    const CellInfo *cell = ni->driver.cell;
                    const IdString port = ni->driver.port;

                    log(" net '%s', cell %s (%s), port %s\n", it.str(ctx).c_str(), cell->name.str(ctx).c_str(),
                        cell->type.str(ctx).c_str(), port.str(ctx).c_str());
                }
            }

            // If there is no single driver then consider the two clocks
            // unrelated.
            if (common_drivers.size() != 1) {
                continue;
            }

            // Compute delay from c1 to c2 and store it
            auto driver = *common_drivers.begin();
            auto delay = c2.second.at(driver) - c1.second.at(driver);
            clock_delays[std::make_pair(c1.first, c2.first)] = delay;
        }
    }
}

void TimingAnalyser::reset_times()
{
    for (auto &port : ports) {
        auto do_reset = [&](dict<domain_id_t, ArrivReqTime> &times) {
            for (auto &t : times) {
                t.second.value = init_delay;
                t.second.path_length = 0;
                t.second.bwd_min = CellPortKey();
                t.second.bwd_max = CellPortKey();
            }
        };
        do_reset(port.second.arrival);
        do_reset(port.second.required);
        for (auto &dp : port.second.domain_pairs) {
            dp.second.setup_slack = std::numeric_limits<delay_t>::max();
            dp.second.hold_slack = std::numeric_limits<delay_t>::max();
            dp.second.max_path_length = 0;
            dp.second.criticality = 0;
            dp.second.budget = 0;
        }
        port.second.worst_crit = 0;
        port.second.worst_setup_slack = std::numeric_limits<delay_t>::max();
        port.second.worst_hold_slack = std::numeric_limits<delay_t>::max();
    }
}

void TimingAnalyser::set_arrival_time(CellPortKey target, domain_id_t domain, DelayPair arrival, int path_length,
                                      CellPortKey prev)
{
    auto &arr = ports.at(target).arrival.at(domain);
    if (arrival.max_delay > arr.value.max_delay) {
        arr.value.max_delay = arrival.max_delay;
        arr.bwd_max = prev;
    }
    if (!setup_only && (arrival.min_delay < arr.value.min_delay)) {
        arr.value.min_delay = arrival.min_delay;
        arr.bwd_min = prev;
    }
    arr.path_length = std::max(arr.path_length, path_length);
}

void TimingAnalyser::set_required_time(CellPortKey target, domain_id_t domain, DelayPair required, int path_length,
                                       CellPortKey prev)
{
    auto &req = ports.at(target).required.at(domain);
    if (required.min_delay < req.value.min_delay) {
        req.value.min_delay = required.min_delay;
        req.bwd_min = prev;
    }
    if (!setup_only && (required.max_delay > req.value.max_delay)) {
        req.value.max_delay = required.max_delay;
        req.bwd_max = prev;
    }
    req.path_length = std::max(req.path_length, path_length);
}

void TimingAnalyser::walk_forward()
{
    // Assign initial arrival time to domain startpoints
    for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
        auto &dom = domains.at(dom_id);
        for (auto &sp : dom.startpoints) {
            auto &pd = ports.at(sp.first);
            DelayPair init_arrival(0);
            CellPortKey clock_key;
            // TODO: clock routing delay, if analysis of that is enabled
            if (sp.second != IdString()) {
                // clocked startpoints have a clock-to-out time
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type == CellArc::CLK_TO_Q && fanin.other_port == sp.second) {
                        init_arrival = init_arrival + fanin.value.delayPair();
                        break;
                    }
                }
                clock_key = CellPortKey(sp.first.cell, sp.second);
            }
            set_arrival_time(sp.first, dom_id, init_arrival, 1, clock_key);
        }
    }
    // Walk forward in topological order
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &arr : pd.arrival) {
            if (pd.type == PORT_OUT) {
                // Output port: propagate delay through net, adding route delay
                NetInfo *net = port_info(p).net;
                if (net != nullptr)
                    for (auto &usr : net->users) {
                        CellPortKey usr_key(usr);
                        auto &usr_pd = ports.at(usr_key);
                        set_arrival_time(usr_key, arr.first, arr.second.value + usr_pd.route_delay,
                                         arr.second.path_length, p);
                    }
            } else if (pd.type == PORT_IN) {
                // Input port; propagate delay through cell, adding combinational delay
                for (auto &fanout : pd.cell_arcs) {
                    if (fanout.type != CellArc::COMBINATIONAL)
                        continue;
                    set_arrival_time(CellPortKey(p.cell, fanout.other_port), arr.first,
                                     arr.second.value + fanout.value.delayPair(), arr.second.path_length + 1, p);
                }
            }
        }
    }
}

