1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
-- (c)EMARD
-- License=BSD
-- parametric ECP5 PLL generator in VHDL
-- to see actual frequencies and phase shifts
-- trellis log/stdout : search for "MHz", "Derived", "frequency"
-- diamond log/*.mrp : search for "MHz", "Frequency", "Phase", "Desired"
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity ecp5pll is
generic
(
in_hz : natural := 25000000;
out0_hz : natural := 25000000;
out0_deg : natural := 0; -- keep 0
out0_tol_hz : natural := 0; -- Hz tolerance
out1_hz : natural := 0; -- 0 to disable
out1_deg : natural := 0;
out1_tol_hz : natural := 0;
out2_hz : natural := 0;
out2_deg : natural := 0;
out2_tol_hz : natural := 0;
out3_hz : natural := 0;
out3_deg : natural := 0;
out3_tol_hz : natural := 0;
reset_en : natural := 0;
standby_en : natural := 0;
dynamic_en : natural := 0
);
port
(
clk_i : in std_logic;
clk_o : out std_logic_vector(3 downto 0);
reset : in std_logic := '0';
standby : in std_logic := '0';
phasesel : in std_logic_vector(1 downto 0) := "00";
phasedir,
phasestep,
phaseloadreg : std_logic := '0';
locked : out std_logic
);
end;
architecture mix of ecp5pll is
type T_clocks is record
in_hz : natural;
out0_hz : natural;
out0_deg : natural;
out1_hz : natural;
out1_deg : natural;
out2_hz : natural;
out2_deg : natural;
out3_hz : natural;
out3_deg : natural;
end record T_clocks;
type T_secondary is record
div : natural;
freq_string : string(1 to 10);
freq : natural;
phase : natural;
cphase : natural;
fphase : natural;
end record T_secondary;
type A_secondary is array(1 to 3) of T_secondary;
type A_srequest is array(1 to 3) of natural;
type T_params is record
result : T_clocks;
refclk_div : natural;
feedback_div : natural;
output_div : natural;
fin_string : string(1 to 10);
fout_string : string(1 to 10);
fout : natural;
fvco : natural;
primary_cphase : natural;
primary_fphase : natural;
secondary : A_secondary;
end record T_params;
function enabled_str(en: integer)
return string is
begin
if en = 0 then
return "DISABLED";
else
return "ENABLED";
end if;
end enabled_str;
function Hz2MHz_str(int: integer)
return string is
constant base : natural := 10;
constant digit : string(1 to 10) := "0123456789";
variable temp : string(1 to 9) := (others => '0');
variable power : natural := 1;
begin
-- convert integer to string
for i in temp'high downto 1 loop
temp(i) := digit((int/power mod base) + 1);
power := power * base;
end loop;
-- insert decimal point "123.456789"
return temp(1 to 3) & "." & temp(4 to temp'high);
end Hz2MHz_str;
function F_ecp5pll(request: T_clocks)
return T_params is
constant PFD_MIN: natural := 3125000;
constant PFD_MAX: natural := 400000000;
constant VCO_MIN: natural := 400000000;
constant VCO_MAX: natural := 800000000;
constant VCO_OPTIMAL: natural := (VCO_MIN+VCO_MAX)/2;
variable params: T_params;
variable input_div, input_div_min, input_div_max : natural;
variable feedback_div, feedback_div_min, feedback_div_max : natural;
variable output_div, output_div_min, output_div_max : natural;
variable fout: natural;
variable fvco: natural := 0;
variable error, error_prev: natural := 999999999;
variable result: T_clocks;
variable sfreq, sphase: A_srequest;
variable div: natural;
variable freq: natural;
variable phase_compensation: natural;