void TimingAnalyser::walk_backward()
{
    // Assign initial required time to domain endpoints
    // Note that clock frequency will be considered later in the analysis for, for now all required times are normalised
    // to 0ns
    for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
        auto &dom = domains.at(dom_id);
        for (auto &ep : dom.endpoints) {
            auto &pd = ports.at(ep.first);
            DelayPair init_setuphold(0);
            CellPortKey clock_key;
            // TODO: clock routing delay, if analysis of that is enabled
            if (ep.second != IdString()) {
                // Add setup/hold time, if this endpoint is clocked
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type == CellArc::SETUP && fanin.other_port == ep.second)
                        init_setuphold.min_delay -= fanin.value.maxDelay();
                    if (fanin.type == CellArc::HOLD && fanin.other_port == ep.second)
                        init_setuphold.max_delay -= fanin.value.maxDelay();
                }
                clock_key = CellPortKey(ep.first.cell, ep.second);
            }
            set_required_time(ep.first, dom_id, init_setuphold, 1, clock_key);
        }
    }
    // Walk backwards in topological order
    for (auto p : reversed_range(topological_order)) {
        auto &pd = ports.at(p);
        for (auto &req : pd.required) {
            if (pd.type == PORT_IN) {
                // Input port: propagate delay back through net, subtracting route delay
                NetInfo *net = port_info(p).net;
                if (net != nullptr && net->driver.cell != nullptr)
                    set_required_time(CellPortKey(net->driver), req.first,
                                      req.second.value - DelayPair(pd.route_delay.maxDelay()), req.second.path_length,
                                      p);
            } else if (pd.type == PORT_OUT) {
                // Output port : propagate delay back through cell, subtracting combinational delay
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type != CellArc::COMBINATIONAL)
                        continue;
                    set_required_time(CellPortKey(p.cell, fanin.other_port), req.first,
                                      req.second.value - DelayPair(fanin.value.maxDelay()), req.second.path_length + 1,
                                      p);
                }
            }
        }
    }
}

void TimingAnalyser::print_fmax()
{
    // Temporary testing code for comparison only
    dict<int, double> domain_fmax;
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &req : pd.required) {
            if (pd.arrival.count(req.first)) {
                auto &arr = pd.arrival.at(req.first);
                double fmax = 1000.0 / ctx->getDelayNS(arr.value.maxDelay() - req.second.value.minDelay());
                if (!domain_fmax.count(req.first) || domain_fmax.at(req.first) > fmax)
                    domain_fmax[req.first] = fmax;
            }
        }
    }
    for (auto &fm : domain_fmax) {
        log_info("Domain %s Worst Fmax %.02f\n", ctx->nameOf(domains.at(fm.first).key.clock), fm.second);
    }
}

void TimingAnalyser::compute_slack()
{
    for (auto &dp : domain_pairs) {
        dp.worst_setup_slack = std::numeric_limits<delay_t>::max();
        dp.worst_hold_slack = std::numeric_limits<delay_t>::max();
    }
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &pdp : pd.domain_pairs) {
            auto &dp = domain_pairs.at(pdp.first);

            // Get clock names
            const auto &launch_clock = domains.at(dp.key.launch).key.clock;
            const auto &capture_clock = domains.at(dp.key.capture).key.clock;

            // Get clock-to-clock delay if any
            delay_t clock_to_clock = 0;
            auto clocks = std::make_pair(launch_clock, capture_clock);
            if (clock_delays.count(clocks)) {
                clock_to_clock = clock_delays.at(clocks);
            }

            auto &arr = pd.arrival.at(dp.key.launch);
            auto &req = pd.required.at(dp.key.capture);
            pdp.second.setup_slack = 0 - (arr.value.maxDelay() - req.value.minDelay() + clock_to_clock);
            if (!setup_only)
                pdp.second.hold_slack = arr.value.minDelay() - req.value.maxDelay() + clock_to_clock;
            pdp.second.max_path_length = arr.path_length + req.path_length;
            if (dp.key.launch == dp.key.capture)
                pd.worst_setup_slack = std::min(pd.worst_setup_slack, dp.period.minDelay() + pdp.second.setup_slack);
            dp.worst_setup_slack = std::min(dp.worst_setup_slack, pdp.second.setup_slack);
            if (!setup_only) {
                pd.worst_hold_slack = std::min(pd.worst_hold_slack, pdp.second.hold_slack);
                dp.worst_hold_slack = std::min(dp.worst_hold_slack, pdp.second.hold_slack);
            }
        }
    }
}

void TimingAnalyser::compute_criticality()
{
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &pdp : pd.domain_pairs) {
            auto &dp = domain_pairs.at(pdp.first);
            float crit =
                    1.0f - (float(pdp.second.setup_slack) - float(dp.worst_setup_slack)) / float(-dp.worst_setup_slack);
            crit = std::min(crit, 1.0f);
            crit = std::max(crit, 0.0f);
            pdp.second.criticality = crit;
            pd.worst_crit = std::max(pd.worst_crit, crit);
        }
    }
}

std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair, int count)
{
    std::vector<CellPortKey> failing_eps;
    delay_t last_slack = std::numeric_limits<delay_t>::min();
    auto &dp = domain_pairs.at(domain_pair);
    auto &cap_d = domains.at(dp.key.capture);
    while (int(failing_eps.size()) < count) {
        CellPortKey next;
        delay_t next_slack = std::numeric_limits<delay_t>::max();
        for (auto ep : cap_d.endpoints) {
            auto &pd = ports.at(ep.first);
            if (!pd.domain_pairs.count(domain_pair))
                continue;
            delay_t ep_slack = pd.domain_pairs.at(domain_pair).setup_slack;
            if (ep_slack < next_slack && ep_slack > last_slack) {
                next = ep.first;
                next_slack = ep_slack;
            }
        }
        if (next == CellPortKey())
            break;
        failing_eps.push_back(next);
        last_slack = next_slack;
    }
    return failing_eps;
}

void TimingAnalyser::print_critical_path(CellPortKey endpoint, domain_id_t domain_pair)
{
    CellPortKey cursor = endpoint;
    auto &dp = domain_pairs.at(domain_pair);
    log("    endpoint %s.%s (slack %.02fns):\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
        ctx->getDelayNS(ports.at(cursor).domain_pairs.at(domain_pair).setup_slack));
    while (cursor != CellPortKey()) {
        log("        %s.%s (net %s)\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
            ctx->nameOf(ctx->cells.at(cursor.cell)->getPort(cursor.port)));
        if (!ports.at(cursor).arrival.count(dp.key.launch))
            break;
        cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max;
    }
}

void TimingAnalyser::print_report()
{
    for (int i = 0; i < int(domain_pairs.size()); i++) {
        auto &dp = domain_pairs.at(i);
        auto &launch = domains.at(dp.key.launch);
        auto &capture = domains.at(dp.key.capture);
        log("Worst endpoints for %s %s -> %s %s\n", edge_name(launch.key.edge), ctx->nameOf(launch.key.clock),
            edge_name(capture.key.edge), ctx->nameOf(capture.key.clock));
        auto failing_eps = get_failing_eps(i, 5);
        for (auto &ep : failing_eps)
            print_critical_path(ep, i);
        log_break();
    }

    print_fmax();

    for (const auto &it : clock_delays) {
        log_info("Clock-to-clock %s -> %s: %0.02f ns\n", it.first.first.str(ctx).c_str(),
                 it.first.second.str(ctx).c_str(), ctx->getDelayNS(it.second));
    }
}

domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockEdge edge)
{
    return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge);
}
domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
{
    NPNR_ASSERT(net != nullptr);
    ClockDomainKey key{net->name, edge};
    auto inserted = domain_to_id.emplace(key, domains.size());
    if (inserted.second) {
        domains.emplace_back(key);
    }
    return inserted.first->second;
}
domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture)
{
    ClockDomainPairKey key{launch, capture};
    auto inserted = pair_to_id.emplace(key, domain_pairs.size());
    if (inserted.second) {
        domain_pairs.emplace_back(key);
    }
    return inserted.first->second;
}

void TimingAnalyser::copy_domains(const CellPortKey &from, const CellPortKey &to, bool backward)
{
    auto &f = ports.at(from), &t = ports.at(to);
    for (auto &dom : (backward ? f.required : f.arrival)) {
        updated_domains |= (backward ? t.required : t.arrival).emplace(dom.first, ArrivReqTime{}).second;
    }
}

CellInfo *TimingAnalyser::cell_info(const CellPortKey &key) { return ctx->cells.at(key.cell).get(); }

PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.at(key.cell)->ports.at(key.port); }

/** LEGACY CODE BEGIN **/

typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency;

struct CriticalPathData
{
    PortRefVector ports;
    delay_t path_delay;
    delay_t path_period;
};

typedef dict<ClockPair, CriticalPathData> CriticalPathDataMap;

typedef dict<IdString, std::vector<NetSinkTiming>> DetailedNetTimings;

struct Timing
{
    Context *ctx;
    bool net_delays;
    bool update;
    delay_t min_slack;
    CriticalPathDataMap *crit_path;
    DelayFrequency *slack_histogram;
    DetailedNetTimings *detailed_net_timings;
    IdString async_clock;

    struct TimingData
    {
        TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
        TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
        delay_t max_arrival;
        unsigned max_path_length = 0;
        delay_t min_remaining_budget;
        bool false_startpoint = false;
        std::vector<delay_t> min_required;
        dict<ClockEvent, delay_t> arrival_time;
    };

    Timing(Context *ctx, bool net_delays, bool update, CriticalPathDataMap *crit_path = nullptr,
           DelayFrequency *slack_histogram = nullptr, DetailedNetTimings *detailed_net_timings = nullptr)
            : ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")),
              crit_path(crit_path), slack_histogram(slack_histogram), detailed_net_timings(detailed_net_timings),
              async_clock(ctx->id("$async$"))
    {
    }

    delay_t walk_paths()
    {
        const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));

        // First, compute the topological order of nets to walk through the circuit, assuming it is a _acyclic_ graph
        // TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
        std::vector<NetInfo *> topological_order;
        dict<const NetInfo *, dict<ClockEvent, TimingData>, hash_ptr_ops> net_data;
        // In lieu of deleting edges from the graph, simply count the number of fanins to each output port
        dict<const PortInfo *, unsigned, hash_ptr_ops> port_fanin;

        std::vector<IdString> input_ports;
        std::vector<const PortInfo *> output_ports;

        pool<IdString> ooc_port_nets;

        // In out-of-context mode, top-level inputs look floating but aren't
        if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
            for (auto &p : ctx->ports) {
                if (p.second.type != PORT_IN || p.second.net == nullptr)
                    continue;
                ooc_port_nets.insert(p.second.net->name);
            }
        }

        for (auto &cell : ctx->cells) {
            input_ports.clear();
            output_ports.clear();
            for (auto &port : cell.second->ports) {
                if (!port.second.net)
                    continue;
                if (port.second.type == PORT_OUT)
                    output_ports.push_back(&port.second);
                else
                    input_ports.push_back(port.first);
            }

            for (auto o : output_ports) {
                int clocks = 0;
                TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
                // If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
                // start-point
                if (portClass == TMG_REGISTER_OUTPUT) {
                    topological_order.emplace_back(o->net);
                    for (int i = 0; i < clocks; i++) {
                        TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
                        const NetInfo *clknet = cell.second->getPort(clkInfo.clock_port);
                        IdString clksig = clknet ? clknet->name : async_clock;
                        net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
                                TimingData{clkInfo.clockToQ.maxDelay()};
                    }

                } else {
                    if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
                        topological_order.emplace_back(o->net);
                        TimingData td;
                        td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
                        td.max_arrival = 0;
                        net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
                    }

                    // Don't analyse paths from a clock input to other pins - they will be considered by the
                    // special-case handling register input/output class ports
                    if (portClass == TMG_CLOCK_INPUT)
                        continue;

                    // Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
                    // the current output port, increment fanin counter
                    for (auto i : input_ports) {
                        DelayQuad comb_delay;
                        NetInfo *i_net = cell.second->ports[i].net;
                        if (i_net->driver.cell == nullptr && !ooc_port_nets.count(i_net->name))
                            continue;
                        bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
                        if (is_path)
                            port_fanin[o]++;
                    }
                    // If there is no fanin, add the port as a false startpoint
                    if (!port_fanin.count(o) && !net_data.count(o->net)) {
                        topological_order.emplace_back(o->net);
                        TimingData td;
                        td.false_startpoint = true;
                        td.max_arrival = 0;
                        net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
                    }
                }
            }
        }