variable phase_count_x8: natural;
variable phase_shift: natural;
begin
params.fvco := 0;
sfreq(1) := request.out1_hz;
sphase(1) := request.out1_deg;
sfreq(2) := request.out2_hz;
sphase(2) := request.out2_deg;
sfreq(3) := request.out3_hz;
sphase(3) := request.out3_deg;
-- generate primary output
-- search 128*80*128=1.3e6 combination space to find the best match
-- loop over allowed MIN/MAX range only
input_div_min := in_hz/PFD_MAX;
if input_div_min < 1 then
input_div_min := 1;
end if;
input_div_max := in_hz/PFD_MIN;
if input_div_max > 128 then
input_div_max := 128;
end if;
for input_div in input_div_min to input_div_max loop
if out0_hz / 1000000 * input_div < 2000 then
feedback_div := out0_hz * input_div / in_hz;
else
feedback_div := out0_hz / in_hz * input_div;
end if;
if feedback_div < 2 then
feedback_div_min := 1;
else
feedback_div_min := feedback_div-1;
end if;
if feedback_div > 79 then
feedback_div_max := 80;
else
feedback_div_max := feedback_div+1;
end if;
for feedback_div in feedback_div_min to feedback_div_max loop
output_div_min := (VCO_MIN/feedback_div) / (in_hz/input_div);
if output_div_min < 1 then
output_div_min := 1;
end if;
output_div_max := (VCO_MAX/feedback_div) / (in_hz/input_div);
if output_div_max > 128 then
output_div_max := 128;
end if;
fout := in_hz * feedback_div / input_div;
for output_div in output_div_min to output_div_max loop
fvco := fout * output_div;
error := abs(fout-out0_hz);
for channel in 1 to 3 loop
if sfreq(channel) > 0 then
div := 1;
if fvco >= sfreq(channel) then
div := fvco/sfreq(channel);
end if;
freq := fvco/div;
error := error + abs(freq-sfreq(channel));
end if;
end loop;
if error < error_prev -- prefer least error
or (error=error_prev and abs(fvco-VCO_OPTIMAL) < abs(params.fvco-VCO_OPTIMAL)) -- or if 0 error prefer closest to optimal VCO frequency
then
error_prev := error;
phase_compensation := (output_div+1)/2*8-8+output_div/2*8; -- output_div/2*8 = 180 deg shift
phase_count_x8 := phase_compensation + 8*output_div*out0_deg/360;
if phase_count_x8 > 1023 then
phase_count_x8 := phase_count_x8 mod (output_div*8); -- wraparound 360 deg
end if;
params.refclk_div := input_div;
params.feedback_div := feedback_div;
params.output_div := output_div;
params.fin_string := Hz2MHz_str(in_hz);
params.fout_string := Hz2MHz_str(fout);
params.fout := in_hz * feedback_div / input_div;
params.fvco := fvco;
params.primary_cphase := phase_count_x8 / 8;
params.primary_fphase := phase_count_x8 mod 8;
end if;
end loop;
end loop;
end loop;
-- generate secondary outputs
for channel in 1 to 3 loop
if sfreq(channel) > 0 then
div := 1;
if params.fvco >= sfreq(channel) then
div := params.fvco/sfreq(channel);
end if;
freq := params.fvco/div;
phase_compensation := div*8-8;
phase_count_x8 := phase_compensation + 8*div*sphase(channel)/360;
if phase_count_x8 > 1023 then
phase_count_x8 := phase_count_x8 mod (div*8); -- wraparound 360 deg
end if;
phase_shift := 8*div*sphase(channel)/360 * 360 / (8*div); -- reported phase shift
params.secondary(channel).div := div;
params.secondary(channel).freq_string := Hz2MHz_str(freq);
params.secondary(channel).freq := freq;
params.secondary(channel).phase := phase_shift;
params.secondary(channel).cphase := phase_count_x8 / 8;
params.secondary(channel).fphase := phase_count_x8 mod 8;
else
params.secondary(channel).div := 1;
end if;
end loop;
params.result.in_hz := request.in_hz;
params.result.out0_hz := natural(params.fout);
params.result.out0_deg := 0; -- FIXME
params.result.out1_hz := natural(params.secondary(1).freq);
params.result.out1_deg := natural(params.secondary(1).phase);
params.result.out2_hz := natural(params.secondary(2).freq);
params.result.out2_deg := natural(params.secondary(2).phase);
params.result.out3_hz := natural(params.secondary(3).freq);
params.result.out3_deg := natural(params.secondary(3).phase);
return params;
end F_ecp5pll;
constant request : T_clocks :=
(
in_hz => in_hz,
out0_hz => out0_hz,
out0_deg => out0_deg,
out1_hz => out1_hz,
out1_deg => out1_deg,
out2_hz => out2_hz,
out2_deg => out2_deg,
out3_hz => out3_hz,
out3_deg => out3_deg
);
constant params : T_params := F_ecp5pll(request);
component EHXPLLL
generic
(
CLKI_DIV : integer := 1;
CLKFB_DIV : integer := 1;
CLKOP_DIV : integer := 8;
CLKOS_DIV : integer := 8;
CLKOS2_DIV : integer := 8;
CLKOS3_DIV : integer := 8;
CLKOP_ENABLE : string := "ENABLED";
CLKOS_ENABLE : string := "DISABLED";
CLKOS2_ENABLE : string := "DISABLED";
CLKOS3_ENABLE : string := "DISABLED";
CLKOP_CPHASE : integer := 0;
CLKOS_CPHASE : integer := 0;
CLKOS2_CPHASE : integer := 0;
CLKOS3_CPHASE : integer := 0;
CLKOP_FPHASE : integer := 0;
CLKOS_FPHASE : integer := 0;
CLKOS2_FPHASE : integer := 0;
CLKOS3_FPHASE : integer := 0;
FEEDBK_PATH : string := "CLKOP";
CLKOP_TRIM_POL : string := "RISING";
CLKOP_TRIM_DELAY : integer := 0;
CLKOS_TRIM_POL : string := "RISING";
CLKOS_TRIM_DELAY : integer := 0;
OUTDIVIDER_MUXA : string := "DIVA";
OUTDIVIDER_MUXB : string := "DIVB";
OUTDIVIDER_MUXC : string := "DIVC";
OUTDIVIDER_MUXD : string := "DIVD";
PLL_LOCK_MODE : integer := 0;
PLL_LOCK_DELAY : integer := 200;
STDBY_ENABLE : string := "DISABLED";
REFIN_RESET : string := "DISABLED";
SYNC_ENABLE : string := "DISABLED";
INT_LOCK_STICKY : string := "ENABLED";
DPHASE_SOURCE : string := "DISABLED";
PLLRST_ENA : string := "DISABLED";
INTFB_WAKE : string := "DISABLED"
);
port
(
CLKI, CLKFB,
RST, STDBY, PLLWAKESYNC,
PHASESEL1, PHASESEL0, PHASEDIR, PHASESTEP, PHASELOADREG,
ENCLKOP, ENCLKOS, ENCLKOS2, ENCLKOS3 : IN std_logic := 'X';
CLKOP, CLKOS, CLKOS2, CLKOS3, LOCK, INTLOCK,
REFCLK, CLKINTFB : OUT std_logic := 'X'
);
end component;
-- internal signal declarations
signal CLKOP_t : std_logic;
signal REFCLK : std_logic;
signal PHASESEL_HW : std_logic_vector(1 downto 0);
attribute FREQUENCY_PIN_CLKI : string;
attribute FREQUENCY_PIN_CLKOP : string;
attribute FREQUENCY_PIN_CLKOS : string;
attribute FREQUENCY_PIN_CLKOS2 : string;
attribute FREQUENCY_PIN_CLKOS3 : string;
attribute FREQUENCY_PIN_CLKI of PLL_inst : label is params.fin_string;
attribute FREQUENCY_PIN_CLKOP of PLL_inst : label is params.fout_string;
attribute FREQUENCY_PIN_CLKOS of PLL_inst : label is params.secondary(1).freq_string;
attribute FREQUENCY_PIN_CLKOS2 of PLL_inst : label is params.secondary(2).freq_string;
attribute FREQUENCY_PIN_CLKOS3 of PLL_inst : label is params.secondary(3).freq_string;
attribute ICP_CURRENT : string;
attribute LPF_RESISTOR : string;
attribute ICP_CURRENT of PLL_inst : label is "12";
attribute LPF_RESISTOR of PLL_inst : label is "8";
attribute syn_keep : boolean;
attribute NGD_DRC_MASK : integer;