        // In out-of-context mode, handle top-level ports correctly
        if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
            for (auto &p : ctx->ports) {
                if (p.second.type != PORT_IN || p.second.net == nullptr)
                    continue;
                topological_order.emplace_back(p.second.net);
            }
        }

        std::deque<NetInfo *> queue(topological_order.begin(), topological_order.end());
        // Now walk the design, from the start points identified previously, building up a topological order
        while (!queue.empty()) {
            const auto net = queue.front();
            queue.pop_front();

            for (auto &usr : net->users) {
                int user_clocks;
                TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
                if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
                    continue;
                for (auto &port : usr.cell->ports) {
                    if (port.second.type != PORT_OUT || !port.second.net)
                        continue;
                    int port_clocks;
                    TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);

                    // Skip if this is a clocked output (but allow non-clocked ones)
                    if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
                        portClass == TMG_GEN_CLOCK)
                        continue;
                    DelayQuad comb_delay;
                    bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
                    if (!is_path)
                        continue;
                    // Decrement the fanin count, and only add to topological order if all its fanins have already
                    // been visited
                    auto it = port_fanin.find(&port.second);
                    if (it == port_fanin.end())
                        log_error("Timing counted negative fanin count for port %s.%s (net %s), please report this "
                                  "error.\n",
                                  ctx->nameOf(usr.cell), ctx->nameOf(port.first), ctx->nameOf(port.second.net));
                    if (--it->second == 0) {
                        topological_order.emplace_back(port.second.net);
                        queue.emplace_back(port.second.net);
                        port_fanin.erase(it);
                    }
                }
            }
        }

        // Sanity check to ensure that all ports where fanins were recorded were indeed visited
        if (!port_fanin.empty() && !bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false)) {
            for (auto fanin : port_fanin) {
                NetInfo *net = fanin.first->net;
                if (net != nullptr) {
                    log_info("   remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
                             net->name.c_str(ctx));
                    if (net->driver.cell != nullptr)
                        log_info("        driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
                                 net->driver.port.c_str(ctx));
                    for (auto net_user : net->users)
                        log_info("        user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
                } else {
                    log_info("   remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
                }
            }
            if (ctx->force)
                log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
                            "of timing ports, etc.\n");
            else
                log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
                          "timing ports, etc.\n");
        }

        // Go forwards topologically to find the maximum arrival time and max path length for each net
        std::vector<ClockEvent> startdomains;
        for (auto net : topological_order) {
            if (!net_data.count(net))
                continue;
            // Updates later on might invalidate a reference taken here to net_data, so iterate over a list of domains
            // instead
            startdomains.clear();
            {
                auto &nd_map = net_data.at(net);
                for (auto &startdomain : nd_map)
                    startdomains.push_back(startdomain.first);
            }
            for (auto &start_clk : startdomains) {
                auto &nd = net_data.at(net).at(start_clk);
                if (nd.false_startpoint)
                    continue;
                const auto net_arrival = nd.max_arrival;
                const auto net_length_plus_one = nd.max_path_length + 1;
                nd.min_remaining_budget = clk_period;
                for (auto &usr : net->users) {
                    int port_clocks;
                    TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
                    auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
                    auto usr_arrival = net_arrival + net_delay;

                    if (portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || portClass == TMG_CLOCK_INPUT) {
                        // Skip
                    } else {
                        auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
                        // Iterate over all output ports on the same cell as the sink
                        for (auto port : usr.cell->ports) {
                            if (port.second.type != PORT_OUT || !port.second.net)
                                continue;
                            DelayQuad comb_delay;
                            // Look up delay through this path
                            bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
                            if (!is_path)
                                continue;
                            auto &data = net_data[port.second.net][start_clk];
                            auto &arrival = data.max_arrival;
                            arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
                            if (!budget_override) { // Do not increment path length if budget overridden since it
                                                    // doesn't
                                // require a share of the slack
                                auto &path_length = data.max_path_length;
                                path_length = std::max(path_length, net_length_plus_one);
                            }
                        }
                    }
                }
            }
        }

        dict<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;

        // Now go backwards topologically to determine the minimum path slack, and to distribute all path slack evenly
        // between all nets on the path
        for (auto net : boost::adaptors::reverse(topological_order)) {
            if (!net_data.count(net))
                continue;
            auto &nd_map = net_data.at(net);
            for (auto &startdomain : nd_map) {
                auto &nd = startdomain.second;
                // Ignore false startpoints
                if (nd.false_startpoint)
                    continue;
                const delay_t net_length_plus_one = nd.max_path_length + 1;
                auto &net_min_remaining_budget = nd.min_remaining_budget;
                for (auto &usr : net->users) {
                    auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
                    auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
                    int port_clocks;
                    TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
                    if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
                        auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
                            const auto net_arrival = nd.max_arrival;
                            const auto endpoint_arrival = net_arrival + net_delay + setup;
                            delay_t period;
                            // Set default period
                            if (edge == startdomain.first.edge) {
                                period = clk_period;
                            } else {
                                period = clk_period / 2;
                            }
                            if (clksig != async_clock) {
                                if (ctx->nets.at(clksig)->clkconstr) {
                                    if (edge == startdomain.first.edge) {
                                        // same edge
                                        period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
                                    } else if (edge == RISING_EDGE) {
                                        // falling -> rising
                                        period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
                                    } else if (edge == FALLING_EDGE) {
                                        // rising -> falling
                                        period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
                                    }
                                }
                            }
                            auto path_budget = period - endpoint_arrival;

                            if (update) {
                                auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
                                usr.budget = std::min(usr.budget, net_delay + budget_share);
                                net_min_remaining_budget =
                                        std::min(net_min_remaining_budget, path_budget - budget_share);
                            }

                            if (path_budget < min_slack)
                                min_slack = path_budget;

                            if (slack_histogram) {
                                int slack_ps = ctx->getDelayNS(path_budget) * 1000;
                                (*slack_histogram)[slack_ps]++;
                            }
                            ClockEvent dest_ev{clksig, edge};
                            ClockPair clockPair{startdomain.first, dest_ev};
                            nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);

                            // Store the detailed timing for each net and user (a.k.a. sink)
                            if (detailed_net_timings) {
                                NetSinkTiming sink_timing;
                                sink_timing.clock_pair = clockPair;
                                sink_timing.cell_port = std::make_pair(usr.cell->name, usr.port);
                                sink_timing.delay = endpoint_arrival;
                                sink_timing.budget = period;

                                (*detailed_net_timings)[net->name].push_back(sink_timing);
                            }

                            if (crit_path) {
                                if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
                                    crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
                                    (*crit_path)[clockPair].path_delay = endpoint_arrival;
                                    (*crit_path)[clockPair].path_period = period;
                                    (*crit_path)[clockPair].ports.clear();
                                    (*crit_path)[clockPair].ports.push_back(&usr);
                                }
                            }
                        };
                        if (portClass == TMG_REGISTER_INPUT) {
                            for (int i = 0; i < port_clocks; i++) {
                                TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
                                const NetInfo *clknet = usr.cell->getPort(clkInfo.clock_port);
                                IdString clksig = clknet ? clknet->name : async_clock;
                                process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
                            }
                        } else {
                            process_endpoint(async_clock, RISING_EDGE, 0);
                        }

                    } else if (update) {

                        // Iterate over all output ports on the same cell as the sink
                        for (const auto &port : usr.cell->ports) {
                            if (port.second.type != PORT_OUT || !port.second.net)
                                continue;
                            DelayQuad comb_delay;
                            bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
                            if (!is_path)
                                continue;
                            if (net_data.count(port.second.net) &&
                                net_data.at(port.second.net).count(startdomain.first)) {
                                auto path_budget =
                                        net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
                                auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
                                usr.budget = std::min(usr.budget, net_delay + budget_share);
                                net_min_remaining_budget =
                                        std::min(net_min_remaining_budget, path_budget - budget_share);
                            }
                        }
                    }
                }
            }
        }

        if (crit_path) {
            // Walk backwards from the most critical net
            for (auto crit_pair : crit_nets) {
                NetInfo *crit_net = crit_pair.second.second;
                auto &cp_ports = (*crit_path)[crit_pair.first].ports;
                while (crit_net) {
                    const PortInfo *crit_ipin = nullptr;
                    delay_t max_arrival = std::numeric_limits<delay_t>::min();
                    // Look at all input ports on its driving cell
                    for (const auto &port : crit_net->driver.cell->ports) {
                        if (port.second.type != PORT_IN || !port.second.net)
                            continue;
                        DelayQuad comb_delay;
                        bool is_path =
                                ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
                        if (!is_path)
                            continue;
                        // If input port is influenced by a clock, skip
                        int port_clocks;
                        TimingPortClass portClass =
                                ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
                        if (portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE)
                            continue;
                        // And find the fanin net with the latest arrival time
                        if (net_data.count(port.second.net) &&
                            net_data.at(port.second.net).count(crit_pair.first.start)) {
                            auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
                            if (net_delays) {
                                for (auto &user : port.second.net->users)
                                    if (user.port == port.first && user.cell == crit_net->driver.cell) {
                                        net_arrival += ctx->getNetinfoRouteDelay(port.second.net, user);
                                        break;
                                    }
                            }
                            net_arrival += comb_delay.maxDelay();
                            if (net_arrival > max_arrival) {
                                max_arrival = net_arrival;
                                crit_ipin = &port.second;
                            }
                        }
                    }