attribute NGD_DRC_MASK of mix : architecture is 1;
begin
assert false
report "clk_o(0) " & Hz2MHz_str(params.result.out0_hz) & " MHz " & Hz2MHz_str(params.result.out0_deg*1000000) & " deg"
severity note;
assert false
report "clk_o(1) " & Hz2MHz_str(params.result.out1_hz) & " MHz " & Hz2MHz_str(params.result.out1_deg*1000000) & " deg"
severity note;
assert false
report "clk_o(2) " & Hz2MHz_str(params.result.out2_hz) & " MHz " & Hz2MHz_str(params.result.out2_deg*1000000) & " deg"
severity note;
assert false
report "clk_o(3) " & Hz2MHz_str(params.result.out3_hz) & " MHz " & Hz2MHz_str(params.result.out3_deg*1000000) & " deg"
severity note;
assert abs(out0_hz - params.result.out0_hz) <= out0_tol_hz
report "clk_o(0) " & Hz2MHz_str(params.result.out0_hz) & " MHz exceeds " & Hz2MHz_str(out0_hz) & "+-" & Hz2MHz_str(out0_tol_hz) & " MHz out0_tol_hz"
severity failure;
assert abs(out1_hz - params.result.out1_hz) <= out1_tol_hz
report "clk_o(1) " & Hz2MHz_str(params.result.out1_hz) & " MHz exceeds " & Hz2MHz_str(out1_hz) & "+-" & Hz2MHz_str(out1_tol_hz) & " MHz out1_tol_hz"
severity failure;
assert abs(out2_hz - params.result.out2_hz) <= out2_tol_hz
report "clk_o(2) " & Hz2MHz_str(params.result.out2_hz) & " MHz exceeds " & Hz2MHz_str(out2_hz) & "+-" & Hz2MHz_str(out2_tol_hz) & " MHz out2_tol_hz"
severity failure;
assert abs(out3_hz - params.result.out3_hz) <= out3_tol_hz
report "clk_o(3) " & Hz2MHz_str(params.result.out3_hz) & " MHz exceeds " & Hz2MHz_str(out3_hz) & "+-" & Hz2MHz_str(out3_tol_hz) & " MHz out3_tol_hz"
severity failure;
G_dynamic: if dynamic_en /= 0 generate
PHASESEL_HW <= std_logic_vector(unsigned(phasesel)-1);
end generate;
PLL_inst: EHXPLLL
generic map
(
CLKI_DIV => params.refclk_div,
CLKFB_DIV => params.feedback_div,
FEEDBK_PATH => "CLKOP",
OUTDIVIDER_MUXA => "DIVA",
CLKOP_ENABLE => enabled_str(out0_hz),
CLKOP_DIV => params.output_div,
CLKOP_CPHASE => params.primary_cphase,
CLKOP_FPHASE => params.primary_fphase,
-- CLKOP_TRIM_DELAY=> 0, CLKOP_TRIM_POL=> "FALLING",
OUTDIVIDER_MUXB => "DIVB",
CLKOS_ENABLE => enabled_str(out1_hz),
CLKOS_DIV => params.secondary(1).div,
CLKOS_CPHASE => params.secondary(1).cphase,
CLKOS_FPHASE => params.secondary(1).fphase,
-- CLKOS_TRIM_DELAY=> 0, CLKOS_TRIM_POL=> "FALLING",
OUTDIVIDER_MUXC => "DIVC",
CLKOS2_ENABLE => enabled_str(out2_hz),
CLKOS2_DIV => params.secondary(2).div,
CLKOS2_CPHASE => params.secondary(2).cphase,
CLKOS2_FPHASE => params.secondary(2).fphase,
OUTDIVIDER_MUXD => "DIVD",
CLKOS3_ENABLE => enabled_str(out3_hz),
CLKOS3_DIV => params.secondary(3).div,
CLKOS3_CPHASE => params.secondary(3).cphase,
CLKOS3_FPHASE => params.secondary(3).fphase,
INTFB_WAKE => "DISABLED",
STDBY_ENABLE => enabled_str(standby_en),
PLLRST_ENA => enabled_str(reset_en),
DPHASE_SOURCE => enabled_str(dynamic_en),
PLL_LOCK_MODE => 0
)
port map
(
CLKI => clk_i, CLKFB => CLKOP_t,
RST => reset, STDBY => standby, PLLWAKESYNC => '0',
PHASESEL1 => PHASESEL_HW(1),
PHASESEL0 => PHASESEL_HW(0),
PHASEDIR => phasedir,
PHASESTEP => phasestep,
PHASELOADREG => phaseloadreg,
ENCLKOP =>'0', ENCLKOS => '0', ENCLKOS2 => '0', ENCLKOS3 => '0',
CLKOP => CLKOP_t,
CLKOS => clk_o(1),
CLKOS2 => clk_o(2),
CLKOS3 => clk_o(3),
INTLOCK => open, REFCLK => REFCLK, CLKINTFB => open,
LOCK => locked
);
clk_o(0) <= CLKOP_t;
end mix;
|