                    if (!crit_ipin)
                        break;
                    // Now convert PortInfo* into a PortRef*
                    for (auto &usr : crit_ipin->net->users) {
                        if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
                            cp_ports.push_back(&usr);
                            break;
                        }
                    }
                    crit_net = crit_ipin->net;
                }
                std::reverse(cp_ports.begin(), cp_ports.end());
            }
        }
        return min_slack;
    }

    void assign_budget()
    {
        // Clear delays to a very high value first
        for (auto &net : ctx->nets) {
            for (auto &usr : net.second->users) {
                usr.budget = std::numeric_limits<delay_t>::max();
            }
        }

        walk_paths();
    }
};

void assign_budget(Context *ctx, bool quiet)
{
    if (!quiet) {
        log_break();
        log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n",
                 ctx->setting<float>("target_freq") / 1e6);
    }

    Timing timing(ctx, ctx->setting<int>("slack_redist_iter") > 0 /* net_delays */, true /* update */);
    timing.assign_budget();

    if (!quiet || ctx->verbose) {
        for (auto &net : ctx->nets) {
            for (auto &user : net.second->users) {
                // Post-update check
                if (!ctx->setting<bool>("auto_freq") && user.budget < 0)
                    log_info("port %s.%s, connected to net '%s', has negative "
                             "timing budget of %fns\n",
                             user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
                             ctx->getDelayNS(user.budget));
                else if (ctx->debug)
                    log_info("port %s.%s, connected to net '%s', has "
                             "timing budget of %fns\n",
                             user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
                             ctx->getDelayNS(user.budget));
            }
        }
    }

    // For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
    // currently achieved maximum
    if (ctx->setting<bool>("auto_freq") && ctx->setting<int>("slack_redist_iter") > 0) {
        delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->setting<float>("target_freq"));
        ctx->settings[ctx->id("target_freq")] =
                std::to_string(1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack));
        if (ctx->verbose)
            log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
                     "update = %.2f MHz\n",
                     ctx->getDelayNS(timing.min_slack), ctx->setting<float>("target_freq") / 1e6);
    }

    if (!quiet)
        log_info("Checksum: 0x%08x\n", ctx->checksum());
}

CriticalPath build_critical_path_report(Context *ctx, ClockPair &clocks, const PortRefVector &crit_path)
{

    CriticalPath report;
    report.clock_pair = clocks;

    auto &front = crit_path.front();
    auto &front_port = front->cell->ports.at(front->port);
    auto &front_driver = front_port.net->driver;

    int port_clocks;
    auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);

    const CellInfo *last_cell = front->cell;
    IdString last_port = front_driver.port;

    int clock_start = -1;
    if (portClass == TMG_REGISTER_OUTPUT) {
        for (int i = 0; i < port_clocks; i++) {
            TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
            const NetInfo *clknet = front_driver.cell->getPort(clockInfo.clock_port);
            if (clknet != nullptr && clknet->name == clocks.start.clock && clockInfo.edge == clocks.start.edge) {
                last_port = clockInfo.clock_port;
                clock_start = i;
                break;
            }
        }
    }

    for (auto sink : crit_path) {
        auto sink_cell = sink->cell;
        auto &port = sink_cell->ports.at(sink->port);
        auto net = port.net;
        auto &driver = net->driver;
        auto driver_cell = driver.cell;

        CriticalPath::Segment seg_logic;

        DelayQuad comb_delay;
        if (clock_start != -1) {
            auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
            comb_delay = clockInfo.clockToQ;
            clock_start = -1;
            seg_logic.type = CriticalPath::Segment::Type::CLK_TO_Q;
        } else if (last_port == driver.port) {
            // Case where we start with a STARTPOINT etc
            comb_delay = DelayQuad(0);
            seg_logic.type = CriticalPath::Segment::Type::SOURCE;
        } else {
            ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
            seg_logic.type = CriticalPath::Segment::Type::LOGIC;
        }

        seg_logic.delay = comb_delay.maxDelay();
        seg_logic.budget = 0;
        seg_logic.from = std::make_pair(last_cell->name, last_port);
        seg_logic.to = std::make_pair(driver_cell->name, driver.port);
        seg_logic.net = IdString();
        report.segments.push_back(seg_logic);

        auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);

        CriticalPath::Segment seg_route;
        seg_route.type = CriticalPath::Segment::Type::ROUTING;
        seg_route.delay = net_delay;
        seg_route.budget = sink->budget;
        seg_route.from = std::make_pair(driver_cell->name, driver.port);
        seg_route.to = std::make_pair(sink_cell->name, sink->port);
        seg_route.net = net->name;
        report.segments.push_back(seg_route);

        last_cell = sink_cell;
        last_port = sink->port;
    }

    int clockCount = 0;
    auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
    if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
        auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
        delay_t setup = sinkClockInfo.setup.maxDelay();

        CriticalPath::Segment seg_logic;
        seg_logic.type = CriticalPath::Segment::Type::SETUP;
        seg_logic.delay = setup;
        seg_logic.budget = 0;
        seg_logic.from = std::make_pair(last_cell->name, last_port);
        seg_logic.to = seg_logic.from;
        seg_logic.net = IdString();
        report.segments.push_back(seg_logic);
    }

    return report;
}

void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure,
                     bool update_results)
{
    auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
        std::string value;
        if (e.clock == ctx->id("$async$"))
            value = std::string("<async>");
        else
            value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
        if (int(value.length()) < field_width)
            value.insert(value.length(), field_width - int(value.length()), ' ');
        return value;
    };

    CriticalPathDataMap crit_paths;
    DelayFrequency slack_histogram;
    DetailedNetTimings detailed_net_timings;

    Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
                  print_histogram ? &slack_histogram : nullptr,
                  (update_results && ctx->detailed_timing_report) ? &detailed_net_timings : nullptr);
    timing.walk_paths();

    // Use TimingAnalyser to determine clock-to-clock relations
    TimingAnalyser timingAnalyser(ctx);
    timingAnalyser.setup();

    bool report_critical_paths = print_path || print_fmax || update_results;

    dict<IdString, CriticalPath> clock_reports;
    std::vector<CriticalPath> xclock_reports;
    dict<IdString, ClockFmax> clock_fmax;
    std::set<IdString> empty_clocks; // set of clocks with no interior paths

    if (report_critical_paths) {

        for (auto path : crit_paths) {
            const ClockEvent &a = path.first.start;
            const ClockEvent &b = path.first.end;
            empty_clocks.insert(a.clock);
            empty_clocks.insert(b.clock);
        }
        for (auto path : crit_paths) {
            const ClockEvent &a = path.first.start;
            const ClockEvent &b = path.first.end;
            if (a.clock != b.clock || a.clock == ctx->id("$async$"))
                continue;
            double Fmax;
            empty_clocks.erase(a.clock);
            if (a.edge == b.edge)
                Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
            else
                Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
            if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock).achieved) {
                clock_fmax[a.clock].achieved = Fmax;
                clock_fmax[a.clock].constraint = 0.0f; // Will be filled later
                clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports);
                clock_reports[a.clock].period = path.second.path_period;
            }
        }

        for (auto &path : crit_paths) {
            const ClockEvent &a = path.first.start;
            const ClockEvent &b = path.first.end;
            if (a.clock == b.clock && a.clock != ctx->id("$async$"))
                continue;

            auto &crit_path = crit_paths.at(path.first).ports;
            xclock_reports.push_back(build_critical_path_report(ctx, path.first, crit_path));
            xclock_reports.back().period = path.second.path_period;
        }

        if (clock_reports.empty() && xclock_reports.empty()) {
            log_info("No Fmax available; no interior timing paths found in design.\n");
        }

        std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPath &ra, const CriticalPath &rb) {
            const auto &a = ra.clock_pair;
            const auto &b = rb.clock_pair;

            if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
                return true;
            if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
                return false;
            if (a.start.edge < b.start.edge)
                return true;
            if (a.start.edge > b.start.edge)
                return false;
            if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
                return true;
            if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
                return false;
            if (a.end.edge < b.end.edge)
                return true;
            return false;
        });

        for (auto &clock : clock_reports) {
            float target = ctx->setting<float>("target_freq") / 1e6;
            if (ctx->nets.at(clock.first)->clkconstr)